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Preface

In recent years the area of nonlinear signal and image processing has emerged
as a distinct research field in its own right. It has formed from a fusion of tech-
niques which, whilst coming from very different sources, share many characteris-
tics. These techniques have appeared for two main reasons:

(i) the availability of high-powered computing at modest cost which can
allow many operations to be carried out in real time or near real time,

(ii) the emergence of new applications requiring complex solutions for
which classical linear techniques simply do not work.

Whilst linear techniques have many advantages, they mainly arise in a math-
ematical framework based on orthogonal spaces. The problem is tackled by map-
ping the data into lower-order spaces. For example, in Fourier analysis the model-
ing of both signals and systems by a summation of complex sinusoids leads to an
elegant analysis with all cross-terms conveniently vanishing from the calculation.
Filters can in effect be designed one frequency at a time. Such powerful superpo-
sition properties result in neat closed-form solutions of optimal filters. In many
branches of engineering, from circuit analysis to audio processing, these tech-
niques have worked well. In transient and discrete systems, Laplace and z trans-
forms have proved to be similarly invaluable. However, solutions are limited to
those based on superposition of sinusoids. Relaxation of this constraint is the basis
of nonlinear signal and image processing. It can lead to better solutions to prob-
lems at the price of increased mathematical complexity, particularly in operator
design.

The vitality of the field is proven by
(i) the success of the series of workshops on nonlinear signal and image

processing organized every two years by the NSIP Board (http://posei-
don.csd.auth.gr/NSIP/);

(ii) the special issues published on this topic, and in particular the recent
special issues of the EURASIP Journal on Applied Signal Processing;

(iii) the special sessions organized at international conferences, and in par-
ticular the special session organized at EUSIPCO-04 in Vienna;

(iv) the number of contributions appearing in journals and presented at in-
ternational conferences.

As nonlinear signal processing matures, it is being applied to many new appli-
cations and in new contexts. Therefore, the aim of this book is to present a review
of emerging new areas of interest involving nonlinear signal and image processing
theories, techniques, and tools. In consideration of the different topics dealt with,
it has been a natural choice to publish an edited book where each chapter is writ-
ten by leading experts in their respective fields. Moreover, particular attention has
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x Preface

been paid to having a common structure for every chapter. In fact, each chapter
includes an introductory part describing briefly the state of the art of the area in
which the proposed topic is discussed. The advantages of using a nonlinear ap-
proach are then clearly delineated and new methods and results are demonstrated.
A summary and a large number of references complete each contribution.

The first chapter describes an explicit method to deal with stochastic differ-
ential equations whose solution exhibits nonstationary properties, such as a spec-
trum that is changing in time. The basis of the method is to transform the dif-
ferential equation into the phase space of time and frequency. Using this method
the authors have addressed a number of problems previously intractable. In this
chapter, a new approach that can handle nonstationary stochastic systems is pre-
sented with particular reference to the Langevin Brownian motion equation with
time-dependent coefficients.

Chapter 2 considers aperture filters which represent a new filtering approach.
They are not limited by constraints of linearity and so can address many complex
filtering problems. The filters are subject to windowing in the amplitude domain
as well as the spatial domain. This allows practical design to take place through
filtering using a realistic-sized training set.

Because finite sets are not closed under the ordinary arithmetic operations of
addition and multiplication, filters that map one sequence taking values in a finite
set into another such sequence are necessarily nonlinear. Chapter 3 considers the
general problems of designing these nonlinear filters and developing useful char-
acterizations like power spectra for sequences taking values in finite sets. Both the
general case, where there is no additional algebraic structure available to exploit,
and the specialized case, where some useful structure is present, are discussed. Ap-
plications to DNA sequence analysis and database cleaning are considered.

A vibrant research area has recently been created with the introduction of
biological cDNA microarrays. These microarrays make it possible to simultane-
ously measure the expressions level for thousands of genes. The large volume of
data produced requires that new techniques be developed to model the subtle and
complex interactions of these genes. Chapter 4 describes methods for gene clas-
sification based on a ternary model which have emerged from nonlinear signal
processing.

The adoption of nonlinear methods in speech analysis and synthesis has be-
come a common practice over the last two decades. Chapter 5 explores and details
why nonlinear methods should be considered in this research domain. In partic-
ular, this chapter illustrates the main nonlinear methods adopted, such as neural
networks, nonlinear dynamics, and fractal methods. In addition, the insights of-
fered for speech analysis by nonlinear methods are discussed. Key results on syn-
thesis by a variety of nonlinear methods are shown too.

Chapter 6 deals with an important problem in the communication area re-
lated to the characteristics of commonly used components such as the power am-
plifiers (PAs). It is well known that a linear PA is inefficient, while an efficient
PA comes with undesirable nonlinear effects. In this chapter, two types of nonlin-
ear distortions, spectral regrowth and in-band distortion, are first discussed. Then,
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Preface xi

the authors focus on digital baseband predistortion linearization of nonlinear PAs,
with the aim of achieving both high efficiency as well as high linearity. Some re-
cent developments on predistorter design with memory are presented together
with testbed measurement results.

Active noise control (ANC) is another topic that has been considered over
many years with reference to linear models. On the other hand, there is the evi-
dence that nonlinear distortions can affect actual applications, in turn requiring
models with an intrinsic complexity higher than that of linear models. In Chapter
7, nonlinear single-channel and multichannel ANC schemes based on polynomial
and other useful models are described. Particular emphasis is posed on both effi-
cient structures and fast updating rules.

In Chapter 8, an overview of watermarking schemes based on chaotic genera-
tors is presented. In fact, sequences generated by chaotic generators can be used as
watermark signals instead of the widely used pseudorandom watermarks. The sta-
tistical properties of watermark sequences generated by piecewise-linear Markov
maps embedded in an additive or a multiplicative way are presented. An example
of applying the chaotic watermarking framework on audio signals, demonstrating
its superiority with respect to both robustness and inaudibility, is described.

The modeling of texture is an important area in many fields of research. One
such area is the monitoring of corrosion of aircraft parts. Nonlinear multiscale
analysis tools known as granulometries have been used to quantify and classify an
evolving texture over time. In Chapter 9, a deterministic link is established between
the moments of the granulometric profiles and the parameters which characterize
the textures. This is used to estimate the severity of the corrosion of a number of
samples.

The final three chapters of the book have a common theme that concerns
strategies for handling multivalued data. Many nonlinear processing techniques,
including weighted order statistics (WOS) and variations on the median filter pos-
sess a stage in which an output is generated based on the rank order of the data
samples. For scalar values this is a fully defined operation, but in the case of mul-
tivalued or vector data it is not clear how to extend these concepts. Chapter 10
presents a reasoned evaluation of techniques for extending weighted median fil-
ters to multivalued data.

A specific case of multivalued data is color information. Whichever represen-
tation is used, color inevitably results in a three-dimensional entity. Chapter 11
gives an overview of nonlinear techniques specifically tuned to the processing of
color image data. Issues such as noise reduction and color bleeding are addressed.
The way in which information from the different color bands is combined is dis-
cussed with detailed examples.

Finally, Chapter 12 considers the problem of edge detection in color images.
The concept of color morphological gradient is described and this is evaluated
against other color edge detection techniques in the presence of Gaussian noise.
As well as determining their robustness in edge detection, the metrics used also
include the ability of the color edge detectors to resolve edge direction.
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1
Nonstationary stochastic differential
equations

Lorenzo Galleani and Leon Cohen

1.1. Introduction

Historically, stochastic methods have been developed for the time-invariant sta-
tionary case. However, typically in nature, stochastic processes are nonstationary,
but very little work has been done on this case because of the difficulties involved.
Nonstationary processes come about in two general ways. First the physical param-
eters of the process can vary in time and secondly even for a process that is gener-
ally thought to be stationary there is a nonstationary part, the transient, which is
usually neglected, but which is very important and interesting. We believe that it is
usually neglected because proper methods have not been developed to study it. In
this chapter we develop a new approach that can handle nonstationary stochastic
systems. We now motivate the need for this development by examples.

Particularly simple and important is the classical stochastic equation, the
Langevin equation for Brownian motion,

m
dv(t)
dt

+ βv(t) = f(t), (1.1)

where v(t) is the velocity of the particle,1 β is the friction coefficient, m is the mass
of the particle, and f(t) is the random force, taken to be a Gaussian random process
described statistically by

E
[

f(t)
] = 0,

E
[

f
(
t1
)

f
(
t2
)] = N0δ

(
t1 − t2

)
,

(1.2)

where E is the ensemble average operator. This equation has been studied intensely
since its inception in 1908. The fundamental aim is to obtain the statistical proper-
ties of the output, v(t). Perhaps the most fundamental result is the power spectrum

1We use bold letters for stochastic quantities.
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2 Nonstationary stochastic differential equations

of v(t), first obtained by Wang and Uhlenbeck in 1945 in their classic paper on the
subject [19]. In general the power spectrum of a stochastic process x(t) is defined
by2 [16]

Sx(ω) = 1√
2π

∫

Rx(τ)e−iτωdτ, (1.3)

where Rx(τ) is the autocorrelation function:

Rx(τ) = E
[

x(t)x∗(t + τ)
]
. (1.4)

This definition is of course valid for wide sense stationary processes. The power
spectrum of v(t) for the Langevin equation is

Sv(ω) = 1√
2π

N0

β2 + ω2
. (1.5)

We now ask how it is possible that time has disappeared in this result, since clearly
the solution of (1.1) is time dependent. The reason is that the system has been
allowed to evolve for an infinite time! Although not always explicitly stated, the
way infinite time enters into the result is that the system is turned on at t = −∞,
and hence for any finite time an infinite amount of time has passed. This has the
effect of totally neglecting the approach to equilibrium. Our aim is to obtain the
full evolution of the system. In particular, if we start the system at a finite time,
then we know that it must evolve to (1.5), and this is illustrated in Figure 1.1. Our
goal is to develop a method that will allow us to obtain the region of time marked
by the question mark.

Now consider the Langevin equation with time-dependent coefficients. In
particular we take the friction term to be time-dependent,

m
dv(t)
dt

+ β(t)v(t) = f(t) (1.6)

then clearly we have a situation that in general will never achieve equilibrium and
hence will always be a nonstationary stochastic process. How does one study such
a situation? Our method allows one to do so. In the next section we discuss how
to define a time dependent spectrum and subsequently we obtain an equation of
evolution that governs it.

1.2. Time-dependent power spectrum

Since we are dealing with time-dependent phenomena we need a generalization of
the standard power spectrum. That is, we need a time-dependent power spectrum
and this is commonly called the instantaneous spectrum. Here, as a definition for

2All integrals without limits imply integration from −∞ to +∞.
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L. Galleani and L. Cohen 3
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Figure 1.1. Instantaneous spectrum of Brownian motion from (1.1), the Langevin equation. The
question mark replaces the transient behavior of the random system. The instantaneous spectrum of
the transient can be obtained exactly with our method, as explained in Section 1.5.

the instantaneous spectrum of a random process x(t) we use the Wigner spectrum
[14, 15]

Wx(t,ω) = 1
2π

∫

E
[

x∗
(
t − τ

2

)
x
(
t +

τ

2

)]
e−iτωdτ. (1.7)

It is the ensemble average of the Wigner distribution [2, 4, 21]. The Wigner spec-
trum is a function that describes the power in both time and frequency. A funda-
mental property of the Wigner spectrum is that if we integrate out time then we
obtain the standard power spectrum

∫

Wx(t,ω)dt = ∣∣X(ω)
∣
∣2 = Sx(ω). (1.8)

In (1.7) we have used x(t) to denote an arbitrary random process. Here we deal
mostly with velocity, and hence x(t) will be v(t).

1.3. The equation of motion for a nonstationary stochastic system

Our aim is to obtain the equation of motion for the Wigner spectrum for a sto-
chastic process that is the solution of an ordinary stochastic differential equation

an
dnx(t)
dtn

+ an−1
dn−1x(t)
dtn−1

+ · · · + a1
dx(t)
dt

+ a0x(t) = f(t), (1.9)

where f(t) is a given stochastic process. One could solve this equation for x(t) and
then find the ensemble average as needed to calculate the Wigner spectrum, and
then do the integration as required. This is generally a difficult procedure. We have
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4 Nonstationary stochastic differential equations

developed a method that is more direct: we obtain the equation of evolution for the
Wigner spectrum and solve it [7–12]. To accomplish that, we write the differential
equation in polynomial form

P(D)x(t) = f(t), (1.10)

where D and P(D) are, respectively,

D = d

dt
,

P(D) = anD
n + an−1D

n−1 + · · · + a1D + a0.

(1.11)

The differential equation for the Wigner spectrum Wx(t,ω), of x(t), is then given
by

P∗(A)P(B)Wx(t,ω) =W f (t,ω), (1.12)

where

A = 1
2
∂

∂t
− iω, B = 1

2
∂

∂t
+ iω. (1.13)

For the case of time-dependent coefficients,

an(t)
dnx(t)
dtn

+ an−1(t)
dn−1x(t)
dtn−1

+ · · · + a1(t)
dx(t)
dt

+ a0(t)x(t) = f(t), (1.14)

where a0(t), . . . , an(t) are the time-varying deterministic coefficients. We rewrite
(1.14) in polynomial notation

P(D, t)x(t) = f(t), (1.15)

where now

P(D, t) = an(t)Dn + an−1(t)Dn−1 + · · · + a1(t)D + a0(t). (1.16)

The equation for the Wigner spectrum is

P∗(A, E)P(B, F )Wx(t,ω) =W f (t,ω), (1.17)

where the additional operators are

E = t +
1
2i

∂

∂ω
, F = t − 1

2i
∂

∂ω
. (1.18)

The star sign indicates complex conjugation of the coefficients used in the ex-
pansion of the functions ak(t). Equations (1.12) and (1.17) are partial differential
equations in time and frequency.
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L. Galleani and L. Cohen 5

1.3.1. Remarks

We point out that it is a common procedure to transform random differential
equations to other domains. The most common transformation is to the frequency
domain. In particular the transformation of (1.9) to the frequency domain is [16]

Sx(ω) = ∣∣H(ω)
∣
∣2
Sf (ω), (1.19)

where H(ω) is the transfer function given by

H(ω) = 1
an(iω)n + an−1(iω)n−1 + · · · + a1iω + a0

. (1.20)

The a coefficients are constant with time. The assumption in this transformation
is for f(t) to be a wide sense stationary process, which implies that x(t) is also
wide sense stationary. In our method the assumptions on the stationarity of the
coefficients and the input random process f(t) are not necessary.

1.4. The nonstationary Wiener process

We now apply our method to the Wiener process [3, 5]

dx(t)
dt

= f(t) (1.21)

with initial conditions X(0) = x0, where x0 is a stochastic variable. We will turn
the system on at a finite time and hence we will obtain the complete solution of the
problem. That is, we will get the total solution, including the transient behavior.
First we point out that it is well known that for (1.21) the power spectrum is given
by [16]

Px(ω) = N0√
2π

1
ω2
. (1.22)

This is obtained by using the standard result of linear time-invariant (LTI) sys-
tems. It is important to appreciate that the 1/ω2 spectrum for the Wiener process
is reached in either of two different ways:

(1) the initial condition is set to zero at t = 0 and by taking t = ∞ in the
general solution of (1.21);

(2) alternatively by setting the initial condition to zero at t = −∞ and this
has the effect of the passage of an infinite amount of time.

For both types of initial conditions, the stationary spectrum is reached be-
cause an infinite amount of time has passed. Using our method we will obtain the
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6 Nonstationary stochastic differential equations

full solution, that is, the full evolution of the instantaneous spectrum. Rewriting
(1.21) in the polynomial form of (1.10)

Dx(t) = f(t) (1.23)

and using (1.12), we obtain

ABWx(t,ω) =W f (t,ω). (1.24)

Using the definitions of the operators, we have that

AB = 1
4
∂2

∂t2
+ ω2, (1.25)

and hence

1
4
∂2Wx(t,ω)

∂t2
+ ω2Wx(t,ω) =W f (t,ω), (1.26)

where W f (t,ω) is the Wigner spectrum of f(t). If f(t) is white Gaussian noise with
autocorrelation

Rf (τ) = N0δ(τ), (1.27)

then one can readily show that

W f (t,ω) = N0

2π
, (1.28)

and hence

1
4
∂2Wx(t,ω)

∂t2
+ ω2Wx(t,ω) = N0

2π
. (1.29)

The exact solution to (1.29) is

Wx(t,ω) = N0

2πω2
[1− cos 2ωt] +

E
[

x2
0

]

πω
sin 2ωt, t ≥ 0, (1.30)

and Wx(t,ω) ≡ 0 when t < 0. For E[x2
0] = 0, one has

Wx(t,ω) = N0

2πω2
[1− cos 2ωt] = N0

π

sin2 ωt

ω2
. (1.31)

In Figure 1.2 we show the transient of the Wiener process.
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Figure 1.2. The instantaneous spectrum of the Wiener process defined in (1.21). The spectrum grows
to infinity at ω = 0 and reaches the singularity in the classical frequency spectrum that has a 1/ω2

distribution. Notice that the Wigner spectrum, given in (1.31), is nonnegative.

It is interesting to note that for ω → 0,

lim
ω→0

Wx(t,ω) = lim
ω→0

N0

2πω2
[1− cos 2ωt] = N0

π
t2, (1.32)

and hence at ω = 0 the instantaneous spectrum grows to infinity and approaches
the singularity in the classical power spectrum of (1.22) with a second order in
time.

1.5. The Langevin equation: the full exact solution

Our aim is to show how to find the transient spectrum of the Langevin equation.
We apply our method by first rewriting the Langevin equation in polynomial form

[D + β]v(t) = f(t), (1.33)

where for convenience we take m = 1. Using (1.12), the equation for the Wigner
spectrum is now

[A + β][B + β]Wx(t,ω) =W f (t,ω). (1.34)

We substitute for the operators A and B from (1.13) to obtain

1
4
∂2

∂t2
Wx(t,ω) + β

∂

∂t
Wx(t,ω) +

(
β2 + ω2)Wx(t,ω) =W f (t,ω), (1.35)

where W f (t,ω) is the Wigner spectrum of the input random process f(t).
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Figure 1.3. The complete instantaneous spectrum of Brownian motion, given in (1.36). The picture
shows also the transient part that was hidden in Figure 1.1. Notice the overshoot at the beginning of the
transient and the increased spread of the Wigner spectrum. As t → ∞, the Wigner spectrum reaches
the stationary solution, that is, the Lorentzian distribution of (1.38).

The solution to (1.35) can be found with the standard methods for differential
equations. It is

Wv(t,ω) = 1
π

(
E
[

v2
0

]− N0

2β

)
e−2βt sin 2ωt

ω

+
N0

2π
1

β2 + ω2
− N0

2π
e−2βt

β2 + ω2

(
cos 2ωt − ω

β sin 2ωt

)
, t ≥ 0,

(1.36)

and Wv(t,ω) ≡ 0 for negative times. In the solution we are considering a random
initial condition v0, that is,

v(0) = v0. (1.37)

This solution allows us to understand the transient behavior of the Langevin
equation. In Figure 1.3 we show a typical case.

We see that the instantaneous spectrum has an overshoot effect at the begin-
ning of the transient. Also the spread of the solution is larger for small times. Then
the solution rapidly approaches the stationary spectrum given by the Lorentzian
distribution of (1.5), the standard result. The behavior of the frequencies in the
transient suggests the possibility of designing systems in order to have smooth
transitions of the instantaneous spectrum from zero to the stationary solution.
This can be a fundamental issue in minimizing the electromagnetic interference
of an electronic device that is suddenly turned off, or in reducing the risk of break-
ing down an engine or a vibrating structure by a sudden rough start. These two
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physical situations are examples of the importance of transients in designing and
understanding a physical system. We note that as time goes to infinity we have that

lim
t→∞Wv(t,ω) = N0

β2
0 + ω2

(1.38)

which is the classical Wang-Uhlenbeck result.

1.6. Quantum Langevin equation

Yang and Cohen [22] used the method described above to consider the quantum
Langevin equation [1, 6, 13, 17, 18, 20]

m
d2X(t)
dt2

+mβ
dX(t)
dt

+V ′(X) = ξ(t), (1.39)

where X is the position operator, V(X) is the external potential, and ξ(t) is the
noise operator that satisfies

〈[
ξ(t), ξ(t′)

]
+

〉 = γ�

π

∫

ωeiω(t−t′) coth
�ω

2kT
dω, (1.40)

and where �, k, and T are the reduced Planck’s constant, the Boltzman constant,
and the temperature, respectively. Also, γ = mβ. If one considers (1.39) as a
classical-type equation, then it is called the quasiclassical Langevin equation. In
such a case, one replaces the operators by ordinary variables

m
d2x(t)
dt2

+mβ
dx(t)
dt

+V ′(x) = ξ(t) (1.41)

and the autocorrelation function is then

R(τ) = γ�

2π

∫

ωeiωτ coth
�ω

2kT
dω. (1.42)

We consider here the case of no external potential and rewrite (1.39) as

ṗ(t) + βp(t) = ξ(t) (1.43)

with

Rξ(τ) = 2DZ
∫

ωeiωτ cothZωdω,

Z = �

2kT
.

(1.44)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


10 Nonstationary stochastic differential equations

Using the standard Wiener-Khinchin theorem, the power spectrum is given by

Sξ(ω) = 2DZω cothZω. (1.45)

We note that as Z → 0,

lim
Z→0

Rξ(τ) = 2Dδ(τ). (1.46)

Using our general approach we have that the differential equation for the Wigner
spectrum is

[
1
4
∂2

∂t2
+ β

∂

∂t
+ β2 + ω2

]
Wp(t,ω) = DZ

π
ω cothZω. (1.47)

The exact solution is

Wp(t,ω) = Wξ

β2 + ω2

[
1− e−(2γ/m)t cos 2ωt

]
(1.48)

= 1
β2 + ω2

DZ

π
ω cothZω

[
1− e−(2γ/m)t cos 2ωt

]
. (1.49)

We see that (1.49) can now be thought of as the generalization of the Wang-Uhl-
enbeck process for quantum noise.

The quantum Wiener process is obtained by taking γ = 0 and hence the dif-
ferential equation is

ṗ(t) = ξ(t). (1.50)

The governing equation is

1
4

∂2Wp(t,ω)

∂t2
+ ω2Wp(t,ω) = DZ

π
ω cothZω (1.51)

giving

Wp(t,ω) = DZ

π
ω cothZω(1− cos 2ωt) = 2DZ

π
ω cothZω sin2 ωt. (1.52)

1.7. Time-variant random systems

In many physical situations a random process can be seen as the output of a ran-
dom system whose parameters change with time. The variation can be due to a
sudden breakdown, aging, or cyclic variations of temperature, humidity, and other
physical quantities that can influence the system behavior. In these cases the pro-
cess is inherently nonstationary.
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We now consider the case addressed by (1.6), namely, a time-dependent Brow-
nian motion process. We restate here the problem for convenience, rewriting it in
polynomial notation

[
D + β(t)

]
v(t) = f(t), (1.53)

where we take β(t) to be time dependent with a linear law

β(t) = β0 + εt (1.54)

and also we take ε	 1. This condition implies a slow variation with time. We now
transform the equation in time to an equation in time-frequency, using (1.17), to
obtain

[
1
4
∂2

∂t2
+
ε2

4
∂2

∂ω2
+ β(t)

∂

∂t
+ εω

∂

∂ω
+ β2(t) + ω2

]
Wv(t,ω) = N0

2π
. (1.55)

Taking into account that ε is small, we neglect the terms containing ε,

[
1
4
∂2

∂t2
+ β(t)

∂

∂t
+ β2(t) + ω2

]
Wv(t,ω) = N0

2π
. (1.56)

Since there are no derivatives with respect to ω, we can solve this equation as an
ordinary differential equation with respect to time. We have to choose the initial
conditions, which we fix using the following reasoning. We assume that the system
was started at t = −∞ with β = β0 and hence it has reached equilibrium as given
by (1.19). At t = 0 we turn on the time dependence as given by (1.54). Therefore
the initial conditions to (1.56) are

Wv(0,ω) = N0

β2
0 + ω2

, (1.57)

∂

∂t
Wv(t,ω) = 0, t = 0. (1.58)

The first initial condition, (1.57), is the Wigner spectrum of the stationary
solution. This stationary distribution has been reached because an infinite amount
of time has passed since the system was turned on at t = −∞. As a consequence
of being in a stationary phase before t = 0 there must be no change in time of the
instantaneous spectrum. This condition is stated by (1.58).

Using these initial conditions, (1.56) can be easily solved with numerical al-
gorithms. In Figure 1.4 we plot the solution Wv(t,ω). In Figure 1.5 a numerical
simulation of the Wigner spectrum is shown. The agreement confirms our ap-
proach.

The behavior of the instantaneous spectrum is in accordance with intuition.
The shape of the Wigner spectrum is in fact very similar to the Lorentzian dis-
tribution, for any given time. A similarity with the lowpass filter represented by
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Figure 1.4. Approximation of the Wigner spectrum for the time-varying Brownian motion defined in
(1.53). Notice the lowpass behavior of the instantaneous spectrum. As time increases, the bandwidth
increases due to the variation of the parameter β(t).
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Figure 1.5. The instantaneous spectrum of the time-varying Brownian motion defined in (1.53) ob-
tained through numerical simulation. The result proves the quality of the approximation shown in
Figure 1.4.

the RC circuit can be used to explain the change in spread that the instantaneous
spectrum exhibits. An RC circuit driven by white noise has the same equation of
Brownian motion. In this case we can think of a time-varying RC circuit, where
the time constant τ = RC is a function of time, τ = τ(t). It is well known that
when τ is large, the RC filter has a strong lowpass behavior, which corresponds to
a small spread of the Lorentzian spectrum. On the contrary, when τ is small, the
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RC circuit has a weak lowpass behavior. Since the time constant is related to the
β coefficient by an inverse proportionality, the increase of the β coefficient, which
we assumed for our case, turns out to be a decrease of the τ constant. Therefore
we expect the time-varying system under study to become a weaker lowpass filter
as time goes by, which is precisely what happens in Figure 1.4.

1.8. Summary

The study of nonstationary random processes is important because it presents fas-
cinating theoretical issues and also because of the many applications to real-world
problems. We have developed a method that allows one to study these processes
by transforming the governing differential equation into an equation of motion
in the phase space of time frequency. The approach is based on a direct transfor-
mation of the random differential equation defining the process. As the examples
show it seems that this results in a remarkable simplification. We believe that this is
the case because when one has a nonstationary process the natural representation
is neither time, nor frequency, but time-frequency phase space.

We have extended our method to multi-input multi-output systems governed
by differential equations, and we are currently using the approach to study the
transient behavior of linear systems of arbitrary degree. Also, we have developed
methods to approximate the instantaneous spectrum of time-varying systems and
these results will appear in another publication.
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2
Aperture filters: theory, application,
and multiresolution analysis

Roberto Hirata Jr., Marcel Brun, Junior Barrera, and
Edward R. Dougherty

2.1. Introduction

The heuristic design of digital image processing (DIP) operators is a difficult and
laborious task. It is difficult because it requires a lot of experience and technical
knowledge of the user. It is laborious because it requires several adjustments to
achieve robustness. Difficult and laborious tasks are not for anyone who wants
to solve a practical problem using images. For instance, a biologist who wants to
count the number of marked cells in a microscopic image may benefit in quality
and precision by using image processing techniques. Assuming that this profes-
sional does not have the knowledge to combine image operators correctly, but has
the ability to manually edit and produce pairs of images (input and desired out-
put), it would be desirable if a system programmed by examples1 [13] could project
an image operator to “imitate” her (his) desire. A complete automatic design sys-
tem is composed of at least three subsystems: (1) a preprocessing DIP system to
create the input/output examples, (2) a DIP system that involves statistical and
computational learning [32] to project the operator, (3) an application DIP sys-
tem to integrate the solution to be deployed. A general system like this does not
exist but an effort to build it for some classes of operators (calledW-operators) has
been implemented [12]. In this chapter, we review a class of W-operators called
aperture. We begin with a historical review, then we present the idea of designing
window operators, we review the idea of aperture operators, and finally we give
some examples of applications.

2.1.1. Short historical review

The idea of automatic design of signal operators, from the statistical point of view,
has its roots in Wiener’s and Pugachev’s works [41, 50, 51] for the statistical design

1The method has been previously known by “automatic programming.” We will continue to use
the word “automatic” to designate the design because it is shorter than the new nomenclature.
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16 Aperture filters: theory, application, and multiresolution analysis

of linear filters. From the mathematical morphology (MM) point of view, the idea
has its roots on the representation of the operator by its base [1, 2, 37], an exten-
sion of Matheron’s decomposition theorem [38]. MM has been successful in pro-
viding practical and intuitive solutions to computer vision problems [3, 46, 47]
and because the representation theorems, it showed to be an adequate framework
for automatic design of image operators. Because it models images or image op-
erators as points of complete lattices, algebraic restrictions on image operators are
easily modeled as restrictions on lattices.

