Vision

 

 
Home ] Up ] Competences ] Partners ] About ] Views ] Site Map ] Search ]
 
[ Vision ] N-Media ] NGN ] Broadband ] F-Nets ] Wireless ] Transport-N ] IoT ] Surveilance ] N-Economics ] Energy ] VWP ] TACS-WP ] Resources ]


 

Up
ITU
6th Sense
LTE

Looking Ahead: Vision for the Future

   
 
   
   
 
   

Looking Ahead: Technology Evolution and the Biz of Telecommunications
Tutorial presented at DLTs in Brazil in August 2004.
Author(s): Roberto Saracco

 
 
 

The tutorial is based on work carried out within a European Cooperative projects, FISTERA, that saw the contributions and interactions of researchers from many fields and from many centres in the world. The objective: to provide an understanding on the possible evolution over the next 10-15 years and its impact on telecommunications in the large.
It can be of interest to a broad constituency, every one having a stake, or just a curiosity, in what current research are promising and how they may evolve in the future years.


The presentation consists of three parts:
- Methodology used, tool developed: the objective is to socialize the approach and stimulate contributions for further analyses of technologies

- Technology trajectories: some of the following areas may be presented based on the interest of the audience:
-Artificial Life
-Broadband/Bandwidth
-Communication
-Data Capture
-Human Interfacing
-Information Visual Displaying
-Information Retrieval
-Pin-pointing
-Printing atoms
-Processing
-Seamless Ubiquitous Connectivity
-Storage


For each trajectory the hurdles, evaluation of main players, research challenges and contributors are considered.


- Disruptions: presentation and discussion of potential impact on the various actors in the telecom value chain of the technological/market evolution, considering:


Towards a transformation of Products into Services
The Disappearance of the Computer
Ubiquitous Seamless Connectivity
Changing traffic patterns
Unlimited Bandwidth
Disposable products
Autonomous Systems
From Content to Packaging
The emergence of virtual infrastructures

Please click on the hyperlink below to access the Tutorial of Prof. R. Saracco: Looking Ahead (Top)

   
 
   

Software Radio Implementation for MIMO/OFDM High-Speed Wireless LAN/MAN with Space-Time Coding and BLAST Technologies
Tutorial by Weidong Xiang, University of Michigan, Dearborn

 
 
 

The tutorial dedicates to the cutting-edge wireless parallel transmission technologies in frequency-domain and space-domain, known as orthogonal frequency-division multiplexing (OFDM) and multiple input multiple out (MIMO) respectively, with focuses on the implementations of OFDM MIMO high-speed wireless local area network (WLAN) and wireless metropolitan area network (WMAN) prototypes on the basis of the technology of software radio.

The related technical backgrounds are briefly introduced firstly, which includes OFDM, MIMO, space-time coding, Bell laboratory layered space-time (BLAST), the IEEE 802.11a based WLAN, the IEEE 802.16 based WMAN and software radio testbed.

 The tutorial then discusses the implementations of a two-transmitter tow-receiver (2x2) real-time space-time coding OFDM WLAN/WMAN prototype and a four-transmitter four-receiver (4x4) OFDM BLAST WLAN/WMAN prototype.

At First, we discuss the configuration of an up-to-date software radio testbed. The key algorithms implementations based on multiple TMS320C6701 DSPs are then presented, including QAM map/de-map, FFT/IFFT, time synchronization, frequency synchronization, channel estimation and compensation, and coding/decoding.

The prototype realizes a 30 Mb/s wireless link based on the IEEE 802.16 standard and Alamouti’s space-time diversity scheme.

Next, we present the experimental results of a four-transmitter four-receiver OFDM BLAST prototype, offering a peak date rate of 525Mb/s with a spectrum efficient of 19.2 b/Hz/s. BLAST detection algorithms, bit error rate (BER) to signal to noise ratio (SNR) curves, the impairments of carrier frequency offset, the impact on system capacity due to the degradation of MIMO channel, the error distributions and the unsymmetric MIMO configurations are discussed in details.

Software radio testbed can rapidly implement and evaluate new algorithms and schemes, which benefits to both academy research and product development. This tutorial is based on our five years’ research in the software radio laboratory at Georgia Tech and offers fundamental and helpful information for development engineers, system engineers, technical managers, and graduate students who are interested in the promising wireless parallel transmission technologies.

