TT

 

 
Home ] Up ] Competences ] Competence Center ] Partners ] About ] Views ] Site Map ] Search ]
 
Systems ] HAPS's Envision ] Nokia's Vision ] [ TT ]


 

Up

A Perspective on Time Toward Wireless 6G

   
   

   
   

With the advent of 5G technology, the notion of latency got a prominent role in wireless connectivity, serving as a proxy term for addressing the requirements for real-time communication. As wireless systems evolve toward 6G, the ambition to immerse the digital into physical reality will increase. Besides making the real-time requirements more stringent, this immersion will bring the notions of time, simultaneity, presence, and causality to a new level of complexity. A growing body of research points out that latency is insufficient to parameterize all real-time requirements. Notably, one such requirement that received significant attention is information freshness, defined through the Age of Information (AoI) and its derivatives. In general, the metrics derived from a conventional black-box approach to communication network design are not representative of new distributed paradigms, such as sensing, learning, or distributed consensus. The objective of this article is to investigate the general notion of timing in wireless communication systems and networks, and its relation to effective information generation, processing, transmission, and reconstruction at the senders and receivers. We establish a general statistical framework of timing requirements in wireless communication systems, which subsumes both latency and AoI. The framework is made by associating a timing component with the two basic statistical operations: decision and estimation. We first use the framework to present a representative sample of the existing works that deal with timing in wireless communication. Next, it is shown how the framework can be used with different communication models of increasing complexity, starting from the basic Shannon one-way communication model and arriving at communication models for consensus, distributed learning, and inference. Overall, this article fills an important gap in the literature by providing a systematic treatment of various timing measures in wireless communication and sets the basis for design and optimization for the next-generation real-time systems.

   
   

A Perspective on Time Toward Wireless 6G (pdf)

A Perspective on Time Toward Wireless 6G | IEEE Journals & Magazine | IEEE Xplore

   
   
   
   

About TACS

   
   
TACS Consulting Delivers The Insight and Vision on Information Communication and Energy Technologies for Strategic Decisions.

TACS is Pioneer and Innovator of many Communication Signal Processors, Optical Modems, Optimum or Robust Multi-User or Single-User MIMO Packet Radio Modems, 1G Modems, 2G Modems, 3G Modems, 4G Modems, 5G Modems, 6G Modems, Satellite Modems, PSTN Modems, Cable Modems, PLC Modems, IoT Modems and more..

TACS consultants conducted fundamental scientific research in the field of communications and are the pioneer and first inventors of PLC MODEMS, Optimum or Robust Multi-User or Single-User MIMO fixed or mobile packet radio structures in the world.

TACS is a leading top consultancy in the field of Information, Communication and Energy Technologies (ICET). The heart of our Consulting spectrum comprises strategic, organizational, and technology-intensive tasks that arise from the use of new information and telecommunications technologies. TACS Consulting offers Strategic Planning, Information, Communications and Energy Technology Standards and Architecture Assessment, Systems Engineering, Planning, and Resource Optimization.

 

 
   

TACS is a leading top consultancy in the field of information, communication and energy technologies (ICET).

   
   

The heart of our consulting spectrum comprises strategic, organizational, and technology-intensive tasks that arise from the use of new information, communication and energy technologies. 
 
The major emphasis in our work is found in innovative consulting and implementation solutions which result from the use of modern information, communication and energy technologies.

 
   

TACS 

   
   
  • Delivers the insight and vision on technology for strategic decisions
  • Drives innovations forward as part of our service offerings to customers worldwide 
  • Conceives integral solutions on the basis of our integrated business and technological competence in the ICET sector 
  • Assesses technologies and standards and develops architectures for fixed or mobile, wired or wireless communications systems and networks
  • Provides the energy and experience of world-wide leading innovators and experts in their fields for local, national or large-scale international projects.
   
 


 

   
   
 

TACS

 

 
 
Simple scenario in which two users of different types transmit in the uplink to a common BS. One is a high rate user, and the other user sends intermittent critical updates. (a) Scheme with low-latency reservations for the intermittent user. (b) Scheme with pull-based updates from the intermittent user.

General timing model from 3GPP

Timing scales of the radio access network (RAN) intelligent controller in O-RAN

Illustration of the timing references for a link between a sensor (Node 1) and edge controller (Node 2).

Transmission model in an AoI (or beyond AoI) optimization scheme. (a) Open-loop operation. (b) Closed-loop operation.

Shannon’s communication model annotated by layering.

 

Home ] Up ] Competences ] Competence Center ] Partners ] About ] Views ] Site Map ] Search ]

Systems ] HAPS's Envision ] Nokia's Vision ] [ TT ]

 

 

Challange TACS - Solution TACS

 

 

The Best Networks Start with the Best Consultants - TACS

 

 

Copyright © 2023 TACS
Last modified: September 20, 2023