Dougherty conceived the idea and showed how to join both approaches to
design W-operators, first for binary [25] and later for gray-scale operators [26].
The logical character of the binary representations has been presented [19], the
optimal design has been treated for gray-scale operators [21] and the subject has
been studied and applied in the context of statistical and computational learning
[7, 17]. Several problems have been considered for operators between binary im-
ages: (1) estimation precision when the operator is estimated by image realizations
[22]; (2) optimal filters for resolution conversion [36]; (3) use of prior informa-
tion [6, 16, 23]; (4) partially restricted filter design [44]; (5) multistage filter design
[45].

Increasing signal operators have played a central role in the study of optimal
nonlinear filters for gray-scale signals. Optimization of these operators has been
characterized via a minimal search space for the morphological basis [26], and a
recursive error representation in the context of computational mathematical mor-
phology has been used to estimate the optimal basis [35]. Stack filters, which are
defined by a single increasing binary function acting on a gray-scale signal by op-
erating individually on the threshold sets of the signal, form a constrained class of
increasing filters that, because they are defined by increasing binary Boolean func-
tions, can be optimized in a way similar to increasing binary filters [14, 33, 53].
Since the same operator is applied at every level, a relatively small number of
signals gives a large amount of data for automatic design of the single operator.
Further constrained stack filters, such as weighted medians, can be useful when
applied to certain kinds of noise degradation [52]. The concept of a stack filter
can be extended to have an increasing Boolean function working on binary vari-
ables representing the signal in a band of gray levels about a particular gray level
[34]. The filter class is larger, but it is still a subclass of the class of all increas-
ing filters. Design of nonincreasing filters has been considered in the context of
computational-morphological representation [28], but without constraint, filter
design is intractable except for very small windows and a small number of gray
levels. Even for binary filters, unconstrained automatic design suffers dramatically
as the window size increases owing to practical limits on the amount of training
data [20, 22]. Design theory fits nicely into the theories of computational learning
and pattern recognition, and therefore learning theory and the error-convergence
theorems from pattern recognition can be applied [7, 17]. For large windows or
gray-scale filtering, statistical design requires prior information, which typically
involves constraining the designed filter to a smaller class of operators, but can
also involve other techniques such as design by alteration of a prior-defined filter
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[6, 23] or the Bayesian assumption that the characterizing conditional probabil-
ities are random variables possessing prior distributions [16]. An alternative ap-
proach has been proposed to design gray-level filters [43]. It proved to be useful
for some kinds of restorations but the convergence was not characterized although
the algorithm can converge for a nonoptimal filter [15] and the above mentioned
problems remain.

A large step towards making the design of gray-level operators feasible via
statistical estimation has been done by Barrera and Dougherty [4]. In this work,
they introduced the WK-operators, a class of W-operators that are locally defined
and also translational invariant in the gray-level range. This chapter presents the
developments achieved since the publication of that paper.

2.2. Window operators

Digital images or signals can be represented by functions from a nonempty set E
(usually a subset of Z or Z × Z, where Z is the set of integers) to an interval L
(usually a nonnegative integer interval), L = [0, l− 1], with l ∈ Z+. Digital images
are usually denoted by small caps letters, for instance, f , g, or h. An arbitrary point
of E is usually denoted by x or t. The set of all possible images from E to L will be
denoted by LE. A mapping Ψ from LE to L′E (where L′ is a nonnegative interval
of Z, not necessarily equal to L) will be called a filter or operator. For instance,
the usual threshold operator on gray-level images, Ψc( f )(x) = 1 if f (x) > c, or 0
otherwise, f ∈ [0, 255]E, c ∈ [0, 255], and x ∈ E, is an operator that takes gray-
level to binary images.

A finite subset W of E, customarily containing the origin (of E), is called a
window and the number of points in W is denoted by |W|. For instance, the set
W1×3 = {−1, 0, 1} is a one line by three-columns window centered at the origin of
E. A window configuration, or simply, a configuration, is a function u from W to
L, and the space of all possible configurations from W to L will be denoted by LW

or, sometimes, just D.
Figure 2.1 shows aW1×5 window and the functions u resulting from observing

h through W at two different points, t and t + 1, t ∈ E. Configurations usually
result from translating a function h by −t, and observing the values of h within
W . Formally, if W = {w1,w2, . . . ,wn}, n = |W|, and we associate the points of W
to a vector (w1,w2, . . . ,wn), then a configuration u, seen by W when translating h
by t, can be written as

uh(t) =
(
h
(
w1 − t

)
,h
(
w2 − t

)
, . . . ,h

(
wn − t

))
. (2.1)

Digital signals can be modeled by digital random functions and, in this sense,
uh(t) is a realization of a random vector X = (X1,X2, . . . ,Xn), that is, uh(t) = x =
(x1, x2, . . . , xn), where x denotes a realization of X.

An important subclass of operators from LE to L′E is the class of W-operators.
They are named after window operators because their output at any point t ∈ E
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W

0 x

h(x − t)

u = {6, 8, 10, 8, 6}
(a)

W

0 x

h(x − t − 1)

u = {8, 10, 8, 6, 5}
(b)

Figure 2.1. Two window configurations.

can be decided evaluating the pixel values inside a window centered at t. Mathe-
matically, it means that they can be characterized by local functions ψ from LW to
L′, called characteristic functions [1, 2, 11]. W-operators are translation invariant
[1] (t.i.) and locally defined [10] (l.d.) within W . Being t.i. means that ψ is the
same function for any t ∈ E. Being l.d. means that it is enough to know the values
inside W to know the output of Ψ. Mathematically,

Ψ(h)(t) = ψ
(
h
(
w1 − t

)
,h
(
w2 − t

)
, . . . ,h

(
wn − t

)) = ψ
(
uh(t)

)
. (2.2)

From now on, to simplify the notations, we will use L′ = L = Z, unless when
specified differently.

W-operators are important to automatic design because by looking to obser-
vation pairs (x,ψ(x)) one can estimate Ψ. The main issue is that the number of
possible window configurations is exponential to the number points in W , that
is, l|W|, where l is the number of possible gray-levels (usually, l = 256), and also
that number of possible W-operators depends exponentially on the output range
L, that is, l(l

|W|).

2.3. Aperture operators

The motivation for introducing a new class of operators has come from the in-
herent difficulty of estimating gray-level W-operators, which comes from the size
of that class of operators. A possible solution to diminish the number of possible
operators is to add new constraints to the class of W-operators: being translation
invariant and locally defined in the gray-level range by a window K ,K = [−k, k] ⊆
Z. If K is not large, a good statistical estimation is possible. These operators have
been initially called WK-operators [4] and later aperture operators.

Let u be a window configuration (u ∈ ZW ) and let z, z ∈ Z. The vertical
translation of u by z is given by, for any s ∈ W , uz(s) = (u + z)(s) = u(s) + z. An
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W

0 x

h(x − t)

(uh(x−t))−z = {−2, 0, 2, 0,−2}
(a)

W

0K x

h(x − t)

v = {−1, 0, 1, 0,−1}
(b)

Figure 2.2. Window configuration uh(x−t) translated vertically by−z (a) and the clipping to construct
v (b).

aperture configuration is a function v from W to K built by translating vertically a
window configuration u by an integer z and projecting the points outside W × K
into W × K , that is, the values larger or lesser than |k| are clipped to k, or −k. We
denote the clipping operation by (•)∗. Figure 2.2(a) shows the vertical translation
of u (Figure 2.1) by −z = −8, u−z = {−2, 0, 2, 0,−2}, and Figure 2.2(b) shows
the aperture configuration v = (uh(t)−z)∗ = {−1, 0, 1, 0,−1}, that is, the clipping
to the range K = [−1, 1]. Formally, an aperture configuration is given by, for any
s ∈W ,

v(s) = (u−z(s)
)∗ = min

{
max

{− k,u(s)− z}, k
}
. (2.3)

Let Ψ be a gray-level image operator. We say that Ψ is invariant by vertical transla-
tion if and only if, for any z ∈ Z and any f ∈ ZE, Ψ( f + z) = Ψ( f ) + z. Figure 2.3
illustrates this concept. Operators that are invariant by spatial and vertical trans-
lations are also denominated T-operators [31].

Let Ψ be a W-operator, Ψ : LE → LE, and let ψ be its characteristic function,
ψ : LW → L. ψ is said to be locally defined in K if and only if, for any u ∈ LW and
any z ∈ L,

ψ(u) = z + φz(v), (2.4)

where φz is a function from KW to M that depends on z, v ∈ KW and M, M =
[−m,m],m ∈ Z+. A function ψ : LW → L that is locally defined in K and invariant
by vertical translation is said to be a K-characteristic function. This means that
ψ(u) = z + φ(v), that is, φ does not depend on z.

Based on the definitions above, we can define a class of operators called ζO-
aperture. They are W-operators that are locally defined in K and are invariant
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t x t

f + z

Ψ( f + z)(t) = Ψ( f )(t) + z

Ψ

t x t

( f + z)(t) = f (t) + z (Ψ + z)( f )(t) = Ψ( f )(t) + z

Ψ

f Ψ( f )(t)

Figure 2.3. Invariance by vertical translation.

by translation in Z, therefore, they can be written in terms of K-characteristic
functions.

Let ζO be a function from LW to L, u = uh(t) (to simplify the notation) and let
φ be a function from KW to M. Then, a ζO-aperture, Ψ, is a mapping from LE to
LE, given by

Ψ(h)(t) = ζO(u) + φ
((
u−ζO(u)

)∗)
. (2.5)

The number of K-characteristic functions in the class of ζO-aperture is equal to
|M|(|K||W|). If |K| and |M| are small, then the quantity of operators from KW to M
is significantly smaller than the amount of operators from LW to L.

Some useful W-operators for image segmentation cannot be described by the
subclass of ζO-apertures. For instance, the threshold operator is not a ζO-aperture
because it is not invariant by vertical translations, that is, Ψc( f + z) �= Ψc( f ) + z.
In order to make the description highly expressive and represent all W-operators,
let ζO and ζI be two functions from LW to L; ζO associated to vertical translations
in the observed image, that is, it is the function that places the aperture window
and ζI associated to vertical translations in the ideal image, that is, the function
that places the result of characteristic function. An operator (ζO,ζI)-aperture, Ψ, is
a mapping from LE to LE, given by

Ψ(h)(t) = ζI(u) + φ
((
u−ζO(u)

)∗)
. (2.6)

The definition of a (ζO,ζI)-aperture operator generalizes the definition of a
W-operator when K = M = L and ζO = ζI = 0; it also generalizes the definition
of operators that classify (labels) points of an image when ζI = 0.
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2.3.1. Design of aperture operators

Designing an image operator from input/output image examples is basically a
problem of finding an operator Ψ from pairs of random signals, (hi, gi) ∈ LE ×LE,
hi to be observed and gi to be estimated that minimizes an error measure between
Ψ(hi)(t) and gi(t), the value of the random signals about t, for all t ∈ E.

Constraining the class of operators to the class of W-operators, Ψ is locally
defined by some characteristic function ψ, and the problem resumes to find ψ,
instead of Ψ. The statistical design of W-operators requires the estimation of the
conditional probabilities of finding a certain gray-level Y given that a certain win-
dow configuration X has been observed, for each one of all the possible configu-
rations in a window W . The constraining being extended to the class of aperture
operators requires then the estimation of φ instead of ψ and its representation in
some computational form. φ is estimated from training pairs of the form (x∗, y∗)
where x∗ = (uhi(t) − ζO(uhi(t)))∗ and y = (gi(t)− ζI(uhi(t)))∗. From the computa-
tional and statistical learning area, the first element of the pair is called a pattern
and the second, its label; the pair is called a training example if it is used for training
the operator and testing example if it is used for testing the operator. If a partic-
ular pattern is observed m times, then there are m labels (not necessarily equal)
associated to it. The final label to be associated to a pattern depends on the error
measure one wants to minimize.

The MAE (mean absolute error) of Ψ, is given by MAE(Ψ) = E[Y − Ψ(X)],
and the MSE (mean square error) of Ψ is given by MSE(Ψ) = E[(Y − Ψ(X))2]. If
one wants to minimize the MSE error of an aperture operator, it is easy to show
that, for a given x∗, taking the mean of the labels y∗ associated to x∗ provides an
estimate φN of φ. To be more precise, the estimation has to be the discretization

of the mean, that is, φN (x∗) = �0.5 + (1/N(x∗))
∑N(x∗)

i=1 (y∗i | x∗)	. It is impor-
tant to notice that, if M is not sufficiently large, MSE(Ψ) = MSE(ψ) �= MSE(φ).
Therefore, if possible, M should be large enough to not have restrictions in the
output.

2.3.2. Positioning the aperture

For an aperture signal operator Ψ parameterized by W , K , and M, the positioning
functions ζO and ζI have a strong influence on the estimation error. Since ζO places
the aperture W × K on some gray-level inside L, this position must be chosen so
that most of the signal is observed through it and the quantity of signal clipped
by the aperture is maximal. Since the error due to the restriction to K depends on
probability mass (X,Y) outside W ×K , to reduce it, it may be beneficial to choose
the positioning as a function of the observations X1,X2, . . . ,Xn.

Aperture positioning, where K = M = [−3, 3], is illustrated in Figures 2.4
and 2.5, that show white noise and blurring, respectively. In each figure, parts (a)
and (c) give the observed signal and parts (b) and (d) the ideal signals. Signals
are shown as solid points and ζO = ζI = ζ . The signal × shows the center of the
aperture and the shadowed points show the projection into the aperture. Figures
2.4(a) and 2.4(b) show the aperture positioned vertically on the observed value;
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(a)
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g(t)

(b)

t

h(t)

(c)

t

g(t)

(d)

Figure 2.4. Aperture placement for additive white noise: (a) aperture on observed signal with place-
ment at observed value; (b) aperture on ideal signal with placement at observed value; (c) aperture on
observed signal with placement at median; (d) aperture on ideal signal with placement at median.

x∗ differs from x by four points and (y − ζ(x))∗ �= y − ζ(x). In Figures 2.4(c) and
2.4(d), the aperture is positioned vertically on the median of x, x∗ differs from x by
one point and (y− ζ(x))∗ = y− ζ(x). Figures 2.5(a) and 2.5(b) show the aperture
positioned vertically on the observed value; x = x∗, and (y − ζ(x))∗ = y − ζ(x).
In Figures 2.5(c) and 2.5(d), the aperture is positioned vertically on the median of
x, x = x∗, and (y − ζ(x))∗ �= y − ζ(x).

2.3.3. Representation of the operator

Having associated labels to the observed vectors during training, we need to pro-
vide a more compact representation for the operator. Here we need to recognize
that the set of observed vectors is often (and in our case will almost always be)
a proper subset of the set X of all possible vectors and that X is the true do-
main of φ. It is critical that the representation extends the definition of φ from the
training vectors to X in a consistent manner, meaning that if l is the final label
for a vector, then, upon representation, the operator must assign l to that vector.
Given this consistency, the definition of φ is unambiguous. In machine learning,
this extension is called generalization because the extension “generalizes” a learned
concept. Generalization is important because the performance of a designed op-
erator depends on the way in which it maps vectors not observed during training.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


Roberto Hirata Jr. et al. 23

t

h(t)

(a)

t

g(t)

(b)

t

h(t)

(c)

t

g(t)

(d)

Figure 2.5. Aperture placement for blurring: (a) aperture on observed signal with placement at ob-
served value; (b) aperture on ideal signal with placement at observed value; (c) aperture on observed
signal with placement at median; (d) aperture on ideal signal with placement at median.

The morphological representation of an operator by its basis is one possible way
to achieve generalization and Machine Learning area provides several other repre-
sentations (decision trees, k-neighbors, neural network, SVM, etc.) [32, 39]. The
morphological representation is based on maximal intervals of the kernel of the
operator. In the following paragraphs we discuss this representation.

Let a, b ∈ LW . A function λa,b from LW to {0, 1} given by [2]

λa,b(u) =
⎧
⎨

⎩
1 if u ∈ [a, b],

0 otherwise,
(2.7)

for any u ∈ LW , is called supgenerating function of interval [a, b].
Let ψ be a characteristic function from LW to L, and y ∈ L an arbitrary gray-

level. The kernel of ψ is given by [2]

K(ψ)(y) = {u ∈ LW : y ≤ ψ(u)
}
. (2.8)

Let φ be a characteristic function from KW to M, and let K(φ) be the kernel
of φ. Let λa,b be the supgenerating function of the interval [a, b]. Then φ can be
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represented by [4]

φ(v) =
∨{

y ∈M :
∨{

λa,b(v) : [a, b] ⊆K(φ)(y)
} = 1

}
, (2.9)

for any aperture configuration v ∈ KW . The aperture operator can be written as

Ψ(h)(t) = ζI(u) +
∨{

y ∈M :
∨{

λa,b(v) : [a, b] ∈ B(φ)(y)
} = 1

}
, (2.10)

where B denotes the basis of the operator (the set of maximal intervals of K).
The representation by the basis of an operator is an elegant way to express the

operator and, also, it is useful to apply algebraic restrictions to the operator. How-
ever, by the time we started working on aperture operators, there was not enough
computer power to do the experiments using this representation. The consequence
is that, we used decision trees (DT) to represent the operator. They are fast to build,
extend the learned operator consistently, and tend to provide good generalization
[8, 39, 40]. The idea behind a decision tree is to find a test on one (parallel DT)
or more of the pattern variables (oblique DT), say T0, that partitions the training
set into two or more “purer” subsets, that is, subsets of equally labeled examples
or at least consisting of examples that are less mixed than before partitioning. A
subset is pure if all examples in it have the same label. For each nonpure subset we
can apply this idea again, finding new tests, say T1.1,T1.2, . . . ,T1.m, and new purer
subsets. Proceeding recursively for each nonpure subset yields a partition where
each part has resulted from a sequence of tests and is pure. Practically, to label a
given pattern we have to, starting from the root of the tree, apply the test associated
with the current node and follow the edge to the correct child according to the test.
The process stops when we reach a leaf, which holds the label to be assigned to the
pattern.

For oblique decision trees, we have adapted and used the OC1 algorithm [40].
This algorithm improves previous methods [8, 42] by introducing an efficient ran-
domized part in the algorithm to find the coefficients of an oblique decision hyper-
plane at each tree node if the best axis-parallel hyper-plane is not better. This last
condition guarantees that the method will be at least as powerful as standard (axis-
parallel) decision tree methods.

2.3.4. Deblurring of 2D images

To demonstrate the application of aperture operators to images, we design aper-
ture filters to deblur a random Boolean function model [48] whose primary func-
tion is pyramidal. Blurring is accomplished by a 3 × 3 nonflat convolution ker-
nel (Figure 2.6(a)). We have used 10 training and 10 test images, each of size
256 × 256 points. Figure 2.7 shows parts of an original and a blurred image. Fig-
ures 2.8 and 2.9 give plots of the MAE and MSE, respectively, after filtering com-
pared to the number of training examples. Six aperture filters have been tested
(3× 3× 3, 3× 3× 5, 17p× 3, 17p× 5, 5× 5× 3, 5× 5× 5), where n×m× k refers
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Figure 2.6. Convolution kernel and 17-point window.

to an aperture and 17p refers to the domain window shown in Figure 2.6(b). The
aperture giving the lowest MAE is 17p×5. This result is very similar to the 5×5×5
aperture. All tested filters outperform optimal window restricted linear filter [27]
over a 7×7 point window. The filter giving the lowest MSE is for the 3×3×5 aper-
ture; however the other aperture filters are not stabilized at 600,000 examples and
will continue to improve with more training. Indeed, referring to Figure 2.8 we see
that the MAEs of the other aperture filters have not stabilized, and yet at 600,000
examples the larger apertures are already performing better than the smaller aper-
tures relative to MAE.

For visual aspects, the aperture 17p × 5 performs better than the other tested
filters because it provides superior edge restoration, which is often the case for
an optimal nonlinear filter. Figures 2.10, 2.11, 2.12, and 2.13 show part of one
test image, the result of the optimal 7 × 7 linear filter, the result of the 3 × 3 × 5
aperture filter, and the result of the 17p × 5 aperture filter, respectively. These
images demonstrate the superior edge restoration of the 17p × 5 aperture filter
and its superior visual quality. This visual superiority is more striking because we
have selected an image portion for which the 7×7 linear filter slightly outperforms
the 17p × 5 aperture filter relative to MSE.

The filter outputs differ from the original image fragment at 132, 97, and 78
points (disregarding the border) for the optimal linear, 3 × 3 × 5 aperture, and
17p × 5 aperture filters, respectively. The filter outputs differ from the original
image fragment by more than one gray level at 28, 17, and 11 points for the optimal
17p×5 aperture, 3×3×5 aperture, and linear filters, respectively. This explains why
the MSE for the 17p × 5 aperture filter is not as good for these image fragments.

2.4. Envelope aperture

Envelope design of image operators is a hybrid technique that does not rely only
on machine design (that involves estimating the optimal filter from sample data)
but relies also on human design. The envelope constraint involves using two hu-
manly heuristically designed filters that imposes a lower and an upper bound on
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(a) (b)

Figure 2.7. Random Boolean function: (a) original image; (b) blurred image.
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Figure 2.8. MAE plots for deblurring random Boolean function.

the designed operator. If the filters are chosen so that the optimal filter lies between
them, then there must be an advantage to using the envelope. Unfortunately, if
the lower and upper bounds are too far apart, this advantage is negligible (in the
extreme, null because one can always choose zero and infinity for the lower and
upper bounds). The method has been employed for binary operators [5] and for
aperture filters [9].

2.4.1. Envelope constraint

Envelope constraint is defined via a pair of gray-level characteristic functions α,β :
D → L, with α ≤ β. These define the envelope (α,β) and the envelope constraint
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Figure 2.9. MSE plots for deblurring random Boolean function.

Figure 2.10. Fragment of random Boolean realization.

class

Qα,β =
{
ψ ∈ LD : α ≤ ψ ≤ β

}
. (2.11)

Envelope constraint is appropriate when we possess the prior knowledge that α ≤
ψopt ≤ β, or at least that the inequality approximately holds. In this case, if ψ is a
machine-designed characteristic function and ψ(x) < α(x), then we will use α(x)
in place of ψ(x). An analogous decision is made if ψ(x) > β(x). Formally, for each
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Figure 2.11. Output of optimal linear filter applied to fragment.

Figure 2.12. Output of 3× 3× 5 aperture filter applied to fragment.

operator ψ : D → L, we define its envelope-constrained operator ψcon by

ψcon(x) = (ψ ∨ α)∧ β =

⎧
⎪⎪⎨

⎪⎪⎩

α(x) : ψ(x) < α(x),

ψ(x) : α(x) ≤ ψ(x) ≤ β(x),

β(x) : ψ(x) > β(x).

(2.12)

According to the definition, α ≤ ψcon ≤ β, so that ψcon ∈ Qα,β.
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Figure 2.13. Output of 17p × 5 aperture filter applied to fragment.
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Figure 2.14. Envelope example.

Figure 2.14(a) shows a signal and an estimate of this signal (e.g., a filter ap-
plied over a noisy sample of this signal). Figure 2.14(b) shows the result of apply-
ing an envelope, defined by α and β, to the designed filter. If the envelope is well
designed, as in this case, the hybrid resulting filter will be closer to the ideal signal.

Usually, the envelope is heuristically designed, for example alternating se-
quential filters or rank-order filters for noise filtering [24, 31]. The envelope can
also be designed relative to a simpler statistically optimal filter, such as a linear fil-
ter. If ψlin is the optimal linear filter, we can define α = ψlin − ε and β = ψlin + ε.
The smaller the parameter ε, the smaller the range β(x)−α(x) = 2ε, and therefore
the stronger the constraint on ψcon.
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2.4.2. Optimality of the constrained optimal filter

A key issue in constrained filter design is the existence of a practical way to de-
sign optimal constrained operators. For instance, the solution to this problem has
been shown for resolution constraint [18] and increasing binary filters [30, 49].
In the case of gray-level envelopes, the filter ψcopt = (ψopt ∨ α) ∧ β, obtained by
envelope constraining the optimal filter ψopt, is the optimal filter in the class Qα,β.
Its practical import is that it allows us to estimate the optimal constrained filter
by constraining the estimation of the unconstrained optimal filter. Besides that,
one can prove [9] that for any ψ ∈ Qα,β, the error increase Δ(ψ,ψcopt) of using ψ
instead of ψcopt is greater or equal to zero.

2.4.3. Precision of estimation under envelope constraints

When designing the optimal operator from pairs of samples, the designed opera-
tor is only an approximation of the optimal operator. For different samples, differ-
ent estimators of the optimal operator are created. Hence, for a sample size of N ,
the goodness of an envelope is measured by the expected advantage, E[AψN (α,β)],
of the designed operator ψN , over all possible samples of size N . As is typical of
constraints, envelope constraint is not beneficial when N is very large. In such
cases, it is better to design the optimal operator over the whole class LD than the
optimal constrained operator in Qα,β; however, for small samples and a good en-
velope (α,β), the constraint can be beneficial. To quantify asymptotic behavior as
N → ∞, we suppose that ψN is a strongly consistent estimator of ψopt, meaning
that ψN → ψopt almost surely as N → ∞. Strongly consistent estimators are com-
monly used for digital filter design and one can prove [9] that, if ψN is a strongly
consistent estimator of ψopt, then lim supN→∞ E[AψN (α,β)] ≤ 0.

Envelope design provides a systematic means by which humanly designed op-
erators can be used to assist in machine design. If the lower and upper bounds
are well chosen, then envelope design can be advantageous in the common situa-
tion in which there is insufficient data to adequately design filters requiring more
than a small number of variables without some form of constraint or prior knowl-
edge. Fundamental theorems have been presented that characterize the advantage
of envelope-constrained filters and their relationship to unconstrained optimal fil-
ters. Envelope constraint has been applied to noise filtering and deblurring. En-
velopes based on rank, morphological, and statistically designed linear operators
have been applied.

2.4.4. Deblurring 2D images by enveloping

This example shows the use of envelope apertures to deblurring of modified
Boolean model images like the ones presented in a previous section. Twenty dif-
ferent smooth functions have been generated and summed to each of the 10 ideal
images and to each of the 10 test images of the first experiment. Each smooth
function has been generated by choosing four random points at the corners of
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Figure 2.15. Surface of the random Boolean function: one image (a) combined with surface (b).

the image (uniform distribution between 0 and 50) and generating a smooth sur-
face connecting those points. The final image is formed by placing small pyramids
at different gray-level positions on a smooth image. The idea here is to model a
pyramidal texture on a variable background. Figure 2.15 shows a 3D view of one
original image (a) and the same image with the correspondent surface added (b)
to it. The blurring has been generated using the same convolution kernel as previ-
ously and these new pairs (blurring and ideal) have been used to design deblurring
operators. Figure 2.16(a) shows part of one image resulting from adding one of the
previous ideal images to one surface, and Figure 2.16(b) shows the profile of a lin-
ear cut. Figure 2.16(c) shows the same image after blurring, with the profile cut
being shown in part (d).

In this experiment, the performances of aperture, linear, and two envelope fil-
ters have been analyzed. The first envelope filter, Envl, is derived from the optimal
9× 9 window linear filter ψlin, where α and β are given by

αl( f ) = ψlin( f )− 1,

βl( f ) = ψlin( f ) + 1.
(2.13)
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(a) (c)

(b) (d)

Figure 2.16. Random Boolean function: combined images (a) and a profile (b). Blurred image (c) and
a profile (d).

Table 2.1. MSE errors for deblurring noisy signals.

Train Aperture Linear Envl Envr

1 0.47807 0.46528 0.41496 0.45838

2 0.4472 0.46545 0.39822 0.43305

4 0.41817 0.46521 0.38359 0.40795

6 0.40277 0.46579 0.37533 0.39452

8 0.39389 0.4657 0.37156 0.38714

10 0.38657 0.46579 0.36806 0.38108

The second envelope filter, Envr , is defined by the minimum and maximum rank
operators. α and β are given by

αr( f ) = εB( f ),

βr( f ) = δB( f ),
(2.14)

where B is a 3× 3 structuring element, εB and δB are, respectively, an erosion and
a dilation by B. The aperture filter is over a 3× 3 window with range K = [−5, 5].