Please click on the hyperlink below to access the Tutorial of Prof. W. Xiang: Software Radio Implementation for MIMO/OFDM High Speed Wireless LAN/MAN (Top)

   
 
 

Broadband Wireless Access – The Next Wireless Revolution
Benny Bing, Georgia Institute of Technology

 
 
 

Broadband wireless access is the third wireless revolution, after cellphones and Wi-Fi. It is viewed by many carriers and cable operators as a “disruptive” technology and rightly so. The broadcast nature of wireless transmission offers ubiquity and immediate access for both fixed and mobile users, clearly a vital element of next-generation quadruple play (i.e., voice, video, data, and mobility) services. Unlike wired access (copper, coax, fiber), a large portion of the deployment costs is incurred only when a subscriber signs up for service. An increasing number of municipal governments around the world are financing the deployment of multihop wireless networks with the overall aim of providing ubiquitous Internet access and enhanced public services. This tutorial will provide a comparative assessment of the key standards and technologies underpinning promising broadband wireless access solutions.

Please click on the hyperlink below to access the Tutorial of Prof. B. Bing: Broadband Wireless Access – The Next Wireless Revolution (Top)

   
 
 

Broadband Fiber Access
Leonid G. Kazovsky, David Gutierrez, Wei-Tao Shaw, Gordon Wong, Stanford University

 
 
 

Broadband fiber access is becoming increasing important in USA as major service providers are gearing to bridge the gap between world leaders in access (South Korea and Japan) and USA. This tutorial will first review fiber access technologies currently being deployed: passive optical networks (PONs) including A/B PON, E-PON and G-PON; and hybrid networks having both fiber and DSL segments. The issues of bandwidth, QoS and security will be discussed. Next, the tutorial will review possible evolution scenarios from hybrid PON / DSL networks to PON / wireless, pure PON, and next-generation PON networks. In the latter group, we will cover more powerful 10Gb/s TDM PONs and evolution toward even more powerful WDM PONs. Special attention will be paid to graceful, economically feasible evolutions scenarios.

This tutorial includes results of some six years of research conducted by my group, Photonics and Networking Research Laboratory at Stanford University. The research was conducted with a generous support of various industrial companies (including both service providers and equipment manufacturers) and government agencies (such as N F).

Please click on the hyperlink below to access the Tutorial: Broadband Fiber Access (Top)

   
 
 

Peer-to-Peer Technologies for Next Generation Communication Systems – Basic Principles and Advanced Issues

 
 
 

Peer-to-Peer (P2P) systems can be regarded as decentralized and self organizing overlay architectures, independent of specific access networks. Self organization makes them robust and flexible to dynamic changes without provider interaction. Their main objective is to support to find and use distributed resources. P2P technologies have thus received an increased interest in academia and also in industry in different application areas, not limited to file sharing, but also in communication applications such as Skype. The potential of P2P is in the realization of novel applications (user generated content, community based services) and also in applying its principles to use existing resources in a more clever way to save infrastructure cost. This tutorial explains basic principles of Peer-to-Peer communications and selected advanced issues. We first explain the concepts and algorithms of structured and unstructured P2P systems, which are the two main concepts used for resource lookup. Both concepts will be explained and illustrated with examples about analysis, traffic evaluations and applications. We further elaborate on basic algorithms for P2P data delivery taking place after a resource is found (example: BitTorrent). Advanced issues include selected topics in hierarchical P2P systems, P2P applications, such as Voice over IP systems, P2P security, and P2P for mobile communications and mobile ad hoc networks. We conclude with a discussion of industry perspectives on P2P.

Please click on the hyperlink below to access the Tutorial: Peer-to-Peer Technologies for Next Generation Communication Systems – Basic Principles and Advanced Issues of Wolfgang Kellerer (DoCoMo Communications Laboratories Europe), Gerald Kunzmann (Technische Universität München) & Stefan Zöls (Technische Universität München). (Top)

   
 
 

WiMax - Mobilizing the Internet

 
 
 

Broadband wireless access (BWA) is viewed by both telephone and cable operators as a disruptive technology and rightly so. The broadcast nature of wireless transmission offers ubiquity and immediate access for both fixed and mobile users, clearly a vital element of next-generation quadruple play services involving voice, video, data, and mobility. WiMax is a promising BWA option that includes many powerful wireless features. This tutorial aims to provide the participant with a strong foundation on the IEEE 802.16 standard. Topics covered include the physical (PHY) layer, adaptive modulation and coding, OFDM and OFDMA, multiple antenna systems, medium access control (MAC), TDD and FDD transmission, frame formats, quality of service, security, mobility support, deployment considerations, the WiMax Forum, ongoing 802.16 projects, and 802.16 performance evaluation using OPNET