Table 2.1 and Figure 2.17 show the MSE values of the designed aperture, lin-
ear, and envelope filters. The results confirm the advantage of the envelope. The
improved performance of the envelope filter Envr over that of the aperture filter is
slight; however, the improved performance of the envelope filter Envl is substan-
tial, especially for a small number of training images. Even for ten training images,
both envelope filters provide improved performance.
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Figure 2.17. MSE for Boolean model images.

2.5. Multiresolution aperture

The design of a resolution constrained operator is based on adequately combin-
ing information from two or more different resolutions to facilitate design. This
section reviews multiresolution design of aperture operators for gray-scale images.
Spatial resolution constraint, range resolution constraint and the combination of
both constraints are characterized, and the error increase by using the constrained
filter in place of the optimal unconstrained one is analyzed. Pyramidal multireso-
lution design involves applying the resolution constraint approach hierarchically,
from the higher to the lower resolution space. This approach is also character-
ized and its error increase analyzed. Two applications for deblurring are shown
and compared to optimal linear filters. The results confirm the usefulness of the
approach.

2.5.1. Down-sampling resolution constraint

Let W0, W1 be two windows such that W1 ⊂ W0 ⊂ E, let L = [0, . . . , l − 1] be
the gray-level range, and let D1 = LW1 and D0 = LW0 be the configuration spaces
over W1 and W0, respectively. Let ρ : D0 → D1 be a subsampling mapping that
assigns to each configuration x ∈ D0 a configuration z = ρ(x), which is a vector
whose values are those of x over the subwindow W1. Let LD0 be the space of all
functions from D0 to L. The mapping ρ defines a constraint Q ⊂ LD0 by: ψ ∈ Q
if and only if ρ(x) = ρ(x′) ⇒ ψ(x) = ψ(x′), for any x, x′ ∈ D0. The size of the
configuration space is reduced for the constrained filter because |D1| = |L||W1|

and |D0| = |L||W0| = |L|(|W0|−|W1|+|W1|) = |L|(|W0|−|W1|)|D1|. Using the mapping
ρ, an optimal constrained operator in LD0 is estimated via the optimal operator in
LD1 .
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For range resolution constraint, consider windowW ⊂ E and integer intervals
L0 = L = [0, . . . , l0 − 1] and L1 = [0, . . . , l1 − 1], where l0 is an even number
and l1 = l0/2, be the gray-level ranges for the observation spaces D0 = LW0 and
D1 = LW1 . Let ρ : D0 → D1 be a quantization, that is, a mapping that assigns to
each configuration x ∈ D0 a configuration z = ρ(x) = �x/2	 ∈ D1, where �•	
denotes the floor of •. In this case, a configuration x ∈ D0 with up to l0 gray-
levels is quantized to half the gray-levels to obtain the configuration z ∈ D1 with
up to l0/2 gray-levels. To estimate the optimal constrained filter in Q, Q ⊂ LD0

defined by ρ, the number of parameters to be estimated is significantly smaller
than for the optimal filter in LD0 , because |D1| = |L1||W| and |D0| = |L0||W| =
(2|L1|)|W| = 2|W||L1||W| = 2|W||D1|. Analogous comments and analysis apply to
other quantizations than l1 = l0/2.

Spatial and range constraints can be combined to obtain a new space that is a
constraint ofD = LW . Consider windowsW1 ⊂W0 and let L0 = L = [0, . . . , l0−1]
and L1 = [0, . . . , l1−1], with l0 an even number and l1 = l0/2. LetD0 = LW0

0 ,D01 =
LW1

0 , D1 = LW1
1 , and ρ1 : D0 → D01 be defined by spatial resolution constraint

from W0 to W1. Let ρ2 : D01 → D1 define a resolution constraint over W1 by

ρ2(x) = �x/2	, for any x ∈ D01. The composition ρ : D0
ρ1
�����������������������������������������������→ D01

ρ2
�����������������������������������������������→ D1 is a

mapping from D0 to D1 which takes a configuration x ∈ LW0
0 , subsamples and

quantizes it to obtain a configuration z = ρ(x) ∈ LW1
1 . The mapping ρ defines a

resolution constraint on the space LD0 .
Down-sampling can be defined more generally [18]. Consider a subsampling

where each pixel μi ∈W1, 1 ≤ i ≤ |W1|, corresponds to a subwindow Wμi ⊂W0,
where the subwindows form a partition of W0. A down-sampling is defined via

mappings ζi : L
Wμi
0 → L1 that assign values to each pixel μi ∈ W1 as functions of

the configuration x ∈ D0 restricted to Wμi . Formally, ρ : D0 → D1 is defined by

z = ρ(x) =
(
ζ1
(

x|Wμ1

)
, . . . , ζ|W1|

(
x|Wμ|W1|

))
. (2.15)

This definition extends all the previous ones. For example, if L1 = L0 = L and Wμi

consists of the single pixel in W0 that is in the same place as μi, then the mappings
are equivalent to the previously defined spatial resolution constraint.

2.5.2. Resolution constraint

To define resolution constraint in its general form, consider two configuration
spaces D0 and D1 related by a surjective mapping ρ : D0 → D1. ρ determines
an equivalence relation on D0 by x ∼ x′ if and only if ρ(x) = ρ(x′). Therefore, for
each z ∈ D1, there exists an equivalence class C[z], given by C[z] = ρ−1(z). For
gray-level operators over a fixed range L, optimal design is relative to the product
space L × D0 with probability mass P(y, x), y ∈ L, x ∈ D0. A probability mass is
induced on D1 by P(z) = P(ρ−1(z)) and on L×D1 by

P(y, z) = P
({y} × ρ−1(z)

)
. (2.16)
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Figure 2.18. Commutative diagrams. (Reproduced from Journal of Mathematical Imaging and Vi-
sion, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,” Roberto Hirata Ju-
nior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figures 4 and 5 © 2002 with kind per-
mission of Springer Science and Business Media.)

As in the binary case [18], an operator φ on D1 induces an operator ψφ on
D0 by ψφ(x) = φ(ρ(x)) (Figure 2.18(a)). ψφ is spatially resolution constrained, in
accordance with the function ρ: if ρ(x) = ρ(x′) then ψφ(x) = ψφ(x′).

Conversely, if ψ is any operator on D0 satisfying the resolution constraint,
then it induces an operator on D1 by φψ(z) = ψ(x), where x is any vector in C[z].
Let LD0 and LD1 be the classes of gray-level operators on D0 and D1, respectively.
The mapping φ → ψφ defines an injection LD1 → LD0 . If Q is the subset of LD0

composed of operators satisfying the resolution constraint, then the mapping ψ →
φψ defines a bijection Q→ LD1 whose inverse is given by the mapping φ → ψφ. This
bijective relation allow us to identify operators on D1 with resolution constrained
operators on D0. A key point here is whether an optimal operator on D1 can be
associated to an optimal resolution constrained operator on D0. If this is the case,
then consistent estimators for the optimal operators in LD1 will induce consistent
estimators for the optimal operator in Q. The following theorem shows this is
always true for any loss function.

Theorem 2.1 (error preservation). Let � : L × L → R+, be a loss function used to
define the risk functions R : LD0 → R+, R(ψ) = E[�(Y ,ψ(X))], and R : LD1 → R+,
R(φ) = E[�(Y ,φ(Z))]. Then R(ψ) = R(φψ), for all ψ ∈ Q.

The proof can be found in [29].
An immediate consequence of the above theorem is that, under spatial res-

olution constraint, MSE and MAE are preserved by the mapping ψ → φψ and,
therefore, the optimal filter on D1 induces the optimal resolution constrained fil-
ter on D0.

2.5.3. Nonpreservation of error in range resolution constraint

The error-preservation theorem has been demonstrated under the assumption of
resolution constraint in both the spatial domain and range, in particular with
D0 = LW0

0 and D1 = LW1
1 , and the condition that both ψ and the induced map-

ping φψ possess the same range L, that is, ψ ∈ LD0 and φψ ∈ LD1 . A natural sit-
uation is when ψ is being used to estimate the value Y of an ideal image based
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on the random vector X in an observation window, with L = L0. Owing to error
preservation, the optimal filter in Q is found by determining the optimal filter in
LD1 . Now consider an alternate situation in which resolution constraint is not only
applied to the observation X but to the ideal value Y . Here, ψ : D0 → L0, there
exists a surjection s : L0 → L1, and φψ : D1 → L1. ψ(X) serves as an estimator
of Y , whereas φψ(Z) serves as an estimator of s(Y). The question now is, if φ is
the optimal estimator for s(Y) in LD1 , does this guarantee that ψφ is the optimal
estimator for Y in Q? As we will see, it does not.

To see the problem, consider the simplified situation in which there is no spa-
tial constraint, so that there is a single window W , D0 = LW0 , and D1 = LW1 .
Consider a surjection s : L0 → L1 and a corresponding injection r : L1 → L0,
in which case, the composition s ◦ r is the identity on L1. The pair (r, s) defines
a constraint class Q ∈ LD0

0 in accordance with the constraint mapping ρ(x) =
(s(x1), s(x2), . . . , s(x|W|)). ψ ∈ Q if and only if ρ(x) = ρ(x′) implies ψ(x) = ψ(x′),
and ψ(x) ∈ r(L1) for any x ∈ D0. An operator φ ∈ LD1

1 induces a resolution-
constrained operator ψφ ∈ LD0

0 by ψφ(x) = r(φ(ρ(x))) (Figure 2.18(b)).

On the other hand, if ψ is a resolution constrained operator in LD0
0 , then it

induces an operator φψ ∈ LD1
1 by φψ(z) = s(ψ(x)) for any x ∈ D0 such that ρ(x) =

z. The mapping φ → ψφ is a bijection from LD1
1 onto Q having inverse ψ → φψ .

Now consider the special case in which s( j) = � j/2	 and r(i) = 2i. The MSE
for ψ as an estimator of Y and φψ as an estimator of s(Y) = �Y/2	 are related by

MSE
(
φψ
) = 1

4
MSE(ψ) +

1
4

∑

x∈D0

l1−1∑

i=0

2
[
(
ψ(x)− 2i

)− 1
2

]
P(2i + 1, x). (2.17)

If P(2i + 1, x) = 0 for any i ∈ L1, meaning the probability mass is concentrated in
r(L1), then MSE(φψ) = (1/4) MSE(φ) and the optimal operator in LD1

1 induces the
optimal operator in Q; otherwise, it need not.

2.5.4. Multiresolution design

In this section, we show how spatial resolution constraint can be iterated and some
consequences of this approach. Consider windows W2 ⊂ W1 ⊂ W0, where the
configurations for W1 and W2 are obtained by down-sampling from the configu-
rations for W0 and W1, respectively. Let D0 = LW0 , D1 = LW1 , and D2 = LW2 be
the configuration spaces for the windows W0, W1, and W2. Let ρ1 : D0 → D1 and
ρ2 : D1 → D2 be the down-sampling mappings defined by z = ρ1(x) and v = ρ2(z).
The mappings ρ1 and ρ2 define a mapping ρ12 : D0 → D2 by ρ12 = ρ2 ◦ ρ1.

More generally, let D0, D1, and D2 be configuration spaces related by the sur-
jective mappings ρ1 : D0 → D1 and ρ2 : D1 → D2. ρ1 induces an equivalence
relation on D0 by x ∼1 x′ if and only if ρ1(x) = ρ1(x′). This equivalence rela-
tion defines a partition P1 of the space D0, where P1 = {C[z] : z ∈ D1} and
C[z] = ρ−1

1 (z). In the same way, ρ2 induces a partition {C[v] : v ∈ D2} on the

space D1. The mapping ρ12 : D0
ρ1
�����������������������������������������������→ D1

ρ2
�����������������������������������������������→ D2 induces another partition P2 on
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D0 by x ∼2 x′ if and only if ρ12(x) = ρ12(x′). This partition is coarser than P1, in
the sense that ρ−1

12 (v) = ∪{C[z] : z ∈ C[v]}. Treating the analysis in a general set-
ting, multiresolution analysis for filter design results from recursive partitioning
the configuration spaces D0,D1,D2, . . . , relative to recursively applied resolution
mappings ρ1, ρ2, . . . , where ρk : Dk−1 → Dk. For configuration space Dk, there cor-
responds a resolution constrained optimal filter ψk. The best filtering resolution
for a sample size N is the one for which MSE(ψk,N ) is minimal.

2.5.5. Pyramidal design of optimal resolution constrained operators

The resolution constrained design approach presented so far produces a function
ψ1 on D1 and applies it on D0 (where D1 is a constrained space of D0) by ψ0(x) =
ψ1(z) if z = ρ(x), where ρ : D0 → D1. That means that, even having data to
estimate the filter relative to D0, we only use data relative to D1 via ρ.

An alternative approach is to use data from both spaces. If we have a good
estimate of px (the probability distribution of x) and ψ0,N (x) �= ψ1,N (z), then it
would be prudent to use ψ0,N (x) in place of ψ1,N (z). On the other hand, if we have
a poor estimate, or no estimate, of px, but a better estimate of pρ(x), then it can be
beneficial to use ψ1,N (z). An operator designed in this way is called a multiresolu-
tion operator because rather than applying only ψ0,N for all x, or applying only ψ1,N

for all z, the precision of the probability estimates are considered and the function
is chosen accordingly. In the simplest case, requiring only that x be observed at
least once, the multiresolution estimator is given by

ψ(0,1),N (x) =
⎧
⎨

⎩
ψ0,N (x) if N(x) > 0,

ψ1,N (x) if N(x) = 0.
(2.18)

This idea can be repeated for any number of constraints, applied iteratively by
a sequence of resolution constraint operators ρ1, ρ2, . . . , ρm, ultimately, until the
size of Wi (Wi ⊂ Wi−1) is 1 and the size of Li (Li ⊂ Li−1) is 2. In this case, the
multiresolution estimator is given by

ψ(0,...,m),N (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ0,N (x) if N(x) > 0,

ψ1,N (x) if N(x) = 0, N
(
ρ1(x)

)
> 0,

...

ψm−1,N (x) if N(x) = · · ·N(ρm−2(x)
) = 0, N

(
ρm−1(x)

)
> 0,

ψm,N (x) if N(x) = 0, . . . ,N
(
ρm−1(x)

) = 0.
(2.19)

Figure 2.19 shows an example where ρ0 maps each four pixels from window W0

to one pixel in W1 and ρ1 maps each two pixels from window W1 to one pixel in
W2. This is a typical case for binary or gray-scale spatial multiresolution design of
operators. A slight modification of this approach requires that N(x) be sufficiently
large (i.e., ψ(0,1),N (x) = ψ0,N (x), if N(x) > α, where α ∈ Z+).
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ρ0 ρ1

Figure 2.19. Mapping windows for multiresolution operators.
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Figure 2.20. MSE error comparison: large range. (Reproduced from Journal of Mathematical Imaging
and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,” Roberto Hirata
Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure 18 © 2002 with kind permission
of Springer Science and Business Media.)

Although the optimal filter at the higher resolution is better, the designed fil-
ter using multiresolution can outperform the standard designed filter owing to
better probability estimates. In this sense, the pyramidal multiresolution design is
a type of machine learning algorithm, where there is induction (generalization)
[39] given by the successive constraints.

2.5.6. Deblurring 2D images by multiresolution

This application shows the use of multiresolution apertures to deblurring the mod-
ified Boolean model images previously shown. Figure 2.20 shows the MSE errors
for some of the best designed operators in each class. It is constructed analo-
gously to previous experiments. The curve labeled blurred is the error between
the blurred and the ideal images. The curve labeled Lin 9 × 9 is the result of the
optimal linear for a 9 × 9 points window. The curves labeled MresA6, MresA8,
MresA9, and MresW8 show the MSE errors for multiresolution aperture and
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Figure 2.21. Pyramids for experiments “6” and “8.” (Reproduced from Journal of Mathematical Imag-
ing and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,” Roberto
Hirata Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure 19 © 2002 with kind
permission of Springer Science and Business Media.)
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Figure 2.22. Pyramids for experiments “9” and “11.” (Reproduced from Journal of Mathemati-
cal Imaging and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,”
Roberto Hirata Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure 20 © 2002 with
kind permission of Springer Science and Business Media.)

W-operators, respectively, designed using the pyramids shown in Figure 2.21(a)
(MresA6), Figure 2.21(b) (MresA8 and MresW82) and Figure 2.22(a) (MresA9).
Each aperture in the pyramid has the same gray-scale range K , with k = 5. The
curves labeled DT6 and DT15 show the MSE for the aperture operators designed
using the square 3 × 3 window and the window of 17 points inside a 5 × 5 point
window.

The best performing multiresolutionW-operator is for MresW8, and its per-
formance is very poor, with its MSE being worse than the MSE of the blurred

2This one for comparison purposes.
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Figure 2.23. MSE error comparison: multiresolution × nonmultiresolution. (Reproduced from Jour-
nal of Mathematical Imaging and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aper-
ture operators,” Roberto Hirata Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure
21 © 2002 with kind permission of Springer Science and Business Media.)

image until N = 635040. The large gray range makes the cost of design exorbi-
tant. The nonmultiresolution aperture filter DT15 outperforms MresW8, but still
requires too much sample data. Much better performance is achieved by the non-
multiresolution aperture filter DT6. The multiresolution aperture filter MresA6
outperforms DT6 for smaller N , but DT6 catches up at N = 381024. The key
point is that multiresolution aperture filters MresA8 and MresA9 outperform all
multiresolution W-filters and nonmultiresolution aperture filters. The only dif-
ference between MresA8 and MresA9 is the window W2 in their pyramids. In
both cases window W2 has 5 points, but experimentally the diagonal cross used
for MresA8 works better than the horizontal-vertical cross used for MresA9 for
the image model used here. A final note of interest is that the three multiresolution
aperture filters considered in the figure all outperform the optimal linear filter for
relatively small sample sizes. This demonstrates the ability of learned nonlinear fil-
ters to significantly outperform linear filters for deblurring large-range gray-scale
images.

The manner in which pyramidal multiresolution design provides improved
performance for large windows is illustrated in Figure 2.23, which shows MSE
curves for multiresolution aperture operators and nonmultiresolution aperture
operators designed with the same number of samples. The multiresolution pyra-
mid is composed of the windows W0,W1, . . . ,W4 shown in Figure 2.24. For in-
stance, the sequence labeled W2 is composed of the windows W2, W3, and W4.
The error curve shows that the best aperture operator for the given design samples
is W2. The error increases for larger or smaller windows. The error decreases for
multiresolution aperture operators as more levels are added to the pyramid.
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W0 W1 W2 W3 W4

Figure 2.24. Pyramids: {W3,W4}, {W2,W3,W4}, . . . , {W0,W1,W2,W3,W4}. (Reproduced from
Journal of Mathematical Imaging and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of
aperture operators,” Roberto Hirata Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty,
Figure 22 © 2002 with kind permission of Springer Science and Business Media.)

Figures 2.25 to 2.30 show a small region of a test image, its blurring, and the
result of the best filter for each class (linear, multiresolution W-operator, nonmul-
tiresolution aperture, and multiresolution aperture). Figures 2.25 and 2.26 show a
region of 500 points of the original image and the blurred image, respectively. The
latter figure shows 161 points (marked by black edges) with different values. Most
of them differ by 1 (129 points) or 2 (30 points). The estimated MSE for the region
is 0.534. Figure 2.27 shows the result of the 9 × 9 linear filter. The MSE drops to
0.434, but the number of erroneous points does not decrease. The error decrease
is due to the decrease of points that differ more than 1 (with a corresponding in-
crease of the number of points that differ by 1). Figure 2.28 shows the result of
the best multiresolution W-operator filter. In this case, the MSE rises to 0.552, but
the number of erroneous points drop to 130. The number of points with differ-
ence 1 decreases to 102, while the number of points with difference greater than
1 increases. Figure 2.29 shows the results of the best nonmultiresolution aperture
filter (17 points window). The MSE and number of erroneous points drop to 0.342
and 89, respectively. Especially visible is the improved restoration at grain edges.
The best result is shown in Figure 2.30. It results from a multiresolution aperture
filter starting with a 17-point window. The MSE and number of erroneous points
drop to 0.222 and 73, respectively. Edge restoration is further improved over the
nonmultiresolution aperture filter.

2.6. Summary

We have discussed how it is possible to treat automatic W-operator design for
gray-level images in the context of finite discrete lattices. This imposes new
restrictions to the space of operators and the trade-off is the potential subopti-
mality of the designed operator. Aperture operators have been characterized, their
representation presented, their design analyzed and two representations, via lattice
intervals or decision trees, have been given. Unfortunately, both representations
are computationally expensive for most useful operators and the more refined is
the representation, the more memory is necessary.

Hybrid design has been presented and its usability characterized. Its error due
to the restrictions has been analyzed and it has been shown that a considerable
improvement can be achieved if good human constraints are designed. Multireso-
lution design has been presented and analyzed. The representation of this class of
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Figure 2.25. Section of the original image. (Reproduced from Journal of Mathematical Imaging and
Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,” Roberto Hirata
Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure 23 © 2002 with kind permission
of Springer Science and Business Media.)
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Figure 2.26. Blurred image. (Reproduced from Journal of Mathematical Imaging and Vision, Vol.3,
2002, pages 199–222, “Multiresolution design of aperture operators,” Roberto Hirata Junior, Marcel
Brun, Junior Barrera, and Edward R. Dougherty, Figure 24 © 2002 with kind permission of Springer
Science and Business Media.)

operators has been characterized and generalization is inherent in the representa-
tion.

Hundreds of experiments have been done (some shown here or in other pub-
lications) and they show the superiority of aperture operators over optimal re-
stricted window linear operators for signals and images, using both the MAE and
MSE criteria. For some problems, the number of training images has not been
enough to make the aperture operator better than the linear filter for MSE, only
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Figure 2.27. Result from best linear operator. (Reproduced from Journal of Mathematical Imaging
and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,” Roberto Hirata
Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure 25 © 2002 with kind permission
of Springer Science and Business Media.)
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Figure 2.28. Result from best multiresolution W-operator. (Reproduced from Journal of Mathemat-
ical Imaging and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,”
Roberto Hirata Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure 26 © 2002 with
kind permission of Springer Science and Business Media.)

for MAE. Nevertheless, the visual result is better for aperture operators because
these are less error prone on image edges. Moreover, the graphics show that the
aperture operators would eventually be better than the linear operators for MSE if
more examples were given for training the aperture.
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Figure 2.29. Result from best nonmultiresolution aperture. (Reproduced from Journal of Mathemat-
ical Imaging and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,”
Roberto Hirata Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure 27 © 2002 with
kind permission of Springer Science and Business Media.)
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Figure 2.30. Result from best multiresolution aperture. (Reproduced from Journal of Mathemati-
cal Imaging and Vision, Vol.3, 2002, pages 199–222, “Multiresolution design of aperture operators,”
Roberto Hirata Junior, Marcel Brun, Junior Barrera, and Edward R. Dougherty, Figure 28 © 2002 with
kind permission of Springer Science and Business Media.)

Decision trees have been initially chosen because they are fast to implement
and they can represent the full class of aperture operators. However, there are two
main disadvantages: (1) since the representation of the operator is done by a par-
tition of the space of possible configurations and the morphological representa-
tion is done by maximal intervals from the operator’s kernel, it is difficult to inte-
grate the decision-tree representation with the software; (2) the representation by
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decision trees is not adequate to impose algebraic restrictions to the design of the
operator.

The superiority of nonlinear operators in relation to linear ones is not difficult
to understand when one thinks in terms of lattices. Besides the inherent subopti-
mality of linearity relative to the most general class of operators, when a linear
operator is applied to an image, the result usually cannot be represented by a point
in the output lattice. What is usually done is that one makes the result discrete in
order to have a representation in the lattice. Therefore, the discretization in prac-
tice transforms linear operators into nonlinear ones. This is true from electronic
acquisition devices to the theory of optimal linear filters in discrete spaces. In the
latter case, the discretization makes the principal hypothesis of the optimal linear
theory (that one is finding the inverse transform of a linear operator) void.

There are several problems still to be addressed in the area of automatic de-
sign of operators: strategies to choose the aperture (i.e., W , K , and M), strate-
gies/algorithms to speed up the search of the operator, and compact ways to rep-
resent the operator, to name a few.
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3
Finite-set signal processing

Ronald K. Pearson and Moncef Gabbouj

Because finite sets are not closed under the ordinary arithmetic operations of ad-
dition and multiplication, filters that map one sequence taking values in a finite set
into another are necessarily nonlinear. This chapter considers the general problems
of designing and characterizing these nonlinear filters and developing useful char-
acterizations like power spectra for sequences taking values in finite sets, including
both the general case where there is no additional algebraic structure available to
exploit and specialized cases where some useful structure is present (e.g., partial
or total orders). Applications to DNA sequence analysis and database cleaning are
considered.

3.1. Introduction

This chapter is concerned with the unique issues that arise when processing dis-
crete-time signal sequence {xk} that takes values in some finite set Σ. In statistics
[3] and cluster analysis [22, 30], variables defined on a finite set with no addi-
tional mathematical structure are called nominal or categorical variables. Two very
large and rapidly growing application areas where these finite-set issues arise are
the development of data mining methods for the streaming data model [7] and the
analysis of biological sequence data (e.g., DNA or protein sequences). The stream-
ing data model is used to describe either datasets that are too large to fit into main
memory or data sequences that arrive continuously (e.g., telecommunications, fi-
nancial services, e-commerce, or sensor network data) and it leads naturally to
techniques based on the moving data windows common in signal processing ap-
plications [7, 8, 27, 33, 51]. Similarly, the characterization of regular substructures
in DNA sequences is important in a number of biological problems, including
promoter analysis, the detection of recurring anomalies in tumor cells, and the
study of certain genetic diseases like fragile-X mental retardation [12, 13, 23, 29].
A specific example discussed further in Section 3.3.2 is shown in Figure 3.1: the se-
quence index corresponds to the position of each nucleotide base along the DNA
sequence, and the values indicate which of the four possible bases (A = adenine,
C = cytosine, G = guanine, and T = thymine) appears at each position. The two
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key points of this chapter are first that it is important to explicitly consider the lack
of mathematical structure that is inherent in the nominal data model, and second
that in favorable cases it is a simple matter to extend real-valued signal processing
techniques (e.g., the classical Blackman-Tukey spectrum estimator) to the case of
nominal variables.

The analysis of real-valued signal sequences dates back at least to Schuster’s
introduction of the periodogram at the end of the nineteenth century for char-
acterizing sunspots [50]. Important developments since then include correlation
and spectral analysis methods, signal and anomaly (e.g., spike) detection proce-
dures, and digital smoothing and sharpening filters. Linearity has played a key role
in these developments, with linear filters figuring prominently (e.g., linear lowpass
and bandpass filters for smoothing and sharpening [24], linear matched filters for
signal detection [48, Sections 4.9–4.12], and linear prewhitening filters for spec-
tral analysis [46]). Conversely, despite their practical utility in many settings and
their considerable analytical advantages, linear signal processing techniques are
neither universally effective nor universally applicable. Recognition of this fact has
led to the development of nonlinear extensions of many important linear char-
acterization methods, including higher-order extensions of spectral and correla-
tion analysis methods for non-Gaussian signals [37], lower-order extensions of
these methods to deal with infinite-variance α-stable distributions [38], nonlin-
ear time-frequency characterization methods to deal with nonstationary signals
whose statistical character changes over time [15], and nonlinear filters with im-
proved impulsive noise rejection, edge preservation, and other desirable charac-
teristics relative to linear filters [6].

For the finite-set signal processing problem of interest here, linearity is not
applicable because the usual operations of addition and multiplication are not ap-
plicable to sequences taking values in a finite set Σ. That is, even if we encode
these data values as real numbers, only the finite set containing the single element
{0} is closed under addition, and only the set {0, 1} is closed under multiplica-
tion. In addition, note that coding categorical variables with numerical represen-
tations introduces an ordering, converting them to ordinal variables [3, 22, 30]
for which it is possible to say that any element is “smaller” or “larger” than any
other. For example, the DNA sequence representation shown in Figure 3.1 orders
the bases alphabetically, a useful device for plotting, but one without biological
relevance. The introduction of such an artificial ordering on a nominal variable
frequently makes the results obtained sensitive to the details of the encoding that
induces this ordering. It is known, for example, that spectrum estimation results
obtained for numerically encoded DNA sequences exhibit an undesirable depen-
dence on the details of this encoding [12, 13, 29]. This problem is discussed fur-
ther in Section 3.3.3 in connection with the characterization of nominal variable
sequences more generally.

In cases where the ordinal data model is reasonable, it is possible to exploit
it directly and much has been done in this direction. Important examples in-
clude rank-based filters [6], rank-based spectrum estimation [4], and permutation
entropy characterizations [9]. While it lacks the overwhelming power of linearity,
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Figure 3.1. A very short, highly structured DNA base subsequence from human chromosome 22.

the complete order characterization on which these methods are based does pro-
vide an extremely useful framework for the analysis and development of new signal
processing methods. In the problems of interest here, this order characterization is
not available, making these developments and analyses somewhat more challeng-
ing. Instead, we have two basic characterization options: counting the number of
times a specific value occurs in a sequence or subsequence, and comparing ele-
ments or subsequences. Conversely, it is sometimes possible to introduce relevant
partial orders, allowing characterizations that are in some sense intermediate be-
tween the complete lack of mathematical structure inherent in the nominal data
model and the total order that characterizes the ordinal data model. These ideas
are introduced in Section 3.2.

More generally, this chapter is organized as follows. First, Section 3.2 presents
a brief summary of some of the fundamental mathematical ideas that arise in deal-
ing with finite sets, with particular emphasis on the exploitation of any limited
structure that we may be able to impose on the problem of interest (e.g., par-
tial orders). Next, Section 3.3 considers the problem of characterizing sequences
defined on finite sets, including both spectrum estimation, applicable to DNA se-
quence characterization, and moving-window interestingness measures, potentially
useful in streaming data analysis applications. Section 3.4 then considers the prob-
lem of designing (necessarily nonlinear) digital filters for sequences taking values
on finite sets. Finally, Section 3.5 briefly considers some of the key issues that arise
when extending the basic ideas presented here from sequences taking values in
simple finite sets with little or no structure to more complex settings like sequences
of XML documents, and Section 3.6 concludes the chapter with a brief summary.

3.2. Fundamental notions

The following paragraphs briefly consider the general question of how we can
characterize a sequence {xk} ofN elements taking values in a given setΣ containing

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


52 Finite-set signal processing

a finite number M of elements. It is important to consider this question because
its answers determine our options in developing the signal processing methods
discussed in subsequent sections of this chapter.

As noted in the preceeding discussion, in the analysis of nominal data se-
quences, we have two basic characterization options: counting and comparison.
To describe these options more fully, let Λ be an arbitrary subset of Σ (including
the improper inclusion Λ = Σ), and let {sk} be an arbitrary subsequence of {xk},
which may contain a single element of {xk}, all elements of {xk}, or anything in
between. The two basic characterization operations for {xk} are the following.

(1) Counting: we can count the number of times each value in the subset Λ
occurs in the subsequence {sk}.

(2) Comparison: we can determine whether all elements of the subsequence
{sk} are contained in the subset Λ or not.

As subsequent examples will demonstrate, these options are in fact more versa-
tile than they may appear at first glance. In particular, the first of these options
forms the basis for the interestingness measures discussed in Section 3.3.3 and the
Dedekind majority filter discussed in Section 3.4, while the second of these op-
tions forms the basis for the finite-set spectrum estimator discussed in Sections
3.3.1 and 3.3.2. The key to the utility of these basic characterizations lies in our
choices of subsequence {sk} and subset Λ.

Our characterization options increase greatly if the finite set Σ possesses addi-
tional mathematical structure. For example, a set Σ equipped with a binary oper-
ation ◦ defines a group if it satisfies the following four axioms [35, page 43]:

(1) closure: x ◦ y is a well-defined element of Σ for all x, y ∈ Σ;
(2) associativity: x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ Σ;
(3) unit element: there exists a necessarily unique element e ∈ Σ such that

e ◦ x = x ◦ e = x for all x ∈ Σ;
(4) invertibility: for every x ∈ Σ, there exists a unique y ∈ Σ such that

x ◦ y = y ◦ x = e.
Less structured alternatives result if (Σ,◦) satisfies only a subset of these axioms.
For example, axioms 1, 2, and 3 together define a monoid, while axioms 1 and 2
together define a semigroup. Finally, if (Σ,◦) satisfies only axiom 1, the result is a
groupoid, one of the least restrictive mathematical structures possible and the main
one that will be considered here.

To see both the generality and potential utility of this last notion, consider
the following simple example. If the set Σ contains two elements, say 0 and 1, the
range of possible binary operations ◦ defining a groupoid is described by the truth
table given in Table 3.1. That is, for any choice of elements x and y from the set
Σ = {0, 1}, the groupoid operation ◦ is defined by x◦ y = Txy . To satisfy closure, it
is only necessary that Txy ∈ Σ for all x, y ∈ Σ, which means in this example that for
each of the four possible values for the pair (x, y), the result Txy can assume either
the value 0 or the value 1. Consequently, there are 24 = 16 possible two-element
groupoid operations ◦, all of which are listed in Table 3.2. Readers familiar with
digital logic will recognize these as the Boolean operations on which sequential
logic circuits are based.
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Table 3.1. Generic truth table for an arbitrary two-element groupoid.

x\y 0 1

0 T00 T01

1 T10 T11

Table 3.2. The 16 possible binary groupoid operations.

No. Name T00 T01 T10 T11 Boolean Eff. arity

1 ZERO 0 0 0 0 x ◦ y = 0 0

2 AND 0 0 0 1 x ◦ y = x · y 2

3 — 0 0 1 0 x ◦ y = x · ȳ 2

4 x 0 0 1 1 x ◦ y = x 1

5 — 0 1 0 0 x ◦ y = x̄ · y 2

6 y 0 1 0 1 x ◦ y = y 1

7 EXOR 0 1 1 0 x ◦ y = x · ȳ + x̄ · y 2

8 OR 0 1 1 1 x ◦ y = x + y 2

9 NOR 1 0 0 0 x ◦ y = x + y 2

10 EXNOR 1 0 0 1 x ◦ y = x · ȳ + x̄ · y 2

11 NOT y 1 0 1 0 x ◦ y = ȳ 1

12 — 1 0 1 1 x ◦ y = x + ȳ 2

13 NOT x 1 1 0 0 x ◦ y = x̄ 1

14 — 1 1 0 1 x ◦ y = x̄ + y 2

15 NAND 1 1 1 0 x ◦ y = x · y 2

16 ONE 1 1 1 1 x ◦ y = 1 0

This example illustrates two important points. First, for any finite set Σ, many
different groupoids can be defined by constructing the appropriate truth table,
analogous to Table 3.2 for the binary case just considered. In the general case, this
truth table has M2 positions, where M is the number of elements in Σ. To satisfy
closure, the result x ◦ y defined by each position of this table must belong to Σ.
Since this restriction can be met in M ways independently for each of the M2 posi-
tions, it follows that there are MM2

possible truth tables, implying the existence of
this number of distinct groupoids. It is important to note that this number grows
extremely rapidly: for M = 3, there are 19, 683 possible groupoids, approximately
4.3× 109 for M = 4, and approximately 3× 1017 for M = 5.

The second key point of this example is that the potential utility of these
groupoids for a given set Σ varies strongly with our choice of the defining op-
eration. One measure of utility is the effective arity of these groupoids, defined as
the number of the variables, x and/or y, that the result x ◦ y actually depends on.
For example, in the 16 binary groupoids listed in Table 3.2, the operations ZERO
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(x ◦ y ≡ 0) and ONE (x ◦ y ≡ 1) have effective arity zero since they do not depend
on either x or y. Similarly, the operations numbered 4, 6, 11, and 13 in Table 3.2
have effective arity one since they depend only on the value of one of the two vari-
ables x or y. The remaining 12 entries in Table 3.2 are all of effective arity two,
since their value depends on the values of both x and y in all cases. In general, we
can expect the utility of groupoids to increase with their effective arity, but even
among groupoids of maximum effective arity, practical utility can vary greatly. As a
specific example, combinatorial logic circuits are based on Boolean algebra, which
is defined by the operations AND, OR, and NOT [19]. It is easy to show, however,
that all three of these operations can be implemented using only the NAND opera-
tion. For example, NOT x is equal to the NAND of x with the constant input 1, for
any x. Similarly, using this construction following the NAND operation yields the
AND operation (i.e., x AND y is NOT (x NAND y)), and the OR operation can be
constructed from the NAND operation with two NOT operations (i.e., x OR y is
(NOT x) NAND (NOT y)). In contrast, the NOT operation cannot be constructed
from either the AND or the OR operation, implying that these groupoids are less
inherently flexible than the NAND groupoid. More generally, it is not difficult to
show that six of the arity 2 operations defined in Table 3.2 (numbers 3, 5, 9, 12, 14,
and 15) are flexible enough to generate all of the other operations listed there but
the other six are not.

As noted in the introduction, another simple but extremely useful mathemat-
ical structure on finite sets is order structure. As a specific and particularly impor-
tant example, a partially ordered set or poset is defined as a set Σ, together with a
partial order ≺ that satisfies the following three conditions for all x, y, z ∈ Σ [18,
page 2]:

(1) reflexivity: x ≺ x,
(2) antisymmetry: x ≺ y and y ≺ x imply that x = y,
(3) transitivity: x ≺ y and y ≺ z imply that x ≺ z.

The most familiar example is the usual arithmetic order ≤ on the real numbers,
but other examples include alphabetic order on words and the incomplete data
partial order on multisets defined below. If two elements of x, y ∈ Σ satisfy either
x ≺ y or y ≺ x, they are said to be comparable, otherwise they are said to be
noncomparable, denoted as x‖y. If all elements of Σ are comparable, the poset
(Σ,≺) is called a chain, while if none of the elements of Σ is comparable, (Σ,≺) is
called an antichain. Note that in the terminology of cluster analysis or categorical
data analysis, a chain corresponds to the notion of an ordinal variable, while an
antichain corresponds to the notion of a nominal variable. In the most general case
of a poset, some elements may be compared while others cannot, thus representing
a variable class intermediate between nominal and ordinal.

Given any poset (Σ,≺), the Dedekind groupoid (Σ,◦) is obtained by defining
the following binary operation [45]:

x ◦ y =
⎧
⎨

⎩

x if x ≺ y,

y if x �≺ y.
(3.1)
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Motivation for considering the Dedekind groupoid here is that it forms the basis
for the class of Dedekind filters introduced in Section 3.4. The following results of
Petre [45] provide useful background for that discussion.

First, note that the binary operation ◦ is commutative if x ◦ y = y ◦ x for all
x, y ∈ Σ. Petre shows that the Dedekind groupoid (Σ,◦) is commutative if and only
if the poset (Σ,≺) is a chain [45, Proposition 2]. Conversely, (Σ,≺) is an antichain
if and only if x ◦ y = y for all x, y ∈ Σ [45, Proposition 3]. Intermediate between
these two results is the fact that for any poset, x ≺ y is equivalent to x◦y = y◦x = x
for all x, y ∈ Σ.

Petre shows that the Dedekind groupoid is a semigroup if and only if the poset
(Σ,≺) does not exhibit any subset of three elements x, y, and z such that x and y
are comparable but z is not comparable with either x or y [45, Proposition 4].
Note that this condition (i.e., the nonexistence of this forbidden configuration) is
met by both chains and antichains, but it may not be satisfied by posets of inter-
mediate character. Finally, Petre also shows that the Dedekind groupoid exhibits
a unit element e if and only if it is the greatest element of the poset (Σ,≺), that
is, if x ≺ e for all x ∈ Σ [45, Corollary 2]. As a consequence, it follows that the
Dedekind groupoid (Σ,◦) is a monoid if and only if the poset (Σ,≺) has the great-
est element and does not have three elements satisfying the forbidden condition
described above. These monoid requirements are not satisfied by antichains (i.e.,
there is no greatest element), but they are satisfied by chains.

The following example provides a specific illustration of these ideas and forms
the basis for the Dedekind filter introduced in Section 3.4. First, note that the el-
ements of a set Σ are necessarily distinct; a collection M of objects that can occur
one or more times is called a multiset or bag [5]. The moving-window data fil-
ters discussed in Section 3.4 are based on a multiset M obtained by extracting a
subsequence {sk} from a longer sequence {xk} of elements from some finite set
Σ. The class of Dedekind filters introduced in Section 3.4 is based on the incom-
plete data partial order ≺ on a data window W . This data window is an indexed
multiset whose elements wk either belong to the finite set Σ, or are missing data
elements, denoted as NULL and interpreted to mean that the true value of wk is
unknown and could be any of the elements of Σ. The use of NULL values for
missing data introduces some important practical complications and it has been
strongly criticized in the database community [17]. Nevertheless, the problem of
treating missing data is an extremely important one in many data analysis appli-
cations [44] and the incomplete data partial order defined here provides a useful
framework for addressing these problems in the context of filter design. Specifi-
cally, define the partial order ≺ on W as follows. First, define κ(x) as the number
of times x appears in W . Then, define x ≺ y as

x ≺ y if x = y or κ(x) > κ(y). (3.2)

Note that the partial order (W ,≺) is not a chain since elements x �= y which both
occur the same number of times in W are not comparable (i.e., x �≺ y and y �≺
x). Hence, by Petre [45, Proposition 2], the Dedekind groupoid (W ,◦) generated
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by this partial order is not commutative. The binary operator ◦ on which this
groupoid is based is given explicitly by

x ◦ y =
⎧
⎪⎨

⎪⎩

x if x = y or κ(x) > κ(y),

y if x �= y, κ(x) ≤ κ(y).
(3.3)

Next, suppose that x, y, and z are distinct elements of Σ and suppose that either
x ≺ y or y ≺ x, implying that κ(x) �= κ(y). Next, assume that z is not comparable
with either x or y; this implies that κ(z) = κ(x) = κ(y), which is a contradiction.
Hence, there can be no triple of distinct elements x, y, and z for which x and y
are comparable but z is not comparable to either x or y, so it follows from Petre
[45, Proposition 4] that the Dedekind groupoid (W ,◦) is associative. Finally, note
that by definition, the value NULL occurs zero times in W , so x ≺ NULL for any
x ∈ Σ, from which it follows that NULL represents a unit element in the Dedekind
groupoid, further implying that this groupoid is a monoid with greatest element
NULL. As noted, these ideas are discussed further in Section 3.4.

3.3. Characterization on finite sets

To illustrate the range of issues and possibilities that arise in characterizing se-
quences defined on finite sets, the following sections consider two specific exam-
ples: spectrum estimation and moving-window interestingness measures. Motiva-
tion for the first of these topics comes from the extreme practical importance of
nonparametric spectrum estimation for the exploratory characterization of real-
valued data sequences [31, 46]. The extension of these ideas from real-valued se-
quences to sequences of categorical variables is described in Sections 3.3.1 and
3.3.2, closely following the development presented at EUSIPCO ’04 [43]. Motiva-
tion for the second of these topics comes from the fact that moving-window data
characterizations are natural for the streaming data model mentioned in the in-
troduction, in which data sequences may be profitably viewed as being of infinite
length [7, 27, 33]. Section 3.3.3 considers the development of moving-window in-
terestingness measures for sequences of nominal variables, based on some of the
ideas discussed by Hilderman and Hamilton [28].

3.3.1. Correlations and spectra

In some cases, it is possible to extend a well-developed signal processing approach
for real-valued sequences to the case of sequences defined on finite sets, retaining
much of the machinery developed for the real-valued case. One specific example is
the Blackman-Tukey spectral estimator [31], based on the following notions. For
a stationary sequence {xk} of real-valued random variables, the power spectral
density Sxx( f ) is defined as the discrete Fourier transform of the autocorrelation
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function:

Sxx( f ) =
∞∑

k=−∞
Rxx(k)e−i2πk f T . (3.4)

In this definition, it is assumed that {xk} is a uniformly sampled time series with
intersample spacing T , and Rxx(k) is the autocorrelation function:

Rxx(k) = E
{(
xj − E

{
xj
})(

xj+|k| − E
{
xj
})}

= ρ
(
xj , xj+|k|

)
σ2,

(3.5)

where σ2 is the variance of the sequence {xk} and ρ(xj , xj+k) is the correlation
coefficient between xj and xj+k. One way of converting this definition into a com-
putational procedure is to consider the Blackman-Tukey estimator [31, page 77]:

Ŝxx( f ) =
M∑

k=−M
wkR̂xx(k)e−i2πk f T , (3.6)

where the real numbers {wk} define a lag window, included to manage the bias-
variance tradeoff inherent in spectrum estimation [31, 46].

To adapt this formulation to Σ-valued sequences, it is only necessary to spec-
ify a useful autocorrelation estimator R̂xx(k). In cluster analysis, the correlation
coefficient ρ between two real-valued data vectors provides the basis for a useful
dissimilarity measure between vectors [30, page 19]:

dxy =
1− ρxy

2
. (3.7)

To have a valid dissimilarity measure, it is necessary that dxx = 0 for all data vectors
x, and that dxy ≥ 0 and dyx = dxy for all data vectors x and y. Since, as discussed
below, it is a simple matter to define dissimilarity measures for sequences taking
values in a finite set Σ, we reverse the relation defined in (3.7) to obtain the desired
autocorrelation measure:

R̂xx(k) = ρ
(
xj , xj+k

) = 1− 2d
(
xj , xj+k

)
. (3.8)

Here, we consider the following dissimilarity measure between subsequences of
fixed length K :

d
(
xj , xj+k

) = 1
K

K−1∑

i=0

δ
(
xi+ j , xi+ j+k

)
, (3.9)

where δ(xi, xj) = 0 if xi = xj and 1 otherwise. Note that this element-based dis-
similarity measure represents an application of the comparison operation defined
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58 Finite-set signal processing

in Section 3.2, obtained by taking the subsequence {sk} to be the single element xi
and the subset Λ to be the single element xj .

A disadvantage of the autocorrelation estimates R̂xx(k) obtained from (3.8)
and (3.9) is R̂xx(k) �→ 0 as |k| → ∞. As a consequence, a large zero-frequency
peak and its associated side-lobes appear in the estimated power spectrum. These
features obscure the spectral characteristics of interest, so we remove them by re-
placing R̂xx(k) with R̂xx(k) − R̄ in (3.6), where R̄ is the average of the computed
autocorrelation values over k. Note that this difficulty is somewhat analogous to
the spectral characterization problem for long-memory processes where the slow
decay of autocorrelations to zero introduces a pole in the power spectrum at zero
frequency [11, page 6]. Here, however, the problem is simply a computational nui-
sance rather than a phenomenon of significant inherent interest.

To see the reason for this lack of decay of the estimated autocorrelations at
remote lags k, note that for a real-valued sequence of independent, identically dis-
tributed (i.i.d.) random variables (i.e., a white noise sequence), the autocorrelation
function is

Rxx(k) =
⎧
⎨

⎩

1 k = 0,

0 k �= 0.
(3.10)

Now, consider an i.i.d. sequence {xk} that takes each value in the finite set Σ with
equal probability, where Σ contains M elements. It follows from (3.9) that the ex-
pected dissimilarity between elements xj and xj+k in this sequence is

E
{
d
(
xj , xj+k

)} =
⎧
⎪⎨

⎪⎩

0, k = 0,

1− 1
M

, k �= 0,

�⇒ R̂xx(k) =
⎧
⎪⎨

⎪⎩

1, k = 0,

−1 +
2
M

, k �= 0.

(3.11)

3.3.2. Example: DNA sequence spectra

Figure 3.2 summarizes two results obtained using the spectrum estimation proce-
dure just described, applied to a perfectly periodic sequence of length L = 100, cor-
responding to 20 repetitions of the subsequence GGCTG. The higher-amplitude
(solid) curves in these plots represent the spectrum estimates obtained using two
different lag windows, and the lower-amplitude (dotted) curves represent the per-
mutation-based validation results discussed below. Figure 3.2(a) was obtained us-
ing the rectangular window wk = 1 for −25 ≤ k ≤ 25 and Figure 3.2(b) shows the
results obtained using the triangular Bartlett window defined on the same sup-
port set [46, page 439]. As expected, the Bartlett window reduces variability at
the expense of increased bias, which appears here in the form of reduced-intensity
spectral peaks. In both cases, a clear peak is evident at the fundamental frequency
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Figure 3.2. Estimated spectrum and permutation limits using (a) rectangular plot and (b) Bartlett
plot lag windows (triangular window).

f = 0.2, corresponding to the period P = 5 of the repetitive sequence, and a
weaker peak appears at the second harmonic, f = 0.4. The key points here are first
that much of the machinery of classical spectral analysis (e.g., classical lag win-
dows) can be applied to the finite-set formulation proposed here and second, that
this procedure gives the correct results in the case of simple periodic sequences.

The lower-amplitude (dotted) curves in Figure 3.2 were obtained by apply-
ing a variant of the computational negative controls (CNC) strategy proposed re-
cently for validating cluster analysis results [42]. Specifically, after the spectrum
estimate was obtained from the original data sequence, the same spectrum esti-
mation procedure was applied to each of 50 random permutations of this data
sequence. These results provide a useful frame of reference since the permutations
destroy any regular sequential structure present in the original data sequence, giv-
ing essentially 50 white noise sequences with the same distribution of values as this
original sequence. Since these sequences should exhibit constant power spectra,
only those features in the original spectrum that significantly exceed these ran-
domized spectra should be regarded as significant. The lower curve in Figure 3.2
represents the maximum value obtained, at each frequency f , from these 50 ran-
domized results. In Figure 3.2, both of the plots show clear evidence of the periodic
structure present in the sequence since both the fundamental and the second har-
monic peaks clearly exceed this lower reference curve.

Figure 3.3 shows the results obtained for two contaminated versions of the
periodic sequence considered above, obtained by substituting some of the orig-
inal sequence values with randomly selected elements of the base set Σ. In esti-
mating spectra from real-valued data sequences, the presence of outliers, nonrep-
resentative data values that often appear as local “spikes,” can introduce signifi-
cant biases [39]. In particular, it is known that outliers “raise the noise floor” in
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Figure 3.3. Effects of (a) 5% and (b) 20% random substitutions on BT spectra.

real-valued spectrum estimation, obscuring high-frequency details [36]. In deal-
ing with sequences taking values from a finite set, the problem is somewhat dif-
ferent, but sequence distortions have generally analogous effects, as may be seen
in Figure 3.3. Specifically, Figure 3.3(a) shows the results obtained for this peri-
odic sequence contaminated with 5% random substitutions, while Figure 3.3(b)
shows the results obtained with 20% random substitutions. The rectangular lag
window was used in both cases since it gives intense spectral peaks that are easily
distinguished from the randomized reference results. In contrast with the real-
valued outlier problem, the fact that all data values must belong to the small set
Σ bounds the magnitude of possible contaminants and this restriction appears to
substantially reduce their severity. In particular, although comparison of Figures
3.2 and 3.3 shows clearly that increased contamination levels cause degradation of
the spectral peaks, both the fundamental and the second harmonic peaks remain
significant relative to the CNC baseline even with 20% contamination.

Two other important phenomena in DNA sequence characterization are ran-
dom insertions and random deletions, collectively known as indels. Figure 3.4
shows the results obtained for the periodic sequence considered above, but with
5% and 20% random deletions in Figures 3.4(a) and 3.4(b), respectively. Figure 3.5
shows the corresponding results obtained for the same original sequence, but with
5% (Figure 3.5(a)) or 20% (Figure 3.5(b)) random insertions. Careful compari-
son of Figures 3.4 and 3.5 suggests that random insertions may be slightly more
damaging than random deletions, but both effects appear to be quite similar. In
particular, it is clear that indels generally represent a more serious problem for
estimated sequence spectra than random substitutions.

Finally, to illustrate the application of this spectrum estimation procedure to
a real data example, Figure 3.6 shows the results obtained for the sequence of 100
bases shown in Figure 3.1. This sequence was extracted from human chromosome
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Figure 3.4. Effects of (a) 5% and (b) 20% random deletions on BT spectra.
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Figure 3.5. Effects of (a) 5% and (b) 20% random insertions on BT spectra.

22 (July 2003 Assembly, from http://genome.ucsc.edu). This chromosome is ap-
proximately 50, 000, 000 bases long and the sequence considered here corresponds
to bases 40, 052, 600 through 40, 052, 699, selected because expert annotation in-
dicates the presence of an approximately periodic repetition of the sequence GGA
in the middle of this subsequence. The presence of a peak at f  0.33 that is sig-
nificant relative to the CNC background spectrum in Figure 3.6 is consistent with
this characterization.
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Figure 3.6. Spectrum estimate for 100 bases from human chromosome 22.

3.3.3. Moving-window interestingness measures

As noted in the introduction, another important emerging application area for
digital signal processing techniques is the development of data mining methods
for the streaming data model [7]. While data mining has thus far been more closely
associated with statistics than with signal processing, the notion of sliding-window
filtering has been discussed [33], including the critical question of window width
specification. Broadly speaking, data mining is concerned with the detection of
“interesting” patterns in a dataset, and this has led to the development of a number
of numerical interestingness measures [28]. The following paragraphs briefly con-
sider the implementation of some of these interestingness measures in connection
with the streaming data model for the detection of locally interesting patterns in
a data sequence. This idea is essentially an extension of characterizations like the
short-time Fourier transform (STFT) [15] or moving-window scale and skewness
measures [44, Section 7.5.1] that are useful in characterizing the local behavior of
real-valued data sequences to the case of sequences taking values on a finite set.
Although the techniques are quite different, the motivation for this type of anal-
ysis is analogous to the problem of modeling flat stretches, bursts, and outliers in
real-valued time series considered by Le et al. [32].

While it is not a time-series dataset, the key ideas behind moving-window in-
terestingness measures for data sequences taking values on a finite set are nicely il-
lustrated by the mushroom dataset from the UCI Machine Learning Archive, avail-
able at http://www.ics.uci.edu/∼mlearn/MLRepository.html. The archive contains
over 100 standard examples that have been widely used in the machine learning
community as benchmarks for evaluating classification algorithms. The mush-
room dataset contains 22 measured characteristics, all categorical, of 8124 dif-
ferent mushrooms, along with their classification as either edible or poisonous.
These characterizations were obtained from The Audubon Society Field Guide to
North American Mushrooms [34], which notes that there is no simple rule for de-
termining the edibility of mushrooms, providing the original motivation for this
classification benchmark [49]. We consider this dataset because it may be viewed
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as a collection of 22 moderately long categorical data sequences, nicely illustrating
the key ideas of interest here.

For example, one of the categorical variables contained in this dataset is gill
color, which can assume any of 12 values, defined and coded as follows:

(1) black (k),
(2) brown (n),
(3) buff (b),
(4) chocolate (h),
(5) gray (g),
(6) green (r),
(7) orange (o),
(8) pink (p),
(9) purple (u),

(10) red (e),
(11) white (w),
(12) yellow (y).

It was noted in Section 3.1 that in the characterization of DNA sequence data, the
use of numerical coding introduces an unnatural ordering that can have unde-
sirable consequences. The gill-color sequence provides a nice illustration of this
point. Specifically, Figure 3.7 shows four plots of the gill-color sequence for mush-
rooms 4700 through 6700, encoded as the integers 1 through 12 in each of the
following four ways:

(A) alphabetically by color,
(B) alphabetically by coding symbol,
(C) in order of increasing frequency pi,
(D) ordered to give an approximately symmetric, unimodal distribution of

pi values.
In addition, the standard deviation computed from the numerical representation
for each coded sequence is given in Figure 3.7. The significant differences between
these numerical values, which vary by approximately a factor of two, give one indi-
cation of the undesirability of this representation strategy. In particular, note that
there are 12!  4.79 × 108 possible labellings of these 12 nominal values by the
integers 1 through 12, and the differences seen in both the appearance of the plots
in Figure 3.7 and the numerical standard deviation values demonstrate that results
based on this representation are strongly dependent on the specific coding chosen.
Unfortunately, there is generally no “natural” encoding that is to be preferred to
any other, making this strong dependence highly undesirable.

This last observation motivates one of the five axiomatic characterizations
for a “good” interestingness measure offered by Hilderman and Hamilton [28]:
property P4, permutation invariance. More specifically, Hilderman and Hamilton
consider 13 numerical interestingness measures, originally proposed in a variety
of different fields (e.g., biology, economics, information theory, and linguistics).
While many of these measures are quite closely related (indeed, several reduce
to exactly the same measure under the normalization considered here), they do
represent a variety of different characterizations exhibiting different properties.
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Figure 3.7. Graphical representations of the same sequence of 2000 mushrooms under the four dif-
ferent codings listed in the text, along with the standard deviations of each numerical sequence: (a)
coding A, standard deviation = 3.07; (b) coding B, standard deviation = 3.76; (c) coding C, standard
deviation = 2.47; and (d) coding D, standard deviation = 1.76.

The primary motivation for considering them here is that they are all computable
from the empirical frequencies pi = ni/N associated with them distinct values ci of
an arbitrary categorical variable c, where ni denotes the number of times the value
ci occurs in a sequence of N observations. In particular, all of these measures are
based entirely on the counting characterization discussed in Section 3.2, where the
subset Λ corresponds to the set Σ of all possible values for the categorical variable
of interest.

Of the five axiomatic characterizations of a good interestingness measure I
offered by Hilderman and Hamilton, the following three are of interest to us.