Please click on the hyperlink below to access the Tutorial: WiMax - Mobilizing the Internet of Benny Bing, Georgia Institute of Technology. (Top)

   
 
 

MPLS - The importance of offering the right solution at the right moment

 
 
 

Derived from a proprietary fast packet switching technique, MPLS (Multi-Protocol Label Switching) has played various roles throughout the years. It has been an approach for the deployment of IP over ATM networks, a solution in utilizing ATM hardware within IP networks, a traffic engineering enhancement for IP, and finally a unifying control plane technology.

After presenting the basic mechanisms and operating principles of MPLS, the tutorial discusses the two features of MPLS that make it a particularly important technology today: traffic engineering capability and the control plane. The limitations of IP with respect to the realization and operation of large backbones are analyzed and then traffic engineering features that enable MPLS to overcome such limitations are illustrated together with their underlying mechanisms and protocols. Concerning MPLS control plane, on the one hand, it is well integrated with the control plane of IP, on the other hand it is suitable for deployment on connection oriented networks. For this reason the control plane of MPLS has become a unifying solution for various network technologies.

Please click on the hyperlink below to access the Tutorial: MPLS - The importance of offering the right solution at the right moment of Mario Baldi, Politecnico di Torino (Top)

 
 
   

IPTV Deployment Challenges and Opportunities

 
 
 

'IPTV Deployment Challenges and Opportunities', Anurag Srivastava & Swarup Acharya, Bell Laboratories, Lucent Technologies, IEEE Tutorial

IPTV is generating huge interest in the telecom industry lately. By offering video over their access infrastructure, Telcos hope to match the voice, video and data ("triple-play") offering of Cable providers. However, unlike Cable TV systems that are typically analog broadcast transmissions, IPTV uses IP-multicast over point-to-point hybrid Fiber/DSL infrastructure that while enabling more efficient networks, is also causing Telcos growing pains in field deployments.
In this tutorial, we will provide an overview of the network architectures and will highlight the various tradeoffs (e.g., channel change latency vis-a-vis compression technology). We will focus on hardware and software technologies from the service provider core to the home --- multicast transport, DSL technologies, MPEG standards and home-networking requirements such as the IPTV set-top box. Finally, we will also review the regulatory issues faced by Telcos, and describe the various lifestyle services such as "CallerId-on-TV" and converged voice-video applications that provides IPTV its cutting-edge differentiation.

Slides

 
 
 

PDF Version

Presentation Slides for IPTV Deployment Challenges and Opportunities

What is IPTV?

IPTV Market Drivers

Triple Play-IPTV

IPTV Technology Enablers

Transport Net Architectures for IPTV

IPTV Deployment Challenges

IPTV Competitive Threat

IPTV Vendors and Service Provider Strategies

Conclusion

 
 
 

'LTE technology and LTE test; a deskside chat', Christina Gessner and Andreas Roessler

 
 
 

Long Term Evolution (LTE) technology is the next step in the evolution of UMTS cellular networks. LTE will turn UMTS into a high-data rate, low-latency and packet-optimized mobile broadband system. The Rohde & Schwarz tutorial LTE technology and LTE test; a desk side chat will provide a comprehensive introduction to LTE technology and test requirements. The tutorial starts with some background information regarding the motivation for introducing LTE, and then gives a detailed explanation of the technology basics including physical layer parameterization, radio procedures, MIMO, and network / protocol architecture. Typical test and measurement challenges encountered during verification of chipsets, terminals and infrastructure, and network deployment are outlined as well.

PDF Version

 
 
 

Slides

 
 
 
   

TACS

 

 
 

Home ] Up ] Competences ] Partners ] About ] Views ] Site Map ] Search ]

[ Vision ] N-Media ] NGN ] Broadband ] F-Nets ] Wireless ] Transport-N ] IoT ] Surveilance ] N-Economics ] Energy ] VWP ] TACS-WP ] Resources ]

 

 

Challange TACS - Solution TACS

 

 

The Best Networks Start with the Best Consultants - TACS

 

 

Copyright © 2023 TACS
Last modified: September 20, 2023