(P1) minimum value principle: the measure should exhibit its minimum val-
ue for the uniform case, pi = 1/m for all i.

(P2) maximum value principle: the measure should exhibit its maximum
value for the discrete case, pi = 1 for some i and pj = 0 for all j �= i.

(P4) permutation invariance principle: the value of the measure should be
invariant under any relabelling of the categories ci.

The statements of P1 and P2 given here differ slightly from those of Hilderman and
Hamilton, who do not admit empty categories (i.e., they require ni ≥ 1 for all i,
implying that pi > 0 for all i), but the issue of empty categories is an important one
in practice, so we relax this condition to allow pi = 0. In particular, an important
issue in the moving-window measures considered here is the distinction between
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an internally categorized variable c, whose possible values are specified completely
by the observed data, implying that ni ≥ 1 for all i, and an externally categorized
variable, whose possible values are specified independently of the data, admitting
the possibility that ni = 0 for some i. For example, the attribute gill-spacing in-
cluded in the mushroom dataset can, according to the accompanying documenta-
tion for the dataset, assume any one of 3 possible values (close (c), crowded (w), or
distant (d)), but in the dataset, only 2 of these values are actually observed. Hence,
if we regard gill-spacing as an internally categorized variable, ci only assumes the
2 values close (c) and crowded (w) and pi > 0 for both of these values, while if
we regard this variable as externally categorized, it can assume all three values, of
which one (distant (d)) is associated with a zero empirical frequency pi. The dis-
tinction is particularly important for moving-window characterizations where an
internal categorization can exhibit a strongly varying number of levels as the win-
dow moves through the data sequence. In contrast, external categorization permits
the number of levels for the variable to remain fixed. As a consequence, external
categorization leads to much more useful moving-window characterizations.

Of the 13 interestingness measures considered by Hilderman and Hamilton,
eleven satisfy axioms P1, P2, and P4 described above. As they are described, not
all of these measures satisfy axioms P1 and P2 directly, but they can all be nor-
malized to do so, and this normalization actually reduces three of these measures
to others from the list. Of the remaining eight, we have chosen the following four
normalized interestingness measures.

(1) The normalized Simpson (variance) measure:

I1 = m
∑m

i=1 p
2
i − 1

m− 1
. (3.12)

(2) The normalized Shannon (entropy) measure:

I2 = 1 +
1

lnm

m∑

i=1

pi ln pi. (3.13)

(3) The normalized Gini (mean difference) measure:

I3 = 1
2(m− 1)

m∑

i=1

m∑

j=1

∣
∣pi − pj

∣
∣. (3.14)

(4) The normalized Bray measure:

I4 =
(

m

m− 1

)[

1−
m∑

i=1

min
{
pi,

1
m

}]

. (3.15)

Note that all of these interestingness measures are normalized so that I = 0 cor-
responds to the uniform case pi = 1/m and I = 1 corresponds to the discrete
case pi = 1 for some i and pj = 0 for all j �= i. All other empirical frequency
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distributions exhibit intermediate values of I , strictly between these limits. It is
also important to note that we assume m > 1 here: this is not a significant restric-
tion for externally categorized variables since an externally categorized variable
with a single level is a constant, but the restriction is important for internally cat-
egorized variables, particularly if they are based on a moving data window, since
locally constant segments within a longer sequence frequently occur in practice.
This observation is one of the main reasons we restrict consideration to externally
categorized variables here.

Moving-window implementations of these normalized interestingness mea-
sures are implemented as follows. As in the case of the moving window filters dis-
cussed in Section 3.4, computations are based on a moving data window of the
form

wk =
{
xk−K , . . . , xk−1, xk, xk+1, . . . , xk+K

}
, (3.16)

where {xk} denotes the data sequence to be characterized and K is an integer win-
dow half-width parameter. In particular, note that wk represents a moving data
window of total width 2K + 1, centered at data observation xk and including the
K immediate past data samples and the K immediate future data samples. The re-
sults presented here characterize a data sequence of total length N for all k from
k = K + 1 to k = N −K to avoid end effects (i.e., artifacts arising from lack of data
for k < K + 1 or k > N − K). The alternative approach of data sequence extension
popular in the nonlinear filtering literature is discussed in Section 3.4.

Four moving-window characterizations of the mushroom gill-color data se-
quence are shown in Figure 3.8, all based on a moving data window of width 21
(K = 10). That is, each of the four plots applies one of the interestingness measures
described above to the moving data windows defined for k = K + 1 to k = N − K
and displays the resulting interestingness value I(k). Figure 3.8(a) shows the re-
sults obtained for the Simpson measure defined in (3.12), Figure 3.8(b) shows the
corresponding results for the Shannon measure defined in (3.13), Figure 3.8(c)
shows the Gini measure defined in (3.14), and Figure 3.8(d) shows the Bray mea-
sure defined in (3.15). It is clear from these plots that while the gross behavior of
these four measures is the same, the details are quite different. In particular, all
four of these measures indicate an abrupt change in the character of the sequence
at k ∼ 6000, but the range of variation seen in these four measures is quite differ-
ent. Specifically, the Simpson measure suggests the strongest contrast between the
sequence for k ∼ 6000 to k ∼ 7000 and the rest of the data sequence, while the
Gini measure shows the smallest contrast. The Shannon and Bray measures are in-
termediate in behavior, with the Shannon measure closer to the Simpson measure
and the Bray measure closer to the Gini measure.

In addition to the choice of interestingness measure, another extremely im-
portant characterization choice is that of the moving-window width. Figure 3.9
shows how one of the interestingness measures just considered (the Simpson mea-
sure) varies as a function of the half-width parameter K for the mushroom gill-
color data sequence. Figure 3.9(a) shows the results obtained with an 11-point
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Figure 3.8. Application of four moving-window interestingness measures to the gill-color data se-
quence from the mushroom dataset. In all cases, the window width is 21 points (K = 10) and the four
measures considered are (a) Simpson, (b) Shannon, (c) Gini, and (d) Bray.

moving window (K = 5), Figure 3.9(b) shows the result obtained before with a
window of width 21 (K = 10), Figure 3.9(c) shows the results for a window of
width 51 (K = 25), and Figure 3.9(d) shows the results for a window of width
101 (K = 50). Since increasing the window width decreases the effective band-
width of the characterization, the resulting interestingness measure is less able to
distinguish localized features. Conversely, the variability of the results decreases
substantially as the window width increases, a consequence of the fact that each
I(k) value is based on a larger data subsample. This tradeoff is exactly analogous
to that seen in moving-window characterizations for real data sequences like the
short-time Fourier transform [15].

Since all of the window widths considered here are small compared to the
total length of the data sequence, the “convolutional broadening” effects of the
moving data window are not severe enough to offset the smoothness of the results
even for the widest window considered. Hence, the results obtained for K = 50
here may be the most useful in directing us to the most interesting portions of
this data sequence. In particular, note that in addition to the dramatic plateau
between k ∼ 6000 and k ∼ 7000 noted earlier (and clearly visible in all of the
numerically coded representations shown in Figure 3.7), there is evidence in the
results for K = 50 both of a secondary plateau of much lower amplitude for k
between k ∼ 4200 and k ∼ 4800, and of what appears to be a significant difference
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Figure 3.9. Effects of moving-window width on the Simpson interestingness measure computed from
the mushroom gill-color data sequence. Results shown are for window widths of (a) 11 points (K = 5),
(b) 21 points (K = 10), (c) 51 points (K = 25), and (d) 101 points (K = 50).

in the character of the data sequence for k � 7000 and k � 6000. Note that neither
of these features is at all evident in the results shown for K = 5.

3.4. Filters on finite sets

Digital filters represent a very large class of sequence transformations designed to
map a given sequence {xk} into another, related sequence {yk} that is “better” or
“more useful” in some application-specific sense than the original sequence {xk}.
As noted in the introduction to this chapter, there is an extremely well-developed
theory of linear filters for real-valued sequences, which can be used for smooth-
ing to eliminate low-level noise, sharpening to enhance important contrasts, or
a variety of other applications [24, 48]. In addition, since linear filters are inade-
quate for some tasks even in the case of real-valued sequences, there is also a large
body of results available for the design and analysis of nonlinear digital filters;
see, for example, the book by Astola and Kuosmanen [6]. Some of these nonlin-
ear filters are more generally applicable to sequences of ordinal variables defined
on finite sets; important examples include both the median filter [20] and more
complex combinations of order statistics like the LUM filter [25]. In general, how-
ever, the problems of designing useful filters and analyzing their behavior become
more challenging as we reduce the level of mathematical structure imposed on the
sequence-value set. As a consequence, the problems of designing and analyzing
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useful filters for nominal data sequences is especially challenging. In particular,
note that none of the filters just described is applicable to this case.

Since there appear to be more open questions than available results in the de-
sign of digital filters for nominal data sequences, the primary focus of the following
discussion is on key ideas and insights that should be useful in developing these
filters. The specific problem considered here is that of designing moving-window
filters F that map one sequence {xk} taking values in the finite set Σ into another
such sequence {yk}. Adopting the moving-window assumption provides a simple,
explicit basis for formulating the filtering problem, and while it does entail some
loss of generality (i.e., it excludes recursive filter structures), this restriction is al-
most universally imposed on nonlinear filters for real-valued data sequences. For
example, the overwhelming majority of the nonlinear filters discussed by Astola
and Kuosmanen are moving-window filters [6].

An important issue that arises with moving-window filters is the problem of
end effects, discussed briefly in Section 3.3.3 in connection with moving-window-
based sequence characterizations. While that discussion adopted a sequence trun-
cation strategy to deal with end effects (i.e., the window-based characterization
I(k) was not evaluated for the first K or the last K elements of the original data
sequence), this strategy is generally undesirable in filtering problems, where a fil-
tered sequence {yk} of the same length as the original sequence {xk} is generally
wanted. A standard approach to this problem is via sequence extension, replicat-
ing the first value of the sequence K times and prepending it to the original, with
the last value of the sequence handled similarly. That is, the original data sequence
{xk} of length N is replaced with a new sequence {x̃k} of length N + 2K , given by

x̃k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1, k = −K + 1, . . . ,−1, 0,

xk, k = 1, 2, . . . ,N ,

xN , k = N + 1, . . . ,N + K.

(3.17)

Applying a moving-window filter of width 2K + 1 based on the data window wk

defined in (3.16) then generates an output sequence {yk} that is well defined for
k = 1, 2, . . . ,N .

More specifically, the moving-window filter design problem considered here
is that of specifying the function Φ : Σ2K+1 → Σ in the equation

yk = Φ
(
xk−K , . . . , xk, . . . , xk+K

)
. (3.18)

As in the case of groupoids discussed in Section 3.2, it is important to note that
the number of possible filters (i.e., the number of functions that can be specified)
is much too large to attempt to characterize completely. Specifically, note that the
function Φ(· · · ) is specified by a set of response values, one for each possible com-
bination of input data values in its 2K + 1 arguments. If Σ contains M elements, it
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follows that the number of responses required to specify a single function Φ(· · · )
isM2K+1. Since each of these values can be specified independently and can assume
any of the M values from Σ, the total number of distinct filter functions Φ(· · · ) is

NΦ(M,K) =MM2K+1
. (3.19)

To see how large this number is even for moderate values of M and K , note that
NΦ(2, 4)  1.34× 10154, NΦ(3, 2)  8.72× 10115, and NΦ(6, 1)  1.20× 10168. As
a practical consequence, then, there are so many possible filter functions that the
design of useful filters on finite sets requires careful thought. The following two
sections offer some potentially useful ideas.

3.4.1. The Dedekind majority filter

One possible filter for sequences of nominal data values is the Dedekind majority
filter, based on the Dedekind groupoid and the incomplete data partial order in-
troduced in Section 3.2. The motivating problem is that of data cleaning, where
a frequently effective solution is the Hampel filter [39, 44], a member of the class
of decision-based filters [6]. There, the basic idea is that isolated, large-amplitude
noise spikes represent outliers in the moving data window wk. The Hampel filter
strategy is to test the central observation xk for its concordance with the rest of the
values in the data window. If xk is deemed inconsistent, it is replaced with a more
representative value computed from the data window; otherwise, the data value xk
is unmodified.

Because it measures the distance from xk to a representative data value com-
puted from wk, the Hampel filter is not applicable to sequences defined on finite
sets. One possible extension of this idea to such sequences is the following. First,
define bk(wk) as the “best” value in the data window wk:

bk
(

wk
) =

⎧
⎨

⎩
x∗ if κ

(
x∗
) ≥ K + 1,

NULL otherwise,
(3.20)

where κ(x∗) is the number of times the value x∗ appears in wk. Note that the value
x∗ appearing in this definition is unique if it is defined, since at most, one value
can appear K + 1 or more times in a sequence of length 2K + 1. The Dedekind
majority filter is defined by

yk = bk
(

wk
) ◦ xk =

⎧
⎨

⎩
bk
(

wk
)

if bk
(

wk
) ≺ xk,

xk if bk
(

wk
) �≺ xk,

(3.21)

where ◦ is the binary operation defining the Dedekind groupoid and ≺ is the in-
complete data partial order defined in Section 3.2.

To see how this filter works, first recall that NULL is the unit element for the
Dedekind groupoid associated with the incomplete data partial order. Hence, if no
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element x∗ appears K + 1 or more times in wk, it follows that b(wk) = NULL and
the filter output is yk = NULL◦xk = xk, regardless of the value of xk. Conversely,
if a majority element x∗ does exist, then either xk = x∗, implying that

yk = b
(

wk
) ◦ xk = xk ◦ xk = xk, (3.22)

or else κ(x∗) > κ(xk), implying that

yk = b
(

wk
) ◦ xk = x∗ ◦ xk = x∗ �= xk. (3.23)

In words, the Dedekind majority filter replaces the central value xk with the win-
dow majority value x∗ whenever this majority value is well defined (i.e., non-
NULL) and distinct from xk; otherwise, the filter leaves the central data value un-
modified, exactly as in the case of the Hampel filter for real-valued data sequences.

The advantage of describing this filter in terms of the incomplete data partial
order and its associated Dedekind groupoid is that the filter defined in (3.21) pro-
vides a basis for immediately generalizing this simple majority filter to something
else by replacing the “best” element in the data window bk(wk) defined in (3.20)
with a different choice of “best element.” One potentially promising application
of this idea is in the development of multivariable data cleaning filters discussed
briefly in Section 3.5.

3.4.2. Bottom-up filter design

The filter design problem of interest here can be approached from at least two op-
posite perspectives: a top-down approach, in which desirable qualitative behavior
is specified from which we attempt to characterize functions Φ(· · · ) that exhibit
this behavior [40], or a bottom-up approach in which we seek behavior-preserving
ways of combining known examples of useful filters into more complex structures
[41]. The first of these approaches leads us in the direction of functional equa-
tions, which attempt to represent all functions exhibiting certain desirable quali-
tative characteristics [1]. In favorable cases, these equations can be solved to yield
very useful results, but this task becomes more difficult in cases like the one consid-
ered here where we have very little mathematical structure to exploit. In contrast, a
number of simple bottom-up constructions that have led to useful nonlinear filters
for real-valued sequences extend easily to the finite-set case.

The simplest bottom-up filter design approach is cascade connection, in which
the output of one filter F1 serves as the input of a second filter F2. For conve-
nience in the following discussions, denote this interconnection as F2 ◦F1, where
it is understood that filter F1 acts on the original input sequence and filter F2 acts
on the output of this first filter. Similarly, longer filter cascades will be denoted by
F3 ◦ F2 ◦ F1, and so forth. The cascade construction is reasonably popular even
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72 Finite-set signal processing

for linear filters in the real-valued case, even when both filters F1 and F2 are the
same [24, Section 6.6]. This idea is also quite popular for nonlinear real-valued
sequence filters, as in the case of the data sieve described by Bangham, consisting
of the cascade interconnection of several median filters [10]. Note that so long as
both filters map sequences taking values in the finite set Σ, so do their cascade
interconnections. Also, note that if filters F1 and F2 are distinct, the cascade inter-
connections F1◦F2 and F2◦F1 are generally not equivalent. (This statement does
not hold for linear filters, where the order of interconnection is irrelevent, but it
does generally hold for nonlinear filters like the ones considered here.)

The cascade interconnection strategy is an extremely useful one here since it is
applicable to filters acting on finite sets, but it is somewhat limited in its flexibility.
Another construction that is also completely applicable to the finite-set case is the
more flexible FIR clone construction [41]. The term clone as it is used here comes
from universal algebra, where it is defined as follows [52, page 11]. Suppose q and
r are arbitrary integers, φi : Σq → Σ are arbitrary mappings for i = 1, 2, . . . , r,
and G : Σr → Σ is another arbitrary mapping. A clone of Σ is a collection of such
mappings that is closed under clone superpositions, of the form

Φ(x) = G
(
φ1(x),φ2(x), . . . ,φr(x)

)
, (3.24)

for all x ∈ Σq. Further, a clone must also contain all projections of the form

Pi(x) = xi, (3.25)

where xi is the ith component of the vector x. It is easy to show that the class of
moving-window filters defined by (3.18) constitutes a clone, regardless of the set of
admissible values for the sequence {xk} [41]. In addition, it is also straightforward
to show that the cascade interconnection of two filters discussed above may be re-
alized as a clone superposition involving the two filters and a suitably chosen set of
projections [41]. The advantage of the clone construction is that it is more flexible,
leading to multifilter composite structures like the FIR-median hybrid (FMH) fil-
ter class [26] or the LUM smoothing filter [25]. In addition, the clone construction
leads naturally to all weighted versions of the simpler filters, in which elements of
the data window are replicated [41]. The key point here is that all of these results
carry over to the finite-set case, providing a potentially very flexible approach to
the bottom-up design of these filters.

Finally, it is worth briefly discussing two other bottom-up design approaches,
one is a significant generalization of the other but both require the existence of a
groupoid structure. In particular, suppose that (Σ,�) constitutes a groupoid for
some binary operation � and consider the parallel interconnection of two filters
F1 and F2, here assumed to be moving-window filters based on the functions
Φ1(· · · ) and Φ2(· · · ), respectively. In the parallel interconnection, both filters
are driven by a common input sequence {xk}, and their outputs are combined via
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the binary operation � to give

yk = Φ1
(
xk−K , . . . , xk, . . . , xk+K

)�Φ2
(
xk−K , . . . , xk, . . . , xk+K

)
. (3.26)

Clearly, this construction can be extended by forming parallel combinations of
more than two filters, but a much more flexible extension is obtained by noting
that the cascade interconnection is always possible, so the component filters in
these parallel interconnections can themselves be composites obtained from the
cascade interconnections of simpler filters. In this way, we can build up much more
complex structures, an approach that has been pursued fairly extensively in the
block-oriented modeling of biological systems using linear dynamic models and
memoryless nonlinearities [14].

3.5. Variations and extensions

The discussion up to this point has focused on the development of signal pro-
cessing tools for a univariate sequence {xk} of nominal data values. The follow-
ing paragraphs briefly consider some extensions of these ideas to two more com-
plex settings: the case of multivariable sequences, and the case of sequences of
more general data objects like graphs or XML documents. (The abbreviation XML
stands for Extensible Markup Language, a very flexible hierarchical data structure
that is rapidly growing in popularity both for data representation and data ex-
change, in part because it accommodates both data elements themselves and the
metadata describing those elements.)

With multivariable data sequences, it is important to distinguish between the
case where all of the components of the data vector xk are nominal variables and
the mixed-variable case where these components may be of different types (e.g.,
ordinal or real-valued). If all of the components are nominal variables, the sim-
plest way (conceptually) of extending the results presented here would be to con-
vert the vector xk of p variables defined on the sets {Σi} to a single categorical
variable. That is, each p-tuple (x1, x2, . . . , xp) defined on Σ1×Σ2×· · ·×Σp would
be treated as a single categorical variable that can assume any value in a set Σ∗ of
sizeM =M1·M2· · · · ·Mp, whereMi is the number of values in the original set Σi.
Despite the apparent simplicity of this approach, it suffers from two disadvantages.
First, the size of the composite set Σ∗ can quickly become very large, potentially
causing computational difficulties. For example, applying this approach to a four-
dimensional vector of nominal variables taking 12, 8, 6, and 3 values converts it
to a single variable with 1, 728 distinct values. The second disadvantage of this
composite-univariate strategy is more fundamental: it provides no mechanism for
dealing with any associations that may exist between the different variables. By
retaining the multivariate nature of the original problem formulation, we can at-
tempt to incorporate categorical variable association measures and other results
from categorical data analysis [3] into our signal processing strategies.

In the case of mixed variables, one possible strategy would be to convert other
data types to categorical approximations. In fact, a related idea is described by
Dain et al. for the problem of rule learning involving continuous-valued features
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f which are split at some threshold value c, defining a binary variable that is 0 if
f < c and 1 if f ≥ c [16]. While such an approach can be used to convert a problem
with mixed data types into one with only categorical data types, this conversion
is necessarily an approximation (whose quality may be difficult to assess) and,
perhaps more seriously, it entails a loss of potentially exploitable mathematical
structure. For example, in applications like data cleaning, it may be possible to use
more highly structured (i.e., ordinal or real-valued) variables as a basis for ranking
the “quality” or “reliability” of each vector in a vector-valued data sequence {xk}.
This additional information could then be used to construct a “best” value bik(wk)
for a nominal value in the ith component of the composite data vector xk. This
result could then be used in a modified version of the Dedekind majority filter
described in Section 3.4.1.

For sequences of more general data objects, two key observations are first that
these objects may have very useful additional mathematical structure that can be
exploited, and second that the adverse consequences of imposing unwarranted
structure (e.g., unnatural order structure) can be as severe as in the simpler case of
nominal data sequences considered here. An example illustrating the first point is
the procedure described by Agarwal and Pregibon [2] for efficiently updating very
large communication network graphs. There, the key idea was to define vector ad-
dition and scalar multiplication operations (using edge weights) that formed the
basis for defining a linear vector space of graphs. Similarly, Garofalakis and Kumar
[21] describe a distance measure between XML documents. The key point is that
in both of these cases, significant but relevant mathematical structure can be im-
posed on complex data objects in ways that are not obvious from the outset. The
development and exploitation of these mathematical structures in characterizing
and filtering (e.g., cleaning) sequences of these complex data objects appears to be
a very promising research area.

3.6. Summary

The primary focus of this chapter has been on the development of useful signal
processing tools for sequences taking values in a finite set Σ. In marked contrast to
the case of real-valued sequences, the extreme sparsity of available mathematical
structure for sequences taking values on finite sets greatly limits our options in de-
veloping these tools. As a specific and important example, the fact that nontrivial
finite sets are not closed under the usual operations of addition and multiplica-
tion, even if the data values are encoded numerically, means that linearity has no
role to play in these signal processing problems. In addition, the results presented
here have also emphasized the undesirability of using data-coding strategies that
impose unnatural orders on the finite set Σ, as the results obtained can be strongly
influenced by artifacts of this induced ordering.

In cases where there is no additional mathematical structure on Σ, corre-
sponding to the nominal data model in statistics and cluster analysis, the basic
characterization operations available are counting and comparison, as discussed in
Section 3.2. Despite the apparent paucity of these operations, one of the primary
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points of this chapter has been to illustrate that in favorable cases, they can form
the basis for useful signal processing tools for sequences defined on finite sets. In
particular, Section 3.3.1 showed how the classical Blackman-Tukey spectrum esti-
mator can be simply extended to the finite-set case, along with much of its associ-
ated practical machinery (e.g., lag windows). Similarly, the availability of charac-
terizations like the interestingness measures described by Hilderman and Hamil-
ton [28] that are inherently based on discrete probabilities also provide a basis for
finite-set signal processing tools, obtained by simply combining these measures
with suitably chosen moving data windows. Like the short-time Fourier transform
and other moving-window data characterizations for real-valued sequences, the
resulting finite-set characterizations can highlight interesting structure in nomi-
nal variable sequences, as illustrated in Section 3.3.3.

The lack of additional mathematical structure in nominal data sequences
seems to have the greatest impact on the digital filter design problem, and the
question of how best to design these filters seems to be largely open at present. One
avenue that appears promising is that of identifying and exploiting useful induced
partial-order information in multivariable problems where additional variables
(which may be ordinal or real-valued) can be used as a reasonable basis for com-
paring categorical values within a moving data window, an idea discussed briefly
in Section 3.5. More generally, the design of moving-window data filters appears
to be an area where the existence of even-limited mathematical structure (e.g.,
partial orders or groupoids) can be strongly exploited. Two specific illustrations
of this point are the parallel combination and closely related block-oriented com-
posite filter structures discussed in Section 3.4.2. Conversely, even in cases where
there is no additional mathematical structure to exploit, once a few useful simple
filters have been developed for the application at hand, bottom-up design strate-
gies based on the cascade and clone constructions described in Section 3.4.2 can
be exploited to develop a wide variety of potentially useful extensions.

Finally, Section 3.5 briefly considered a number of possible extensions of the
basic ideas presented here to other settings, beyond the case of univariate sequences
of nominal variables. One of the main points of that discussion was the fact that
these developments should first fully exploit whatever additional mathematical
structure these applications exhibit, and second carefully avoid formulations that
impose unwarranted structure that can cause significant processing artifacts. As
the examples of linear structure on graphs [2] and distances between XML docu-
ments [21] illustrate, however, it is frequently possible to impose reasonable and
highly exploitable mathematical structure on these problems, even in cases where
this is not immediately obvious.
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4
Nonlinear signal modeling
and structure selection with
applications to genomics

Ioan Tabus, Jorma Rissanen, and Jaakko Astola

4.1. Introduction

Modeling is a prerequisite for the most fundamental signal processing tasks of
signal analysis, detection, classification, denoising, and compression. While lin-
ear models are widely used, and they allow elegant theoretical and algorithmic
developments, their nonlinear alternatives offer advantages in terms of model-
ing power and improved performance, which often eclipse the extra cost due to
increased complexity. In this chapter we discuss nonlinear signal modeling with
two main goals. The first is to present several examples of nonlinear models aris-
ing naturally in processing genomic data. The second is to discuss methods for
evaluating the complexity of these nonlinear models with information theoretic
methods.

Several signal processing methods are useful for processing genomic data. Mi-
croarray data come originally in the form of microarray images, which need to be
preprocessed (denoised and segmented) before the quantities of interest, the gene
expression ratios, are estimated from the image. All these stages benefit greatly
from nonlinear techniques. The stages involving statistical inference on the gene
expression values can also be formulated as optimal design problems for the struc-
ture and the parameters of certain nonlinear predictors. In this chapter we investi-
gate mainly the gene prediction problem, and we propose nonlinear predictors in
which the structure is selected by the minimum description length (MDL) princi-
ple.

We present first the Boolean, ternary, and perceptron predictors. We resort
to the earliest form of the MDL principle, the two-part code, as a tool for select-
ing the proper size of the prediction window, because the selection is done on an
immediate and intuitive description of the data and the model parameters. When
comparing predictors of different complexities we show that the best description
is achieved by the Boolean and the ternary predictors, for they give a better fit to
the data with a lower model complexity. To illustrate the results, both synthetic
and experimental data are used.
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80 Modeling and structure selection

We then introduce a more advanced way to evaluate the overall cost of de-
scribing the data by Boolean regression models. These models are useful tools for
various applications in nonlinear filtering, nonlinear prediction, classification and
clustering, and data compression. We discuss the normalized maximum likelihood
(NML) universal model for these classes of models. Examples of the problem of the
discrimination of cancer types with the universal NML model for Boolean regres-
sion demonstrate the ability of the NML model to select sets of the feature genes
that are capable of discrimination at error rates significantly smaller than what is
achievable with other discrimination methods.

4.2. Preliminaries: modeling and predicting gene expressions

4.2.1. An introduction to gene expression data

One of the most important experimental advances in biology in the last decade
is the development of high-throughput measurement methods for simultaneously
probing thousands of gene expressions in the biological probes of interest. This
permits probing deep into the functioning of the cell since at any moment the
fundamental processes of life deal with the production of proteins, based directly
on the information contained in the genes. The abundance (also called expression)
of a certain gene in a biological sample is an indication of how intense the produc-
tion of the corresponding protein or proteins is (in some cases the same gene can
be used to generate several different proteins). However, the mere abundance of a
certain gene in the cell at a certain time is not a guarantee that the corresponding
proteins are produced, because the translation from gene to protein is mediated by
a number of factors, like the availability of enabling enzymes in the cell, or the ab-
sence of certain inhibiting enzymes. The enzymes involved are proteins, produced
on the information existing in other genes. This (overly) simplified image of the
complex metabolic processes shows that the functioning of the cell at a certain
time is related to a large extent to the amount or abundance of a number of genes
that are connected functionally to enable biological processes.

The concept of the gene expression was introduced four decades ago with the
discovery of messenger RNA when the theory of genetic regulation of protein syn-
thesis was described [5]. The availability of cDNA microarrays makes it possible to
measure simultaneously the expressions level for thousands of genes. Gene expres-
sion data obtained in microarray experiments may often be discretized as binary
or ternary data, the values 1, 0, −1 carrying the meaning of over expressed, nor-
mal, and repressed, respectively, which are the descriptors needed when defining
regulatory pathways.

For quite some time the interactions of the genes, either directly or through
the Means of their corresponding proteins, were studied for specific biological pro-
cesses, and the rules of each interaction, called a biological pathway, are usually
specified in terms of enabling/inhibiting factors, sometimes represented graph-
ically in the form of logical circuits. Studying the pathways is of fundamental
importance in biology and medicine since understanding the mechanisms of a
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biological process allows one to influence the process by modifying some of the
enabling factors.

The new microarray technologies are able to provide measurements of thou-
sands of gene expressions, sometimes by a differential method, where the expres-
sion of a gene in a sample of interest is measured against the expression in a ref-
erence sample. This is because the resulting gene expression ratio is less subject
to the variation of the experimental and processing conditions. There are several
alternative technologies for obtaining the gene expressions. Most of them are auto-
mated involving a robot arm which deposits the substances on the allocated spots
on a microarray slide. The microarray slides are rectangular of dimensions in the
order of centimeters having a large number of spots or wells arranged in a regular
grid, each spot being the place where the abundance of a certain gene in a certain
biological sample is measured. During the technology phases the genetic material
from the probe at each spot is hybridized to the substance deposited on the spot,
and by means of some color markings a high abundance of a gene in the probe
is transformed into a high-intensity color component. In the case of a differential
measuring system the probe and the reference are marked with red and green col-
ors, respectively, resulting in a composite color of the spot image. What is called a
gene expression results finally from processing the image of the spot with the goal
of integrating the contribution of the hybridization process in the area of the spot,
while taking into account the particular features of the technological process.

After the creation and processing of a microarray slide, the net result is in the
form of one value of the expression for each of the thousands of genes represented
in the array (or in case of differential measurements, two values, one in the probe
of interest and the other in the reference probe). In a complete experiment many
microarray slides are produced and measured, for example, one slide for each pa-
tient.

4.2.2. Prediction of the gene expression values

In the present chapter we concentrate on processing the outcomes of such com-
plete experiments, where we have a number of N patients, and for each we have
the measurement of p gene expressions. In the following we denote by xi, j the
expression of gene i for patient j.

One of the main research avenues opened by the existence of various microar-
ray technologies is a generalization of the biological pathways. These are used to
describe the activation of certain biological functions in terms of the interaction
between the genes and the proteins from the explanations based only on a hand-
ful of genes or on virtually all the known genes. In recent years a main research
goal turned out to be uncovering the network of interactions between the genes.
Analogously to the measurement of gene expressions, new technologies begin to
be introduced for the measurement of protein expressions; see, for example, [10].
It will soon become possible to study experimentally the interaction of the gene
network in connection with the protein network. Since it is still believed that the
interactions in the network are sparse, that is, each gene interacts only with a small
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number of other genes, the methodologies for uncovering the network still rely
mostly on local modeling, where individual functions are established for the regu-
lation of every gene. However, a number of approaches exist for modeling the full
network or large parts of it, when enough information exists about the temporal
behavior of the genes [3, 22, 23].

The methods described in this chapter aim at identifying the nonlinear rela-
tionships that are able to predict the expression of one gene, given the expressions
of other genes and possibly the values of environmental factors measured. We de-
fine a nonlinear gene predictor as

x̂i j = f
(
xi1 j , xi2 j , . . . , xik j

)
, (4.1)

where f is a nonlinear function, k the order of the predictor, and {i1, i2, . . . , ik} the
structural indices of the predictor. The task of determining a predictor refers to an
ensemble of problems: first, select the model structure (find the order k and the
structural indices), and then specify the nonlinear function f (·).

A good prediction model is desired to make the predictions themselves, but
it also should be able to uncover the biological relationships between genes. For
the former goal the parameters in the model will necessarily have to be tuned to
their optimal values, and the structure of the model will also have to be selected
optimally to prevent overfitting.

4.2.3. Classification based on gene expression values

A second large class of applications, where the methods presented in this chapter
are relevant, is the classification of diseases based on the transcriptome informa-
tion [11, 21]. Since the gene expression information may play an essential role in
the characterization of the metabolic processes in cells and tissues, it is tempting
to attempt profiling the type of a disease based on the gene expressions of the bi-
ological sample studied. Most work has been done in this respect for identifying
the types of the various forms of cancer disease. Again, apart from the interest
in the performance of such a classifier, which soon promises to complement the
traditional methods of diagnosis, there is also a separate interest of its own in the
structure of the optimal classifier for the genes involved in separating the types
of disease. This is because knowing the genes responsible for each type may be of
help in designing specific treatments for each type of disease. Associating a class
label y with each type of a disease, and having available a training sample formed
of the expressions xi j for each patient j and gene i, the design problem for the clas-
sifier consists of determining the structure and the parameters of the nonlinear
function

ŷ j = f
(
xi1 j , xi2 j , . . . , xik j

)
(4.2)

to be found to minimize a criterion based on the classification error.
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4.3. Several classes of nonlinear functions and associated
design methods

When selecting classes of nonlinear methods for modeling the gene interactions
two important features of gene expression data need to be taken into account. On
the one hand, the number of measured gene expressions in each slide is extremely
high, even tens of thousands of genes. Therefore selecting the sparse structure of
the predictor; that is, selecting a small number of genes out of all the existing genes
raises the issue of having to compare a combinatorially very large number of candi-
dates. On the other hand, the amount of microarray slides in almost all biological
experiments is not particularly large, rarely exceeding 100 slides, which makes fit-
ting the parameters in very complex models difficult due to the lack of enough
observed cases. As a consequence, the models employed in gene expression pre-
dictors and classifiers are usually simple like the perceptron models, the Boolean
models, and some simple neural networks. As hinted in the previous section, the
selection of the structure of the predictor is of main interest in many applications;
that is, one wants to find the genes that are involved in a certain biological process
or in profiling a certain disease, while the detailed functional form of the predic-
tor/classifier is of lesser importance.

4.3.1. The Boolean model with binary inputs

The simplest model that biologists found appealing [6] from the earliest times is
the Boolean model. Such a model operates on binary inputs, which creates the
need to quantize the gene expressions before they can be used in the model. An
advantage of the model is its one-to-one compatibility with the existing pathway
representations based on Boolean schemes. As an example, Figure 4.1 illustrates
the FAS signaling pathway (obtained from http://www.biocarta.com/) which is
involved in immune surveillance to remove transformed cells and virus-infected
cells. One of the interactions shows that Caspase8 is produced when Pro-caspase8
is on and inhibited when both FAP and I-FLICE are on. These models have the
additional advantage of being simple to understand and manipulate by biologists
with an easy integration of various local functions into an overall function.

Denoting the quantized binary expressions of Pro-caspase8, FAP, I-FLICE, and
Caspase8 as x1, x2, x3 and x4, respectively, the Boolean model can be expressed as

x4 = x1x̄2x̄3, (4.3)

where by the overbar we denote the negation of a binary variable and by the prod-
uct the logical “and” function.

In the following we use xi j for the expression value and sometimes the quan-
tized expression value, and we specify in each context the number of the quanti-
zation levels and the centers of the Voronoi cells (hence xi j may be binary, ternary,
or even continuous valued, depending on the context).

An optimal design of a Boolean predictor is straightforward, and we describe
it here just for the sake of completeness and ease of comparison with the design
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Figure 4.1. A biological pathway where gene and protein interactions are represented by logical oper-
ators. (Reproduced with permission from Biocarta, http://www.biocarta.com/.)

of more complex models. We illustrate the design for a given structure, say x̂4 =
f (x1, x2, x3), from a training set of quadruples {(x1 j , x2 j , x3 j ; x4 j), j = 1, . . . ,N}.
In general the prediction given by the model x̂4 j and the measured value x4 j are
different, and we refer to their difference as modeling error

ej = x̂4 j ⊕ x4 j = f
(
x1 j , x2 j , x3 j

)⊕ x4 j , (4.4)

where ⊕ denotes the “exclusive or” operator. We get that x̂4 j = ej ⊕ x4 j and x4 j =
ej ⊕ x̂4 j . The Boolean function minimizing the error criterion

N∑

j=1

(
f
(
x1 j , x2 j , x3 j

)⊕ x4 j
)

(4.5)

can easily be found by counting. For each triplet of binary values (b1, b2, b3) ∈ B3

we have that the count n0(b1, b2, b3) of the number of times x4 j is 0 when the
input variables have values x1 j = b1, x2 j = b2, x3 j = b3, and similarly the count
n1(b1, b2, b3) of the number of times x4 j is 1. Then the optimal Boolean function
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minimizing the criterion (4.5) is given by

f
(
b1, b2, b3

) =
⎧
⎨

⎩
0 if n0

(
b1, b2, b3

) ≥ n1
(
b1, b2, b3

)
,

1 otherwise.
(4.6)

If not enough cases are observed, it is clear that for some combinations (b1, b2, b3)∈
B3 both counts n0(b1, b2, b3) and n1(b1, b2, b3) may be zero (or equal), and no
clear-cut decision can be made. For the criterion (4.5) the undefined values do
not matter, but when the model is applied to data outside the training set the
nondefiniteness of the model for some input combinations should be solved in a
principled way. These issues will be discussed later in Section 4.4.3.1.

The solution to the prediction problem presented is immediately applicable
to the classification problem, where the training set is of the form {(x1 j , x2 j , . . . ,
xk j ; yj), j = 1, . . . ,N} and the class predictor is ŷ j = f (x1 j , x2 j , . . . , xk j).

4.3.2. Three predictors for ternary data

We consider next three predictor classes for ternary-valued gene expressions: a
hard Boolean predictor, a hard ternary predictor, and finally, a perceptron predic-
tor. We discuss the parameter estimation for all of them, and we present later the
selection of the predictor order based on the MDL principle. The ternary-valued
data are written as {0, 1, 2}. For x ∈ {−1, 0, 1} use first the mapping x ← x + 1 to
transform x to the set {0, 1, 2}.

4.3.2.1. The specification and design of the hard Boolean predictor

Denote by x = [x1, . . . , xk] prediction window of dimension k, where xi ∈ {0, 1, 2}.
Define the thresholded vectors xb1 = [xb1

1 , . . . , xb1
k ] and xb2 = [xb2

1 , . . . , xb2
k ], where

xb1
i =

⎧
⎨

⎩
0 if xi = 0,

1 if xi ≥ 1,
xb2
i =

⎧
⎨

⎩
0 if xi ≤ 1,

1 if xi = 2.
(4.7)

The predictor is defined as

ŷ = f
(
xb1
)

+ f
(
xb2
)
, (4.8)

where f (·) is a Boolean function with k variables.
The design of the Boolean predictor proceed as described in Section 4.3.1,

where the training set is given by {[xb1
1 j , . . . , x

b1
k j , yj], [xb2

1 j , . . . , x
b2
k j , yj] : j = 1, . . . ,

N}, and the corresponding optimal Boolean function results from the counts as in
(4.6).
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4.3.2.2. The specification and design of the ternary predictor

The optimal ternary predictor is found by quantization of the conditional expec-
tation to three intervals:

ŷ = h∗(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if E
(
y | x) ≤ 0.5,

1 if 0.5 < E
(
y | x) ≤ 1.5,

2 if 1.5 < E
(
y | x).

(4.9)

4.3.2.3. The specification and design of the perceptron predictor

The perceptron is found by quantization of the best linear combination of samples
in the predictor window to three intervals:

ŷ =

⎧
⎪⎪⎨

⎪⎪⎩

0 if wT +w0x ≤ 0.5,

1 if 0.5 < wTx +w0 ≤ 1.5,

2 if 1.5 < wTx +w0.

(4.10)

The parameters w and w0 can be obtained by the perceptron algorithm [7, 8].

4.3.3. Model selection based on a two-part code length

Our approach to prediction aims at finding flexible classes of models with good
predictive properties, but we also consider the complexity of the models, the bal-
ance being set by the minimum description length (MDL) principle, as described
in the next section.

4.3.3.1. Modeling and data compression

Does a model capture the data generation mechanism? If yes, we can describe the
data more concisely by describing the model and listing the errors than by copying
the data in “raw” point by point, that is, encoding without a model or, perhaps,
with the trivial identity model.

A well established fact is that both the complexity of models and the data can
be measured by the universal yardstick of code length. The MDL principle [1, 12–
14] considers the following axiom as a basis for a theory of modeling: given the
data and a model class, select the model in the class with which both the data and
the model can be encoded with the shortest code length. This means that the code
length needed results from a two-part encoding process: encode first the model
parameters and then the residuals, given the model defined by the parameters.
When the parameters range over the reals they must be optimally quantized. In
reality we only need the code length rather than the actually encoded strings for
the data and the quantized parameters; by a deeper theory of coding the shortest
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code length can be computed from a special parameter-free model that is universal
for the model class. The same approach can be applied to different model classes,
which may be compared by calculating the shortest code length for each and se-
lecting the class with the shortest overall code length.

To apply the technique to our data we postulate a parametric model for the
dependency x̂� = f (x1, . . . , xk, θ), fit its parameters θ to the available data, and find
the code length for the parameters and the residuals. If we get an important reduc-
tion in the code length with a model class, we claim that the dependency modeled
is significant. If different model classes are consistently capturing dependencies,
they are very likely to be rules of the nature.

Encoding without a model. We take as an example the case of N = 30 patients,
which we use in our experiments. Encoding the expressions for the gene q� with-
out a model requires L = log2(330) = 47.55 bits. Other codes for the target gene
alone may be used, but we find it convenient to make no assumption about the
distribution of −1, 0, 1 at this point.

Encoding the residuals. When we select a predictive model we have to decide on
a code for the residuals. At a first glance the residuals may be more difficult to
encode than the original sequence since the dynamic range is now expanded to
{−2,−1, 0, 1, 2}. However, there is a reason why the residuals may be easier to
encode: a good predictor will cause the sequence of the residuals to contain the
symbol 0 many times. With arithmetic coding, or simply with run-length coding,
this can be taken advantage of, and we get a smaller code length than that of the
original sequence. A less optimal result can be obtained with an even simpler code
as described next.

The residuals will be encoded in a way to penalize the nonzero errors. For
each error we send the actual (correct) value encoded as “0” = 01, “1” = 10,
“ − 1” = 11, the codeword 00 signaling the end of the residual sequence. After
sending the actual value, we also transmit the location of the error with �log2 N	 =
�log2 30	 = 5 bits. An error will therefore be transmitted with 7 bits.

4.3.3.2. The hard Boolean predictor: the description length

We consider the two-part code: first we encode the model “parameters” needed to
specify the function f ∗(·), and then the residuals (prediction errors).

The model cost for encoding the function f ∗(·) is

CM(k) = 2k bits (4.11)

if we assume a uniform a priori distribution for all the Boolean functions. Other
selections are also possible, that is, to favor the more active Boolean functions (e.g.,
according to the absolute difference between the number of ones and zeros in f ).
Therefore, if there are Ne nonzero prediction errors, the overall code length is the
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model length plus the prediction error length:

L(k) = 2k + 7Ne + 2 bits. (4.12)

Starting from a data set of several possible gene factors, we can select the best
combination by designing sequentially the predictors with the window size k =
2, 3, 4, 5 and computing L(k) for each predictor. The MDL principle selects k as
the optimal window size for which L(k) is minimum.

4.3.3.3. The ternary predictor: the description length

To encode the model we have two possibilities.
(1) The values of the prediction window x can be ordered lexically as [0 0 0],

[0 0 1], [0 0 2], . . . . We may specify the optimal ternary predictor by the string of
values h∗([0 0 0]), h∗([0 0 1]), h∗([0 0 2]), . . . , which needs 2 · 3k bits. Therefore
the cost of encoding the ternary model is CM = 2 ·3k bits, which is the same for all
models, irrespective of the data. However, note that we do not know the optimal
values h∗(x) for the prediction windows x which have not been seen.

(2) Therefore, in the second alternative the cost of the model depends on the
actual data and we have to specify the optimal predictions only for the seen pre-
diction windows. Denoting by nx(k) the number of different prediction windows
found in the data set, the cost of encoding the model becomes CM = 2nx(k) bits,
which is upper bounded by 2N , where N is the number of measurements. This
variant is used in our experimental determinations. Note that a similar variant
can be used also for the Boolean predictor.

The prediction errors will be encoded the same way as in the case of the
Boolean prediction. Therefore, if Ne nonzero prediction errors are obtained with
the ternary predictor, the code length for the prediction residuals is 7Ne + 2.

The overall code length is then the model length plus the prediction error
length, or

L(k) = 2nx(k) + 7Ne + 2 bits. (4.13)

Apparently the ternary predictor is defined only for the prediction windows
seen in the experiment. There is an obvious way to use the observed data to de-
fine h∗(x) for the unseen prediction windows x. A simple way is to take h∗(x) =
h∗(x′), where x′ is a seen prediction window of size smaller than x. However, in
the current gene expression problem the goal is to identify outstanding gene de-
pendencies, given the observed data, and it is unnecessary to specify the predictor
for the unseen windows.

4.3.3.4. The perceptron predictor: the description length

For ternary-valued data the numbers of all distinct perceptrons with two or three
inputs are known, [24]. A perceptron model with two input genes requires CM =
log2 471 = 8.88 bits, while a perceptron model with three input genes requires
CM = log2 85629 = 16.38 bits.
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4.3.4. An artificial example

We take first an artificial example, where, knowing the true state of nature, we will
be able to check the success of our procedure.

We assumeN = 30 measurements (patients), at a patient i 40 variables (genes)
x1,i, . . . , x40,i and one target, denoted by y(i). Suppose the measurements are quan-
tized to three levels: 0, 1, 2. The number of the sequences of 30 symbols with
ternary values is 330 = 2 · 1014, which exceeds hugely the 40 sequences we have
in the experiment. Suppose that there is a function f ∗ : {0, 1, 2}4 → {0, 1, 2},
y(i) = f ∗(xt1,i, xt2,i, xt3,i, xt4,i), which describes the target exactly.

The data were generated by choosing randomly 40 sequences of 30 measure-
ments from all the possible 2 · 1014 ternary sequences, with a uniform prior on
them. The target function f ∗ : {0, 1, 2}4 → {0, 1, 2} is selected in the following
way: for any input window ( j1, j2, j3, j4) the value f ∗( j1, j2, j3, j4) is obtained by
sampling a random variable over the values 0, 1, 2 with the probability distribu-
tion p = [1/3, 1/3, 1/3]. The target gene is then constructed as the exact function
y(i) = f ∗(x1(i), x2(i), x3(i), x4(i)). Therefore, the true window for the target is
[x1(i), x2(i), x3(i), x4(i)], referred to as [1, 2, 3, 4] for short. We show in the follow-
ing that the Boolean and the ternary predictors can be used in conjunction with
the MDL principle to select the prediction window candidates.

The target alone. The complexity of the target without conditioning on other
genes is evaluated by three methods: (a) a prior uniform distribution for all se-
quences, which gives L(yN ) = −�log2 330	 = 48 bits; (b) an adaptive arithmetic
coding, which gives the value L(yN ) = 47 bits; (c) move-to-front coding (which
favors correlated sequence), giving the length L(yN ) = 52 bits.

Since the target was generated as an uncorrelated sequence of ternary values,
the move-to-front procedure gives rather different results from the first two meth-
ods, but we can safely assume that the complexity of the target alone is in the range
of 47–52 bits.

The window size = 2. No predictor with only two genes can achieve a description
length lower than the complexity of the target. In the left of Table 4.1 we list the
best models of order two, which give a description length less than 72, the total
of 17 windows. The “correct” window, which is of order four containing gene1,
gene2, gene3, and gene4, has a “trace” in the list of the best models, which occupies
the second position with the window (gene1, gene3).

The window size = 3. The predictors with three genes are more successful in de-
scribing the target. In the middle of Table 4.1 we list the best models of order three,
which give a description length less than 55, making the total of 28 windows.

The window size= 4. We list the best models of order four (the ones having length
less than 49, making the total of 23 windows). We show in bold the “true” model,
which was ranked the 19th out of 91390 possible prediction windows. Observe
that the variations of the true window have been selected frequently as winners in
the final list.
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Table 4.1. Artificial data. The prediction windows of the best predictors of lengths two, three, and
four (the framed one of length four was used to generate the data).

Descr. length g1 g2

60.00 15 40

65.00 1 3

67.00 4 13

67.00 9 40

67.00 10 11

67.00 10 34

67.00 14 20

67.00 20 31

67.00 20 32

67.00 20 40

67.00 26 34

67.00 27 40

67.00 38 40

72.00 3 34

72.00 11 34

72.00 27 32

72.00 32 36

Descr. length g1 g2 g3

44.00 1 3 12

47.00 10 32 36

48.00 16 20 31

48.00 30 32 38

49.00 12 15 40

49.00 14 19 23

50.00 2 10 32

50.00 10 31 34

50.00 15 20 32

50.00 22 33 34

52.00 6 20 25

52.00 8 10 12

52.00 8 20 32

52.00 13 18 19

53.00 1 2 3

53.00 10 11 34

53.00 10 15 40

Descr. length g1 g2 g3 g4

46.00 1 2 3 12

46.00 1 3 12 38

46.00 12 30 32 38

46.00 30 32 34 38

46.00 8 10 31 34

46.00 1 12 32 38

46.00 12 30 32 38

48.00 1 3 12 18

48.00 10 27 32 36

48.00 4 16 20 31

48.00 2 10 25 32

48.00 2 10 29 32

48.00 10 25 31 34

48.00 15 20 25 32

48.00 15 20 32 40

48.00 6 20 25 40

48.00 8 20 32 34

48.00 1 2 3 4

48.00 10 11 13 34

48.00 15 20 32 40

49.00 1 3 12 34

49.00 12 16 20 31

4.3.5. A comparison of the three classes of models in
a small scale experiment

We consider here a comparison of the three ternary predictors by the MDL cri-
terion on the experimental data from [8] having N = 30 and p = 13, presented
in Table 4.7. (Note that the table is transposed according to the convention used
in text for xi j .) The target gene is AHA.

In Table 4.2 we present the values of the description length and also the num-
ber of the errors, obtained with the best predictors in each of the three classes for
various sizes of the prediction window, when the genes are restricted only to the
set (RCH1, p53, PC-1). With the Boolean predictor the best description length
is obtained with the model HB(RCH1, p53). Appending PC-1 to the prediction
window does not improve the descriptive power of the model. The same conclu-
sion can be drawn for the hard ternary predictors, and the perceptrons. The MDL
criterion makes therefore a clear and consistent selection of the best prediction
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Table 4.2. “Three gene” experiment. The description length for three predictors: hard Boolean pre-
dictor (HBP), hard ternary predictor (HT), and the perceptron predictor (Per).

Hard Boolean predictor

AHA = HBP (RCH1, p53, PC-1) AHA = HBP (RCH1, p53) AHA = HBP (p53)

Ne 2 2 12

Length 24 20 88

Hard ternary predictor

AHA = HT (RCH1, p53, PC-1) AHA = HT (RCH1, p53) AHA = HT(p53)

Ne 1 2 7

Length 25 24 55

Perceptron predictor

AHA = Per (RCH1, p53, PC-1) AHA = Per (RCH1, p53) AHA = Per(p53)

Ne 2 2 7

Length 30.38 22.87 53.24

cd (MSE) [8] 0.946 0.785 0.624

Table 4.3. “Twelve gene” experiment. The description length of the best predictors with window size 2.

Length 20 38 45

Gene1 p53 p53 p53

Gene2 RCH1 BCL3 ATF3

Method HB HT HT

window, while the coefficient of the determination cd [8] simply shows a better fit
of the model to the data with an increasing window size. The problem with cd is
that it expresses only the fit to the training data. To avoid overtraining one needs
another (validation) data set. The MDL principle is a method which implicitly
penalizes too large models and which can be shown to provide consistent order
estimations unlike the several cross-validation methods.

We extend now the experiment to predicting the values of the target AHA
based on the combinations of two, three, or four of the genes in the first 12 columns
of Table 4.7. In Tables 4.3, 4.4, 4.5 we show the best predictors for each window
size. The best overall predictor is seen to be AHA = HB(p53, ATF3, RCH1), which
has the Boolean function f (x1, x2, x3) = x1x2 + x2x3, and the description length
L = 10. This is much lower than what can be obtained by any other window size
or a combination of genes. By comparing the description length of the predictors
of different sizes, we can now conclude that most of the “good” predictors of or-
der 3 or 4 are worse than the corresponding predictors of lower order; that is, all
predictors of size three with the description length 24 are actually worse than the
predictor of order two AHA = HB(p53, RCH1), which has the description length
20.
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Table 4.4. “Twelve gene” experiment. The description length of the best predictors with window size 3.

Length 10 24 24 24 24 24 24 24 24 24 30 39 42

Gene1 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53

Gene2 ATF3 BCL3 FRA1 RELB IAP1 PC-1 MBP1 SSAT MDM2 p21 ATF3 ATF3 RELB

Gene3 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 BCL3 RELB BCL3

Method HB HB HB HB HB HB HB HB HB HB HT HT HT

Table 4.5. “Twelve gene” experiment. The description length of the best predictors with window size 4.

Length 18 18 18 18 18 18 18 18 18 27 27 29 29

Gene1 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53

Gene2 ATF3 ATF3 ATF3 IAP1 PC-1 MBP1 SSAT MDM2 p21 PC-1 MBP1 PC-1 MBP1

Gene3 BCL3 FRA1 RELB ATF3 ATF3 ATF3 ATF3 ATF3 ATF3 BCL3 PC-1 IAP1 FRA1

Gene4 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1

Method HB HB HB HB HB HB HB HB HB HT HT HT HT

Length 29 29 29 30 30 30 30 31 31 31 32 32 32

Gene1 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53 p53

Gene2 SSAT SSAT MDM2 MBP1 SSAT MDM2 p21 FRA1 PC-1 p21 RELB RELB IAP1

Gene3 FRA1 PC-1 PC-1 IAP1 MBP1 MBP1 MBP1 BCL3 RELB PC-1 BCL3 FRA1 BCL3

Gene4 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1 RCH1

Method HT HT HT HT HT HT HT HT HT HT HB HB HB

We are therefore capable of organizing the huge number of “good predic-
tors” in Tables 4.3, 4.4, 4.5 and discarding all the overly complex ones to con-
clude that the relevant predictors in light of the data are only HB(p53, RCH1),
HB(p53, ATF3, RCH1), and HT(p53,ATF3,BCL3).

4.4. Normalized maximum likelihood models for a class of
Boolean regressor models

The selection of the model order based on the two-part code discussed in the pre-
vious sections is widespread for a number of reasons. First, it is easily interpretable
and intuitive in that it separates nicely the costs of the model and the remaining
nonmodeled part of the string (erroneous according to the model). Secondly, one
of the asymptotic forms of the two-part code has been shown in many applica-
tions to be quite successful, and it was further shown to be equivalent with the
Bayesian information criterion. However, in the recent years further advances in
the MDL principle have been made, and a specific code, induced by the so-called
normalized maximum likelihood (NML) model, was shown to possess important
optimality properties. We illustrate in the rest of the chapter the derivation of the
NML model and its application to a class of nonlinear models, first introduced by
us in [19]. We follow it closely in this presentation.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


Ioan Tabus et al. 93

Table 4.6. The best 18 triplets of genes for predicting the class label according to the NML model for
the class M(θ, 3, f ).

Code length Classification error (%) Triplet of genes Gene accession numbers

6.9 0.912 1834 2288 5714 M23197 M84526 HG1496-HT1496

7.9 0.010 1834 3631 6277 M23197 U70063 M30703

7.9 0.891 758 4250 4342 D88270 X53586 X59871

8.0 0.652 2288 4847 6376 M84526 X95735 M83652

8.7 0.008 1834 3631 5373 M23197 U70063 S76638

8.7 0.007 1834 3631 6279 M23197 U70063 X97748

8.7 0.910 1144 1217 1882 J05243 L06132 M27891

8.8 0.649 302 2288 6376 D25328 M84526 M83652

8.8 0.055 1144 1834 1882 J05243 M23197 M27891

8.8 0.063 1834 1882 6049 M23197 M27891 U89922

8.8 0.004 1144 1882 5808 J05243 M27891 HG2981-HT3127

8.8 0.584 2288 3932 6376 M84526 U90549 M83652

8.9 0.558 2288 5518 6376 M84526 X95808 M83652

8.9 0.560 1399 2288 6376 L21936 M84526 M83652

8.9 0.620 1241 2288 6376 L07758 M84526 M83652

8.9 0.605 2288 3660 6376 M84526 U72342 M83652

8.9 0.582 2288 4399 6376 M84526 X63753 M83652

8.9 0.556 2288 4424 6376 M84526 X65867 M83652

The NML model for the linear regression problem was introduced and an-
alyzed recently [15]. We restate classification as a modeling problem in terms of
a class of parametric models, for which the maximum likelihood parameter esti-
mates can be easily computed. We review first the NML model for Bernoulli strings
as the solution to a minmax optimization problem. We then introduce a model
class for the case where the binary strings to be modeled are observed jointly with
several other binary strings (regression variables). We derive the NML model for
this model class. We further provide a fast evaluation procedure and apply it to a
classification problem.

4.4.1. The NML model for Bernoulli strings

In this section we assume that a Bernoulli variable Y with P(Y = 0) = θ is
observed repeatedly n times, generating the string yn = y1, . . . , yn. We look for
a distribution q(yn) over all strings of length n such that the ideal code length
log(1/q(yn)) assigned to a particular string yn by this distribution is as close as pos-

sible to the ideal code length log(1/P(yn | θ̂(yn))), obtainable with the Bernoulli
models. The words “ideal code length” are used because they need not be integer
valued as real code lengths must be. For long strings they differ from the real code
lengths by at most unity. In the coding scenario the decoder is allowed to use a

predefined distribution, q(·), but it cannot use P(yn | θ̂(yn)) because it is not a
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Table 4.7. A small-scale experiment where gene expressions are quantized to ternary values. The
columns represent different genes, while the rows represent the various conditions (patients).

RCH1 BCL3 FRA1 REL-B ATF3 IAP-1 PC-1 MBP-1 SSAT MDM2 p21 p53 AHA

−1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 0 0 0 0 1 1 1 1

−1 0 0 1 1 0 1 0 0 1 1 1 1

0 0 1 0 1 0 0 0 0 0 1 1 1

−1 0 0 1 1 1 1 1 0 1 1 1 1

0 0 0 0 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 1 0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 0 0 0 1 1 1

−1 0 1 1 0 0 0 0 0 1 1 1 0

0 0 1 0 1 0 0 0 0 1 1 1 1

0 0 1 1 1 0 0 0 0 1 1 1 1

0 1 0 1 1 1 1 0 0 1 1 1 1

0 0 0 0 1 0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 0 0 0 1 1 1

−1 1 1 1 1 0 1 0 0 0 0 −1 −1

0 0 0 0 1 0 0 0 0 0 0 −1 0

−1 1 0 1 1 0 1 0 1 0 1 −1 −1

0 0 1 0 1 0 0 0 0 1 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 0 0 −1 0

0 0 0 1 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 0 1 −1 0

0 0 0 0 1 0 1 0 0 0 1 −1 0

−1 1 0 1 0 1 1 0 0 0 0 −1 −1

−1 0 0 0 1 0 0 0 0 0 1 −1 −1

−1 0 0 0 1 0 0 0 0 0 1 −1 −1

0 0 0 1 0 0 0 0 0 0 1 −1 0

0 0 0 0 1 0 0 0 0 0 1 −1 0

0 0 0 0 1 0 0 0 0 0 1 −1 0

distribution. The latter, however, will be a target which no model in the class can
beat since it maximizes P(yn | θ) and therefore minimizes the ideal code length
log(1/P(yn | θ)). The distribution q(yn) is selected such that the “regret” of using

q(yn) instead of P(yn | θ̂(yn)), namely,

log
1

q
(
yn
) − log

1

P
(
yn | θ̂(yn))

= log
P
(
yn | θ̂(yn))
q
(
yn
) , (4.14)
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is minimized for the worst case yn, that is,

min
q

max
yn

log
P
(
yn | θ̂(yn))
q
(
yn
) . (4.15)

Theorem 4.1 (Shtar’kov [17]). The minimizing distribution is given by

q
(
yn
) = P

(
yn | θ̂(yn))
Cn

, (4.16)

where

Cn =
n∑

m=0

(
n

m

)(
m

n

)m(
1− m

n

)n−m
. (4.17)

A strong optimality property of the NML models was recently proven in [16],
where the following minmax problem was formulated: find the (universal) distri-
bution which minimizes the average regret

min
q

max
g

Eg log
P
(
Yn | θ̂(Yn

))

q
(
Yn
) , (4.18)

where g(·), the generating distribution of the data, and q(·) run through any sets
that include the NML model.

Theorem 4.2 (see [16]). The minimizing distribution q(·) in the minmax problem
(4.18) is given by (4.16) and (4.17).

If we replace “minmax” by “maxmin,” the worst case distribution is unique
and also given by (4.16) and (4.17).

4.4.2. The NML model for a Boolean class

We consider a binary random variable Y , which is observed jointly with a binary
regressor vector X ∈ Bk. In a useful model class a carefully selected Boolean func-
tion f : Bk → {0, 1} should provide a reasonable prediction f (X) of Y in the
sense that the absolute error E = |Y − f (X)| has a large probability of being 0.
Since E ,Y , f (X) are binary valued, we have E = |Y − f (X)| = Y ⊕ f (X), which
also implies Y = f (X)⊕ E , where ⊕ is modulo 2 sum.

We therefore consider a corruption model defined as follows:

Y = f (X)⊕ E =
⎧
⎪⎨

⎪⎩

f (X) if E = 0,

f (X) if E = 1,
(4.19)
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where f (·) is a Boolean function and the error E is independently drawn from a
Bernoulli source with parameter θ; that is, P(E = 1) = 1 − θ and P(E = 0) = θ,
or for short

P(E = b) = θ1−b(1− θ)b, for b ∈ {0, 1}. (4.20)

Denote by bi ∈ {0, 1}k the vector having as entries the bits in the binary represen-
tation of integer i, that is, b0 = [0, . . . , 0, 0], b1 = [0, . . . , 0, 1], and so forth. Further,
define by (4.19) and (4.20) the conditional probability for code bi ∈ {0, 1}k,

P
(
Y = y | X = bi

) = θ1−y⊕ f (bi)(1− θ)y⊕ f (bi). (4.21)

The Boolean regression problem will be stated as finding the optimal universal
model (in a minmax sense to be specified shortly) for the following class of models:

M(θ, k, f ) =
{
P
(
y | f , bi, θ

) = θ(1−y⊕ f (bi))(1− θ)(y⊕ f (bi))
}

, (4.22)

where y ∈ {0, 1}, θ ∈ [0, 1], bi ∈ {0, 1}k.
When the sequence yn = y1, . . . , yn and the sequence of binary regressor vec-

tors bn = bi1 , . . . , bin are observed, a member of the class M(θ, k, f ) assigns to the
sequence yn the following probability:

P
(
yn | θ, k, f , bn

) =
n∏

j=1

θ
(1−yj⊕ f (bi j ))

(1− θ)
(yj⊕ f (bi j ))

= θn0 (1− θ)n−n0 ,

(4.23)

where n0 is the number of zeros in the sequence {εj = yj ⊕ f (bij )}nj=1. The ML
estimate of the model parameters,

(
θ̂
(
yn
)
, f̂yn

) = arg max
θ, f

P
(
yn | θ, k, f , bn

)
, (4.24)

can be obtained in two stages, first by maximizing with respect to f ,

max
f
P
(
yn | θ, k, f , bn

)
, (4.25)

and then by observing that the optimal f (·) does not depend on θ. For a fixed θ >
0.5, the function P(yn | θ, k, f , bn) = θn0 (1− θ)n−n0 decreases monotonically with
n0, and (4.25) is maximized by maximizing n0, or, equivalently, by minimizing
n− n0:

min
f

(
n− n0

) = min
f

n∑

j=1

∣
∣yj − f

(
bij
)∣∣

= min
f

2n∑

�=0

m�0 f
(
b�
)

+m�1

(
1− f

(
b�
))

,

(4.26)
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where m�0 and m�1 denote the number of times yj = 0 and yj = 1, respectively,
have been seen at the regressor vector bij = b� .

Equation (4.26) shows that f is optimal for the mean absolute error (MAE)
criterion. It can also be seen that the assignment of f (b�) depends only onm�0 ,m�1 ,
and the solution is

f̂yn
(
b�
) =

⎧
⎪⎨

⎪⎩

0 if m�0 ≥ m�1 ,

1 if m�0 < m�1 ,
(4.27)

which can be readily computed from the data set. Denote by n∗0 (yn) the num-

ber of zeros in the sequence {εj = yj ⊕ f̂yn(bij )}nj=1. To completely solve the ML
estimation problem we have to find

max
θ

P
(
yn | θ, k, f̂yn , bn

)
, (4.28)

for which the maximizing parameter is θ̂(yn) = n∗0 (yn)/n. Therefore

P
(
yn | θ̂(yn), k, f̂yn , bn

) =
(
n∗0
(
yn
)

n

)n∗0 (yn)(

1− n∗0
(
yn
)

n

)n−n∗0 (yn)

. (4.29)

We need to define a distribution q(yn) over all possible sequences yn which is
the best in the minmax sense

min
q

max
yn

P
(
yn | θ̂(yn), k, f̂yn , bn

)

q
(
yn
) . (4.30)

This is clearly given by the NML model,

q
(
yn
) =

P
(
yn | θ̂(yn), k, f̂yn , bn

)

Cn
(
k, bn

) , (4.31)

where

Cn
(
k, bn

) =
∑

yn

(
n∗0
(
yn
)

n

)n∗0 (yn)(

1− n∗0
(
yn
)

n

)n−n∗0 (yn)

. (4.32)

Note that n∗0 depends on yn through f̂yn in a complicated manner. When k = 0,
the normalization factor is Cn(0, bn) = Cn, given in (4.17).

Alternative expressions for the coefficient Cn(k, bn) provide faster evaluation.
Let {bj1 , . . . , bjK } be the set of the distinct elements in the set {b� | b� ∈ bn}, and
let K = K(bn) be the number of the distinct regressor vectors. Denote by zq the
subsequence of yn observed when the regressor vector is bjq . Let nq be the length
of the subsequence zq having mq zeros.
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We observe that (4.32) can be alternatively expressed as

Cn
(
k, bn

) =
n∑

n∗1 =0

(
n∗1
n

)n∗1 (

1− n∗1
n

)n−n∗1
SK ,n1,...,nK

(
n∗1
)
, (4.33)

where SK ,n1,...,nK (n∗1 ) is the number of sequences yn having n∗1 =
∑K

q=1 min(mq,nq−
mq) ones in the residual sequence. The numbers SK ,n1,...,nK (n∗0 ) can be easily com-
puted recursively in K . Denote first

h�(m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if m >
n�
2

,
(
n�
m

)

if m = n�
2

,

2

(
n�
m

)

else,

(4.34)

which is the number of sequences of length n� having eitherm bits set to 1 or n�−m
bits set to 1, for 0 ≤ m ≤ n�/2. By combining each of the SK−1,n1,...,nK−1 (n∗1 −mK )
sequences having n∗1 −mK ones in the residual sequence with each of the hK (mK )
sequences having either mK bits set to 1 or nK −mK bits set to 1, we get sequences
having (n∗1 − mK ) + min(mK ,nK − mK ) = n∗1 occurrences of 1 in their residual
sequence. Therefore the following recurrence relation holds:

SK ,n1,...,nK

(
n∗1
) =

nK∑

mK=0

hK
(
mK

)
SK−1,n1,...,nK−1

(
n∗1 −mK

)
, (4.35)

where by convention SK−1,n1,...,nK−1 (n∗1 − mK ) = 0 for negative arguments, n∗1 −
mK < 0.

We note that the recurrence is simply a convolution sum, SK ,n1,...,nK = hK ⊗
SK−1,n1,...,nK−1 , and we conclude that

SK ,n1,...,nK = h1 ⊗ h2 ⊗ · · · ⊗ hK . (4.36)

We can easily see that SK1,n1,...,nK1
(i) = 0 for i > (

∑K1
q nq)/2 due to the fact that

the optimal residual sequence cannot have more than (
∑K1

q nq)/2 ones. Also, from

(4.34) we note that only (1/2K )
∏K

q=1 nq terms have to be added when all the con-
volution sums in (4.36) are evaluated.

4.4.3. An experiment from cancer genomics

We illustrate the classification procedure based on the NML model for classes of
Boolean regression models for the microarray DNA data Leukemia (ALL/AML)
of [4], publicly available at http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


Ioan Tabus et al. 99

The microarray contains 6817 human genes, sampled from 72 cases of cancer, of
which 47 are of ALL type and 25 of AML type. The data is preprocessed as recom-
mended in [2, 4]. The resulting data matrix X̃ has 3571 rows and 72 columns.

We design a two-level quantizer by the LBG algorithm [9], and the decision
threshold results at 2.6455. All the entries in the matrix X̃ are used as a training set
but we note that no information about the true classes is used during the quan-
tization stage. The entries in the matrix X̃ are quantized to binary values, which
results in the binary matrix X .

4.4.3.1. Extending the classification for unseen cases of
the Boolean regressors

The Boolean regressors observed in the training set may not span all the 2k pos-
sible binary vectors. If the binary vector bq is not observed in the training set, the
classification decision f ∗(bq) remains undecided during the training stage. We se-
lect the value of f ∗(bq) by use of the nearest-neighbor voting, which amounts to
the decision by the majority vote of the neighbors b� situated at Hamming distance
1, for which f ∗(b�) was decided during the training stage. If after voting there still
is a tie, we take the majority vote of the neighbors at Hamming distance 2, and
continue if necessary until a clear decision is reached.

4.4.3.2. Estimation of classification errors achieved with

Boolean regression models with k = 3

The Leukemia data set was considered recently in a study for comparing several
classification methods [2]. The evaluation of the performance there is based on
the classification error as estimated in a cross-validation 2 : 1 experiment. In order
to compare our classification results with the results in [2], we estimate the clas-
sification error in the same way, namely, by dividing at random the 72 patient set
into a training set of nT = 48 patients and a test set of ns = 24 patients, finding the
optimal predictor f ∗(·) over the training set, classifying the test set by use of the
predictor f ∗(·) (the extension for the unseen cases in the training set is done as in
Section 4.4.3.1), and counting the number of classification errors produced in the
test set. The random split is repeated nr = 10000 times, and the estimated classifi-
cation error is computed as the percentage of the total number of errors observed
in the (nr ·ns) test classifications. For comparison, we mention that the best classi-
fication methods tested in [2] have classification errors higher than 1%. As we can
observe in Table 4.6, there are several predictors with three genes, achieving classi-
fication rates as low as 0.004%. We note a remarkable consensus in ranking of the
gene triplets, according to the NML code length and the estimated classification
error rates.

As to the genes involved in the optimal predictors in Table 4.6, we note that
five genes belong to the set of 50 “informative” genes selected in [4], namely,
M23197, M84526, M27891, M83652, X95735.
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4.5. Summary

The Boolean regression classes of models are powerful modeling tools with the as-
sociated NML models, which can be easily computed and used in MDL inference,
in particular for factor selection.

The MDL principle for classification with the class of Boolean models pro-
vides an effective classification method, as seen in the important application of
cancer classification based on gene expression data. The NML model for the class
M(θ, k, f ) was used for the selection of informative feature genes. With the sets
of feature genes selected by the NML model, we achieved classification error rates
significantly lower than those reported recently for the same data set.
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5
Nonlinear methods for speech analysis
and synthesis

Steve McLaughlin and Petros Maragos

5.1. Introduction

Perhaps the first question to ask on reading this chapter is why should we con-
sider nonlinear methods as offering any insight into speech signals given the suc-
cess of current, mostly linear-based, speech analysis methods. There are known
to be a number of nonlinear effects in the speech production process. Firstly, it
has been accepted for some time that the vocal tract and the vocal folds do not
function independently of each other, but that there is in fact some form of cou-
pling between them when the glottis is open [27] resulting in significant changes in
formant characteristics between open and closed glottis cycles [7]. More contro-
versially, Teager and Teager [69] have claimed (based on physical measurements)
that voiced sounds are characterized by highly complex air flows in the vocal tract
involving jets and vortices, rather than well-behaved laminar flow. In addition, the
vocal folds will themselves be responsible for further nonlinear behavior, since the
muscle and cartilage which comprise the larynx have nonlinear stretching quali-
ties. Such nonlinearities are routinely included in attempts to model the physical
process of vocal fold vibration, which have focused on two or more mass mod-
els [24, 28, 65], in which the movement of the vocal folds is modeled by masses
connected by springs, with nonlinear coupling. Observations of the glottal wave-
form have shown that this waveform can change shape at different amplitudes
[59] which would not be possible in a strictly linear system where the waveform
shape is unaffected by amplitude changes. Models of the glottal pulse also include
nonlinearities, for example, the use of nonlinear shaping functions [58–60] or the
inclusion of nonlinear flow [22].

In order to arrive at the simplified linear model, a number of major assump-
tions are made:

(i) the vocal tract and speech source are uncoupled (thus allowing source-
filter separation);

(ii) airflow through the vocal tract is laminar;
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(iii) the vocal folds vibrate in an exactly periodic manner during voiced
speech production;

(iv) the configuration of the vocal tract will only change slowly.
These imply a loss of information which means that the full speech signal dynam-
ics can never be properly captured. These inadequacies can be seen in practice in
speech synthesis where, at the waveform generation level, current systems tend to
produce an output signal that lacks naturalness. This is true even for concatenation
techniques which copy and modify actual speech segments.

Given the statements above then should make clear why nonlinear methods
will offer useful insights and suggest useful methods that we can adopt to enhance
speech synthesis. The chapter is structured as follows. First some discussion on
speech aerodynamics and modulations in speech are discussed. Then the discus-
sion moves on to consider why conventional linear methods work as well as they
do. The discussion then moves on to consider what nonlinear methods we might
use and for what. These range from modulation models, fractal methods, using
Poincaré maps for epoch detection, the use of unstable manifolds, and functional
approximation methods. Then consideration is briefly given to the use of nonlin-
ear methods in automatic speech recognition. Finally some conclusions are drawn
and suggestions for potential areas of research are considered.

5.1.1. Speech aerodynamics

For several decades the traditional approach to speech modeling has been the lin-
ear (source-filter) model where the true nonlinear physics of speech production is
approximated via the standard assumptions of linear acoustics and 1D plane wave
propagation of the sound in the vocal tract. This approximation leads to the well-
known linear prediction model for the vocal tract where the speech formant reso-
nances are identified with the poles of the vocal tract transfer function. The linear
model has been applied to speech coding, synthesis, and recognition with limited
success [55, 56]. To build successful applications, deviations from the linear model
are often modeled as second-order effects or error terms. However, there is strong
theoretical and experimental evidence [2, 25, 36, 40, 62, 69, 70] for the existence
of important nonlinear aerodynamic phenomena during the speech production
that cannot be accounted for by the linear model. Thus, the linear model can be
viewed only as a first-order approximation to the true speech acoustics which also
contain second-order and nonlinear structure. The investigation of speech non-
linearities can proceed in at least two directions: (i) numerical simulations of the
nonlinear differential (Navier-Stokes) equations [72] governing the 3D dynamics
of the speech airflow in the vocal tract, as, for example, in [57, 70], and (ii) devel-
opment of nonlinear signal processing systems suitable to detect such phenomena
and extract related information. Most of the research in this aspect of nonlinear
speech processing, for example, as reviewed in [35, 54], has focused on the sec-
ond approach, which is computationally much simpler, that is, to develop models
and extract related acoustic signal features describing two types of nonlinear phe-
nomena in speech, modulations and turbulence. Turbulence can be explored both
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from the geometric aspect, which brings us to fractals [32], and from the nonlinear
dynamics aspect, which leads us to chaos [1, 47].

In this chapter we summarize the main concepts, models, and algorithms
that have been used or developed in the three above nonlinear methodologies for
speech analysis and synthesis.

5.1.2. Speech turbulence

Conservation of momentum in the air flow during speech production yields the
Navier-Stokes equation [72]:

ρ

(
∂�u
∂t

+ �u · ∇�u
)

= −∇p + μ∇2�u, (5.1)

where ρ is the air density, p is the air pressure, �u is the (vector) air particle veloc-
ity, and μ is the air viscosity coefficient. It is assumed that flow compressibility is
negligible [valid since in speech flow (Mach numbers)2 � 1] and hence∇·�u = 0.
An important parameter characterizing the type of flow is the Reynolds number
Re = ρUL/μ, where U is a velocity scale for �u and L is a typical length scale, for
example, the tract diameter. For the air we have very low μ and hence high Re.
This causes the inertia forces to have a much larger order of magnitude than the
viscous forces μ∇2�u. A vortex is a region of similar (or constant) vorticity �ω, where
�ω = ∇ × �u. Vortices in the air flow have been experimentally found above the
glottis by Teager and Teager [69] and Thomas [70] and theoretically predicted by
Kaiser [25], Teager and Teager [69], and McGowan [40] using simple geometries.
There are several mechanisms for the creation of vortices: (1) velocity gradients
in boundary layers, (2) separation of flow, which can easily happen at cavity in-
lets due to adverse pressure gradients (see [69] for experimental evidence), and
(3) curved geometry of tract boundaries, where due to the dominant inertia forces
the flow follows the curvature and develops rotational components. After a vor-
tex has been created, it can propagate downstream as governed by the vorticity
equation [72]

∂�ω
∂t

+ �u · ∇�ω = �ω · ∇�u + ν∇2�ω, ν = μ

ρ
. (5.2)

The term �ω · ∇�u causes vortex twisting and stretching, whereas ν∇2�ω produces
diffusion of vorticity. As Re increases (e.g., in fricative sounds or during loud
speech), all these phenomena may lead to instabilities and eventually result in
turbulent flow, which is a “state of continuous instability” [72] characterized by
broad-spectrum rapidly varying (in space and time) velocity and vorticity. Many
speech sounds, especially fricatives and stops, contain various amounts of turbu-
lence. In the linear speech model this has been dealt with by having a white noise
source exciting the vocal tract filter.

Modern theories that attempt to explain turbulence [72] predict the existence
of eddies (vortices with a characteristic size λ) at multiple scales. According to the
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energy cascade theory, energy produced by eddies with large size λ is transferred
hierarchically to the small-size eddies which actually dissipate this energy due to
viscosity. A related result is the Kolmogorov law

E(k, r)∝ r2/3k−5/3, (5.3)

where k = 2π/λ is the wavenumber in a finite nonzero range, r is the energy dis-
sipation rate, and E(k, r) is the velocity wavenumber spectrum, that is, Fourier
transform of spatial correlations. This multiscale structure of turbulence can in
some cases be quantified by fractals. Mandelbrot [32] and others have conjectured
that several geometrical aspects of turbulence (e.g., shapes of turbulent spots,
boundaries of some vortex types found in turbulent flows, shape of particle paths)
are fractal in nature. We may also attempt to understand aspects of turbulence as
cases of chaos. Specifically, chaotic dynamical systems converge to attractors whose
sets in phase space or related time series signals can be modeled by fractals; refer-
ences can be found in [47]. Now there are several mechanisms in high-Re speech
flows that can be viewed as routes to chaos; for example, vortices twist, stretch,
and fold (due to the bounded tract geometry) [32, 72]. This process of twisting,
stretching, and folding has been found in low-order nonlinear dynamical systems
to give rise to chaos and fractal attractors.

5.1.3. Speech modulations

By “speech resonances” we will loosely refer to the oscillator systems formed by lo-
cal vocal tract cavities emphasizing certain frequencies and de-emphasizing others.
Although the linear model assumes that each speech resonance signal is a damped
cosine with constant frequency within 10–30 ms and exponentially decaying am-
plitude, there is much experimental and theoretical evidence for the existence of
amplitude modulation (AM) and frequency modulation (FM) in speech resonance
signals, which make the amplitude and frequency of the resonance vary instanta-
neously within a pitch period. First, due to the airflow separation [69], the air jet
flowing through the vocal tract during speech production is highly unstable and
oscillates between its walls, attaching or detaching itself, and thereby changing the
effective cross-sectional areas and air masses. This can cause modulations of the air
pressure and velocity fields, because slow time variations of the elements of sim-
ple oscillators can result in amplitude or frequency modulation of the oscillator’s
sinusoidal response. Also, during speech production vortices can easily be gener-
ated and propagated along the vocal tract [70, 72], while acting as modulators of
the energy of the jet. Motivated by this evidence, Maragos et al. [36] proposed to
model each speech resonance with an AM-FM signal

x(t) = a(t) cos
[
φ(t)

] = a(t) cos
[

2π
∫ t

0
f (τ)dτ

]
(5.4)
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and the total speech signal as a superposition of such AM-FM signals,
∑

k ak(t)
cos[φk(t)], one for each formant. Here a(t) is the instantaneous amplitude sig-
nal and f (t) is the instantaneous cyclic frequency representing the time-varying

formant signal. The short-time formant frequency average fc = (1/T)
∫ T

0 f (t)dt,
where T is in the order of a pitch period, is viewed as the carrier frequency of the
AM-FM signal. The classical linear model of speech views a formant frequency as
constant, that is, equal to fc, over a short-time (10–30 ms) frame. However, the
AM-FM model can both yield the average fc and provide additional information
about the formant’s instantaneous frequency deviation f (t)− fc and its amplitude
intensity |a(t)|.

5.1.4. So if speech is nonlinear, why do linear methods work?
Conventional speech synthesis approaches

Conventionally the main approaches to speech synthesis depend on the type of
modeling used. This may be a model of the speech organs themselves (articula-
tory synthesis), a model derived from the speech signal (waveform synthesis), or
alternatively the use of prerecorded segments extracted from a database and joined
together (concatenative synthesis).

Modeling the actual speech organs is an attractive approach, since it can be
regarded as being a model of the fundamental level of speech production. An ac-
curate articulatory model would allow all types of speech to be synthesized in a
natural manner, without having to make many of the assumptions required by
other techniques (such as attempting to separate the source and vocal tract parts
out from one signal) [19, 24, 28]. Realistic articulatory synthesis is an extremely
complex process, and the data required is not at all easy to collect. As such, it has
not to date found any commercial application and is still more of a research tool.

Waveform synthesizers derive a model from the speech signal as opposed to
the speech organs. This approach is derived from the linear source-filter theory of
speech production [17]. The simplest form of waveform synthesis is based on lin-
ear prediction (LP) [38]. The resulting quality is extremely poor for voiced speech,
sounding very robotic.

Formant synthesis uses a bank of filters, each of which represents the contri-
bution of one of the formants. The best known formant synthesizer is the Klatt
synthesizer [26], which has been exploited commercially as DECTalk. The synthe-
sized speech quality is considerably better than that of the LP method, but still
lacks naturalness, even when an advanced voice-source model is used [16].

Concatenation methods involve joining together prerecorded units of speech
which are extracted from a database. It must also be possible to change the prosody
of the units, so as to impose the prosody required for the phrase that is being gen-
erated. The concatenation technique provides the best quality synthesized speech
available at present. It is used in a large number of commercial systems, includ-
ing British Telecom’s Laureate [45] and the AT&T Next-Gen system [3]. Although
there is a good degree of naturalness in the synthesized output, it is still clearly
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distinguishable from real human speech, and it may be that more sophisticated
parametric models will eventually overtake it.

Techniques for time and pitch scaling of sounds held in a database are also
extremely important. Two main techniques for time-scale and pitch modification
in concatenative synthesis can be identified, each of which operates on the speech
signal in a different manner. The pitch synchronous overlap add (PSOLA) [41]
approach is nonparametric as opposed to the harmonic method, which actually
decomposes the signal into explicit source and vocal tract models. PSOLA is re-
ported to give good quality, natural-sounding synthetic speech for moderate pitch
and time modifications. Slowing down the speech by a large factor (greater than
two) does introduce artifacts due to the repetition of PSOLA bells. Some tonal ar-
tifacts (e.g., whistling) also appear with large pitch scaling, especially for higher
pitch voices, such as female speakers and children.

McAulay and Quatieri developed a speech generation model that is based on
a glottal excitation signal made up of a sum of sine waves [39]. They then used this
model to perform time-scale and pitch modification. Starting with the assumption
made in the linear model of speech that the speech waveform x(t) is the output
generated by passing an excitation waveform e(t) through a linear filter h(t), the
excitation is defined as a sum of sine waves of arbitrary amplitudes, frequencies,
and phases. A limitation of all these techniques is that they use the linear model of
speech as a basis.

5.2. What nonlinear methods might we use?

5.2.1. Modulation model and energy demodulation algorithms

In the modulation speech model, each speech resonance is modeled as an AM-FM
signal and the total speech signal as a superposition of several such AM-FM signals,
one for each formant. To isolate a single resonance from the original speech signal,
bandpass filtering is first applied around estimates of formant center frequencies.

For demodulating a single resonance signal, Maragos et al. [36] used the non-
linear Teager-Kaiser energy-tracking operator Ψ[x(t)] = [ẋ(t)]2 − x(t)ẍ(t), where
ẋ = dx/dt, to develop the following nonlinear algorithm:

√√
√
√Ψ

[
ẋ(t)

]

Ψ
[
x(t)

] ≈ 2π f (t),
Ψ
[
x(t)

]

√
Ψ
[
ẋ(t)

] ≈
∣∣a(t)

∣∣. (5.5)

This is the energy separation algorithm (ESA) and it provides AM-FM demodu-
lation by tracking the physical energy implicit in the source producing the ob-
served acoustic resonance signal and separating it into its amplitude and frequency
components. It yields very good estimates of the instantaneous frequency signal
f (t) ≥ 0 and of the amplitude envelope |a(t)| of an AM-FM signal, assuming that
a(t), f (t) do not vary too fast (small bandwidths) or too greatly compared with
the carrier frequency fc.
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There is also a discrete version of the ESA, called DESA [36], which is obtained
by using a discrete energy operator on discrete-time nonstationary sinusoids. The
DESA is an efficient approach to demodulating speech resonances for the follow-
ing several reasons. (i) It yields very small errors for AM-FM demodulation. (ii) It
has an extremely low computational complexity. (iii) It has an excellent time res-
olution, almost instantaneous; that is, operates on a 5-sample moving window.
(iv) It has a useful and intuitive interpretation of tracking and separating the true
physical energy of the acoustic source. (v) It can detect transient events. Exten-
sive experiments on speech demodulation using the DESA in [36, 51, 52] indicate
that these amplitude/frequency modulations exist in real speech resonances and
are necessary for its naturalness, as found from synthesizing speech via an AM-FM
vocoder [52] that uses the AM-FM model.

The main disadvantage of the DESA is a moderate sensitivity to noise. This
can be reduced by using regularized versions of the continuous ESA adapted for
discrete data. Two such continuous approaches were developed by Dimitriadis and
Maragos [13]. The first, called Spline-ESA, interpolates the discrete-time signal
with smoothing splines to create a continuous-time signal, applies the continuous-
time ESA (5.5), and finally samples the information-bearing signals to obtain esti-
mates of the instantaneous amplitude and frequency of the original discrete signal.
In the second approach, called Gabor-ESA, the signal derivatives in the original
ESA are replaced by signal convolutions with corresponding derivatives of the Ga-
bor filters’ impulse response.

The ESAs are efficient demodulation algorithms only when they are used on
narrowband AM-FM signals [6]. This constraint makes the use of filterbanks (i.e.,
parallel arrays of bandpass filters) inevitable for wideband signals like speech.
Thus, each short-time segment (analysis frame) of a speech signal is simultane-
ously filtered by all the bandpass filters of the filterbank, and then each filter out-
put is demodulated using the ESA. Ongoing research in speech modulations has
been using filterbanks with Gabor bandpass filters whose center frequencies are
spaced either linearly or on a mel-frequency scale [13, 52]. Figure 5.1 shows an ex-
ample of demodulating three bands of a speech phoneme into their instantaneous
amplitude and frequency signals.

While the instant frequency signals produced by demodulating resonances
of speech vowels have a quasiperiodic structure, those of fricatives look random.
Since fricative and stop sounds contain turbulence, Maragos and Dimakis [11, 35]
proposed a random modulation model for resonances of fricatives and stops where
the instant phase modulation signal is a random process from the 1/ f noise family.
Specifically, they modeled each such speech resonance R(t) as

R(t) = a(t) cos
(
2π fct + p(t)

)
, E

[∣
∣P(ω)

∣
∣2
]
∝ σ2

|ω|γ , (5.6)

where p(t) is a random nonlinear phase signal, P(ω) is its Fourier transform,
and E[·] denotes expectation. The power spectral density (PSD), measured ei-
ther by a sample periodogram |P(ω)|2 or empirically via filterbanks, is assumed
to obey a 1/ωγ power law; such processes are called the “1/ f noises.” In [35] the
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Figure 5.1. Demodulating a speech phoneme using a Gabor filterbank and the Spline-ESA.

proposed 1/ f model for the instant phase was the fractional Brownian motions
(FBMs), which are a popular fractal model for a subclass of 1/ f noises [32]. In [11]
this 1/ f phase model was extended to include the class of alpha-stable processes.
The method used in [11, 35] to solve the inverse problem, that is, that of extract-
ing the phase modulation p(t) from the speech resonance and modeling it as a 1/ f
noise, is summarized in the following steps.

(1) Isolate the resonance by Gabor bandpass filtering the speech signal.
(2) Use the ESA to estimate the AM and FM signals, a(t) and f (t).
(3) Median filter the FM signal for reducing some extreme spikes.
(4) Estimate the phase modulation signal p(t) by integrating the instant fre-

quency.
(5) Estimate the spectral exponent γ of the phase modulation signal by using

a statistically robust estimator of its power spectrum and least-squares
fitting a line only on the part of the power spectrum not affected by low-
pass filtering.
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The efficiency of this method was successfully tested on artificial resonance
signals with 1/ f phase modulation signals.

Strong experimental evidence was also presented that certain classes of speech
signals have resonances that can be effectively modeled as phase modulated 1/ f
signals. The validity of the model was demonstrated by confirming that its power
spectrum obeys a spectral 1/ f γ power law.

Figure 5.2 demonstrates the application of the above described 1/ f phase
modulation model to a voiced fricative. In [11, 35] extensive similar experiments
have been performed on real speech signals (from the TIMIT database), by follow-
ing the same procedure: a strong speech resonance is located, possibly by using the
iterative ESA method. Then the ESA is used to extract the phase modulation. (The
phase modulations were also estimated via the Hilbert transform to make sure that
the ESA does not introduce any artifacts.) The estimated phase is assumed to be
a low-passed version of a 1/ f γ random process and the γ exponent is estimated
from the slope of the power spectrum. In all these experiments the conjecture in
[35] that the phase modulation of random speech resonances has a 1/ f γ spectrum
has always been verified.

Ongoing work in this area includes better estimation algorithms and a statis-
tical study relating estimated exponents with types of sounds. Some advances can
be found in [11].

5.2.2. Fractal methods

Motivated by Mandelbrot’s conjecture that fractals can model multiscale struc-
tures in turbulence, Maragos [34] used the short-time fractal dimension of speech
sounds as a feature to approximately quantify the degree of turbulence in them.
Although this may be a somewhat simplistic analogy, the short-time fractal di-
mension of speech has been found in [34, 37] to be a feature useful for speech
sound classification into phonetic classes, segmentation, and recognition. An effi-
cient algorithm developed in [34] to measure it consists of using multiscale mor-
phological filters that create geometrical covers around the graph of the speech
signal, whose fractal dimension D can then be found by

D = lim
s→0

log
[
Area of dilated graph by disks of radius s/s2

]

log(1/s)
, (5.7)

D is between 1 and 2 for speech signals; the larger D is, the larger the amount of
geometrical fragmentation of the signal graph is. In practice, real-world signals do
not have the same structure over all scales; hence, D is computed by least-squares
fitting a line to the log-log data of (5.7) over a small scale window that can move
along the s axis and thus create a profile of local multiscale fractal dimensionsD(s, t)
at each time location t of the short speech analysis frame. The function D(s, t) is
called a fractogram. The fractal dimension at the smallest scale (s = 1) can provide
some discrimination among various classes of sounds such as vowels (very low
D), unvoiced fricatives (very high D), and voiced fricatives (mediumD). At higher
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Figure 5.2. Experiments with phoneme /z/. (a) Speech signal s(t), (b) PSD of s(t) and Gabor filter, (c)
instant frequency, (d) phase modulation p̂(t), and (e) PSD of p̂(t) and estimated slope.

scales, the fractogram multiscale fractal dimension profile can also offer additional
information that helps in discriminating among speech sounds, see Figure 5.3.

Related to the Kolmogorov 5/3 law (5.3) is the fact that the variance between
particle velocities at two spatial locations X and X + ΔX varies ∝ |ΔX|2/3. By
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Figure 5.3. (a), (b), and (c) show waveforms from speech sounds sampled at 30 kHz. (d), (e), and (f)
show their multiscale fractal dimensions estimated over moving windows of 10 scales.

linking this to similar scaling laws in FBMs, it was concluded in [34] that speech
turbulence leads to fractal dimension of D = 5/3, which was often approximately
observed during experiments with fricatives.

5.2.3. Poincaré maps and epoch marking

The section discusses how nonlinear techniques can be applied to pitch marking
of continuous speech. We wish to locate the instants in the time domain speech
signal at which the glottis is closed. A variety of existing methods can be employed
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to locate the epochs. These are abrupt change detection [10], maximum likelihood
epoch detection [9], and dynamic programming [68]. All of the above techniques
are sound and generally provide good epoch detection. The technique presented
here should not be viewed as a direct competitor to the methods outlined above.
Rather it is an attempt to show the practical application of ideas from nonlinear
dynamical theory to a real speech processing problem. The performance in clean
speech is comparable to many of the techniques discussed above.

In nonlinear processing a d-dimensional system can be reconstructed in an
m-dimensional state space from a single dimension time series by a process called
embedding. Takens’ theorem states thatm ≥ 2d+1 for an adequate reconstruction
[67], although in practice it is often possible to reduce m. An alternative is the sin-
gular value decomposition (SVD) embedding [8], which may be more attractive
in real systems where noise is an issue.

A Poincaré map is often used in the analysis of dynamical systems. It replaces
the flow of an nth order continuous system with an (n − 1)th order discrete-time
map. Considering a three-dimensional attractor a Poincaré section slices through
the flow of trajectories and the resulting crossings form the Poincaré map. Re-
examining the attractor reconstructions of voiced speech shown above, it is evi-
dent that these three-dimensional attractors can also be reduced to two-dimen-
sional maps.1 Additionally, these reconstructions are pitch synchronous, in that
one revolution of the attractor is equivalent to one pitch period. This has pre-
viously been used for cyclostationary analysis and synchronization [31]; here we
examine its use for epoch marking.

The basic processing steps required for a waveform of N points are as follows.
(1) Mark yGCI, a known glottal closure instant (GCI) in the signal.
(2) Perform an SVD embedding on the signal to generate the attractor re-

construction in 3D state space.
(3) Calculate the flow vector, h, at the marked point yGCI on the attractor.
(4) Detect crossings of the Poincaré section, Σ, at this point in state space by

signs changes of the scalar product between h and the vector yi − yGCI

for all 1 ≤ i ≤ N points.
(5) Points on Σ which are within the same portion of the manifold as yGCI

are the epochs.
When dealing with real speech signals a number of practical issues have to be con-
sidered. The input signal must be treated on a frame-by-frame basis, within which
the speech is assumed stationary. Finding the correct intersection points on the
Poincaré section is also a difficult task due to the complicated structure of the at-
tractor. Because of this, additional measures are used for locating the epoch points.
The flow chart shown in Figure 5.4 illustrates the entire process. Two different data
sets were used to test the performance of the algorithm, giving varying degrees of
realistic speech and hence difficulty.

1Strictly these attractor reconstructions are discrete-time maps and not continuous flows. How-
ever it is possible to construct a flow vector between points and use this for the Poincaré section
calculation.
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Figure 5.4. Schematic of the epoch marking algorithm.
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Figure 5.5. Results for the voiced section of “came along” from the Keele database for a female speaker.
From top to bottom: the signal; the epochs as calculated by the algorithm; the laryngograph signal; and
the pitch contour (Hz) resulting from the algorithm.

(1) Keele University pitch extraction database [49]. This database provides
speech and laryngograph data from 15 speakers reading phonetically
balanced sentences.
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Figure 5.6. Results for the voiced section of “raining” from the BT Labs database for a male speaker.
From top to bottom: the signal; the epochs as calculated by the algorithm; the processed laryngograph
signal; and the pitch contour (Hz) resulting from the algorithm.

(2) BT Labs continuous speech. 2 phrases, spoken by 4 speakers, were pro-
cessed manually to extract a data set of continuous voiced speech. Laryn-
gograph data was also available.

The signals were up-sampled to 22.05 kHz, the BT data was originally sampled at
12 kHz, and the Keele signals at 20 kHz. All the signals had 16 bit resolution.

Figure 5.5 shows the performance of the algorithm on a voiced section taken
from the phrase “a traveller came along wrapped in a warm cloak,” spoken by a
female speaker. There is considerable change in the signal, and hence in the at-
tractor structure, in this example, yet the epochs are sufficiently well located when
compared against the laryngograph signal.

In Figure 5.6, which is a voiced section from the phrase “see if it’s raining”
spoken by a male speaker, the epochs are well located for the first part of the signal,
but some slight loss of synchronization can be seen in the latter part.

5.2.4. Pitch variations in LP synthesized vowels:
using nonlinear methods

As was made clear in the previous section pitch modification is the key to many
applications in speech. In this section we wish to consider the application of non-
linear methods to this problem. In an effort to simplify the problem, vowels gener-
ated by a linear prediction synthesizer are examined. The purpose of this exercise,
which appears counter-intuitive when dealing with nonlinear synthesis, is to start
with a simpler waveform, which can also be generated at any required fundamen-
tal frequency. If an analysis of this simple waveform leads to the development of a
suitable algorithm for pitch modification, then this is a step towards implementing
an algorithm for real speech signals.

Figure 5.7 shows the time domain waveforms and corresponding 2D projec-
tions of the 3D phase space structures for the linear prediction synthesized vowel
/u/. The LP coefficients were calculated using the constant pitch /u/ vowel sound
of the male speaker PB, taken from the Edinburgh 1996 database. The LP filter was
then excited by a Dirac pulse train of appropriate period. This generated the sta-
tionary synthesized vowels shown, with fundamental frequencies of 70 Hz, 100 Hz,
130 Hz, and 160 Hz. These values of pitch would be typical for a male speaker.
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Figure 5.7. LP synthesized vowel /u/ at pitch values of 70 Hz, 100 Hz, 130 Hz, and 160 Hz.

All of these phase space reconstructions are characterized by a trajectory rising
steeply out from a center point, which then returns towards this point in a series
of downwards spirals. This equates to the excitation by the glottal pulse, followed
by a slow decay of the waveform until the next impulse. At lower fundamental fre-
quencies, corresponding to longer pitch periods, the number of spirals is greater,
since there is a greater delay between epoch pulses. It is possible to divide each
of the phase space reconstructions into two parts. The outer part consists of the
outward pulse and the wide initial inward spiral, and is almost constant across
all four structures. The inner part consists of the tight inner spirals close to the
center point, and it is here that the variation between structures due to the pitch
change can be observed. The number of inner spirals appears to be solely due to
the length of the pitch period. This topological description, although applied to LP
synthesized vowels, also has some similarities with the real speech signals shown
previously. By a careful examination a form of outward trajectory followed by in-
wards spiraling can be seen.

Examining the LP phase space reconstructions from a nonlinear dynamical
theory viewpoint, it would appear that there is a fixed point around which the
trajectories evolve. Fixed points may take a number of forms. A more complex
form is a saddle point, which has trajectories approaching the fixed point close to
the inset (stable manifold) and diverging away near the outset (unstable manifold).
Index 1 saddle points have an inset that is a surface, and an outset that is a curve,
whereas the opposite is true of index 2 saddle points. Spiral saddle points have
trajectories spiraling around the fixed point near the surface, towards or away from
the saddle, for index 1 and index 2, respectively. Figure 5.8 shows an example of
an index 1 spiral saddle point. Looking at the inner part of the LP phase space
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Figure 5.8. A spiral saddle point (index 1), with trajectories spiraling towards the fixed point near a
surface and diverging away along a curve.

Figure 5.9. A Šilnikov-type orbit for an index 1 spiral saddle point.

reconstruction, particularly at low pitches, an index 1 spiral saddle point appears
to be a good description.

A homoclinic trajectory occurs when a trajectory on the unstable manifold
joins another on the stable manifold, and thus forms a single trajectory connect-
ing the saddle to itself [46]. For spiral saddle points, this type of trajectory is also
called a Šilnikov orbit, after Šilnikov’s theorem [73], as shown in Figure 5.9. When
the inset and outset intersect, then a so-called homoclinic intersection occurs [23].
This leads to the situation where a trajectory on the unstable manifold joins an-
other trajectory on the stable manifold to form a single trajectory. This trajectory
joins the saddle point to itself producing a homoclinic orbit.

Trajectories that come near the saddle point will approach the saddle close to
the stable manifold and then be forced away from it near the unstable manifold.
However, as they are pushed away by the outset, they will be recaptured by the
inset and pulled back in towards the saddle point. This description captures very
closely the behavior seen in all parts of the LP vowel state space reconstructions.
The similarity between vowel phase space reconstructions and Šilnikov orbits has
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also been noted by Tokuda et al. [71], in their nonlinear analysis of the Japanese
vowel /a/.

5.2.4.1. Attempted application of controlling chaos ideas

This analysis inspires a possible alternative approach to pitch modification, which
operates entirely in the state space domain. It is based on concepts from the con-
trolling chaos literature, and involves perturbing the trajectory of the speech signal
in state space in order to affect a change in its orbit.

Examining once again the phase space reconstructions for different pitches of
the vowel sound as produced by a linear prediction synthesizer (Figure 5.7), it ap-
pears that almost all of the information about the higher pitch sounds is contained
in the lowest pitch vowel reconstruction. The effect of decreasing pitch, that is, in-
creasing pitch period, is an increase in the number of spirals towards the center
of the reconstruction, while the remainder of the phase space structure is approx-
imately constant. Therefore it should be possible to modify the lowest pitch phase
space reconstruction in some way, so that a higher pitch version can be produced.
This may not be entirely realistic for real vowel sounds, but an algorithm capable
of pitch modification of LP synthesized sounds would provide a stepping stone to
pitch modification of real voiced speech.

5.2.4.2. Controlling chaos

In the field of nonlinear dynamics, there has been a large amount of interest in the
possibility of controlling systems which exhibit chaotic behavior, so as to improve
their performance. The basic principle is to locate low-period unstable periodic or-
bits within the attractor, which mainly comprises a large number of uncontrolled
chaotic orbits. Then, using small perturbations of some control parameter, the sys-
tem is moved and stabilized onto one of the low-period orbits, which is chosen so
that performance is optimized. This was first proposed by Ott et al. [44], and then
further refined, allowing the technique to be used with time-delay embedding, by
Dressler and Nitsche [15].

5.2.4.3. Principle of pitch modification by small changes

Some of the concepts of this technique can be applied to the low-pitch vowel phase
space reconstruction in order to modify the fundamental frequency. Assuming
that the phase space reconstruction does have a Šilnikov-type orbit, with an index
1 saddle point at the center, then the trajectory spirals in towards the fixed point
near the stable manifold (which is a plane), before being ejected out close to the
unstable manifold. The process then repeats with the reinjection back towards the
fixed point. The idea is to perturb the trajectory when it is close to the saddle
point. Moving the trajectory closer to the plane of the stable manifold will cause
it to spend longer in the region of the fixed point, thus increasing the pitch period
and decreasing the pitch. Conversely, moving the trajectory away from the stable
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Figure 5.10. Principle of perturbing trajectory to modify pitch.

manifold, in the direction of the unstable manifold, will cause a faster ejection and
therefore higher pitch.

An algorithm capable of perturbing the speech trajectories as described would
need to perform the following operations.

(i) Embed the time series in 3D state space.
(ii) Locate the fixed point. The center of the phase space reconstruction will

be close to the index 1 saddle point, where the two-dimensional stable manifold
intersects with the one-dimensional unstable manifold. In practice, it will not be
possible to locate the saddle point exactly, only the closest data point to it.

(iii) Find the direction of the stable and unstable manifolds. The stable mani-
fold is expected to be a plane and the unstable manifold a curve.

(iv) Perturb the trajectory. Figure 5.10 shows the trajectory approaching the
saddle point and entering a sphere of radius ε. At the point of entry, it is a dis-
tance δ away from the stable manifold in the direction of the unstable manifold,
whose magnitude is Λ. By perturbing the trajectory towards the stable manifold
(i.e., decreasing δ), the trajectory will spend longer near the fixed point, whereas
moving the trajectory away from the manifold (an increase in δ) will cause a faster
ejection.

(v) Calculate the relationship between the size of the perturbation and the
change in pitch, so that arbitrary pitch modifications can be made.

5.2.4.4. Period modification in a Šilnikov flow

Before attempting to apply the above algorithm to the LP speech signal, modifying
the period of a system which is completely specified, via a set of equations, will be
examined. Consider the three coupled differential equations:

ẋ = αx − βy,

ẏ = βx + αy,

ż = γz.

(5.8)
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These define a Šilnikov flow in the region around the fixed point, although they do
not model the reinjection that is characteristic of a homoclinic orbit. The system
can be seen to have a fixed point at (0, 0, 0), since the time derivatives go to zero at
this point. Performing an eigenanalysis, the eigenvalues are found to be at

λ1 = γ,

λ2,3 = α± jβ.
(5.9)

The eigenvalue λ1 = γ has a corresponding eigenvector of (0, 0, 1), and the eigen-
vectors of the complex conjugate eigenvalues are both in the x-y plane. If α is
negative and γ is positive, then this defines an index 1 spiral saddle. Trajectories
will spiral in towards the fixed point near the x-y stable manifold and then will be
ejected out near the z unstable manifold.

Choosing the values α = −0.1, β = 1.0, and γ = 0.08, the equations were
iterated using the fourth-order Runge-Kutta method [53], with a step size of 0.1. In
order to simulate a homoclinic orbit, the trajectory was reset back to its start point
after it had been ejected out along the unstable manifold a considerable distance
from the fixed point (the threshold was set at z > 0.4). The resulting state space
plot is shown in Figure 5.11(a). Plotting the variable x against time, as seen in
Figure 5.11(b), results in a periodic waveform. The reinjection to complete the
orbit is clearly seen. Evidently this is not very realistic, but this is not relevant as
it is only the inward spiral followed by ejection that is of interest. In these terms,
(5.8) with reinjection generates a realistic homoclinic orbit.

Now the principle of perturbing the trajectory is applied. To reiterate, moving
the trajectory towards the stable manifold should cause an increase in the period,
whereas moving away from the stable manifold (in the direction of the unstable
eigenvector) will decrease the period. When the trajectory enters a sphere of ra-
dius ε during the Runge-Kutta iteration, it is then modified. In the experiments
presented here, ε was set at 0.1, which is approximately 1% of the spiral radius
in the x-y plane. In order to find the relationship between the period length and
the modification factor, the distance from the stable manifold in the direction of
the unstable manifold, δ, and the corresponding period length, n, were recorded
over a range of values. Plotting n against log δ results in a straight line, as seen in
Figure 5.12. Therefore the period length n can be expressed as

n = a ln δ + b, (5.10)

where a and b are constants, which are easily calculated from simultaneous equa-
tions. Denoting the distance from the stable manifold as the trajectory enters the
sphere before modification as δ0, then the multiplier, R, required to change the
period length to nd samples is

R = e(nd−b)/a

δ0
. (5.11)
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Figure 5.11. Šilnikov orbit with reinjection from (5.8): (a) 3D state space and (b) x against time.
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Figure 5.12. Log relationship between period length and distance from stable manifold.

Upon entering the sphere, the position vector (x, y, z) is modified to (x, y,Rz),
causing a move towards or away from the stable manifold in the direction of the
unstable eigenvector.
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Figure 5.13. Period modification of the Šilnikov orbit by a factor of (a) 0.6 and (b) 1.4.
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Figure 5.14. Zoom in on the fixed point, showing a comparison of the original and the modified
trajectories.

The original orbit has a period length of 836 samples. In the following ex-
amples, the period is modified by 0.6 (nd = 502 samples) and 1.4 (nd = 1170
samples). a and b are calculated as −124.99 and 375.92, respectively. The values of
R are then found as 14.5 and 0.069. The resulting modified waveforms are shown
in Figure 5.13. Figure 5.14 shows a magnified view of the state space plot around
the fixed point demonstrating the modification taking place, for the case of period
modification by a factor of 1.4.

This demonstrates the validity of the trajectory perturbation approach. A
Šilnikov-type orbit, which has a periodic time domain structure quite reminis-
cent of a vowel, has been modified, allowing both extension and shortening of the
period length. In theory, it should be possible to extend the period length by any
required factor by moving close to the stable manifold. The limit on period length
shortening, on the other hand, is governed by the size of the sphere, since no mod-
ification occurs until the trajectory has entered it. However, it should be noted that
increasing the size of the sphere beyond a small radius about the fixed point could
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introduce some discontinuity, and, when applied to speech, this would introduce
audible artifacts.

5.2.4.5. Application to LP speech

Performing trajectory modifications when the system model is derived from a data
set, rather than a set of equations, will evidently be a more complex task. The
stages of the algorithm outlined in Section 5.2.4.3 and the problems found are
now discussed for the LP synthesized vowel /u/.

Embedding. The LP data first has a small amount of Gaussian white noise added,
to give a signal-to-noise ratio of 20 dB. This adds some variation to the signal, thus
making the manifold more than a single trajectory wide. The formation of local
neighborhoods can then be made by selecting near points from adjacent trajecto-
ries. The data is then embedded in three dimensions using time-delay embedding
with τ set at 12 samples, equal to the first minimum of the mutual information.

Fixed point location. Because of the asymptotic nature of the fixed point, the closer
the trajectory comes to it, the greater the amount of time that will be spent in
the region around it. Therefore, for sampled data, the Euclidean distance between
subsequent samples will decrease as the trajectory moves towards the fixed point.
The data sample which has the minimum distance between adjacent samples will
be the closest data point to the fixed point. This is then used as the best known
position of the fixed point, x f , in subsequent calculations.

Direction of manifolds. An index 1 saddle point has a two-dimensional stable man-
ifold and a one-dimensional unstable manifold. The approximate directions of
these manifolds are found by an eigenanalysis of the data trajectory about the
fixed point. To do this, a tangent map can be formed. Taking x f , the closest data
point to the fixed point, as the center, a neighborhood matrix is constructed from
the M points within a hypersphere around x f . The neighborhood matrix is then
evolved forward a samples and recalculated. The tangent map then defines the lin-
ear transformation between the two local neighborhood matrices. Its eigenvalues
and eigenvectors are found by SVD. Figure 5.15 shows the eigenvectors found by
this method for the LP vowel /u/. The saddle point is marked and the three eigen-
vectors are shown. The largest eigenvector corresponds to the unstable manifold,
and the two smaller eigenvectors are in the plane of the stable manifold. The pa-
rameters used in this analysis were 25 local neighbors, with an evolve length of 10
samples.

Perturbing trajectory. It is now possible to consider perturbing the trajectory, as
shown in Figure 5.10, by moving the trajectory either towards or away from the
stable manifold in the direction of the unstable manifold, as it enters the sphere
of radius ε. However, an insurmountable problem is immediately encountered.
Perturbing the trajectory implies moving it away from its existing course (defined
by the locally linear tangent map calculated at each synthesis step) and into some
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Figure 5.16. Stylized diagram of state space around the saddle point, showing two sets of data trajec-
tories. Perturbing trajectory implies moving into an area of state space not covered by the locally linear
model.

other area of state space. This part of state space will not contain any data, and
hence is not covered by the locally linear model. Therefore perturbing the trajec-
tory moves it into a region of state space that is completely unmodeled, as shown in
Figure 5.16. There is no information available to indicate how it should continue
to evolve (contrary to the previous example with the set of equations that defined
all points in state space), and so continuing the synthesis process after perturbing
the trajectory is impossible.

This means that pitch modification by perturbing the trajectory and locally
linear synthesis are not compatible, and leaves the problem of realistic pitch mod-
ification unresolved.
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5.2.5. Functional approximation methods

Neural network synthesis background. Kubin and Birgmeier reported an attempt
made to use a radial basis function (RBF) network approach to speech synthesis.
They propose the use of a nonlinear oscillator, with no external input and global
feedback in order to perform the mapping

x(n) =A
(

x(n− 1)
)
, (5.12)

where x(n − 1) is the delay vector with nonunit delays, and A is the nonlinear
mapping function [30].

The initial approach taken [4] used a Kalman-based RBF network, which has
all of the network parameters trained by the extended Kalman filter algorithm.
The only parameter that must be specified is the number of centers to use. This
gives good prediction results, but there are many problems with resynthesis. In
particular, they report that extensive manual fine-tuning of the parameters such
as dimension, embedding delay, and number and initial positions of the centers is
required. Even with this tuning, synthesis of some sounds with complicated phase
space reconstructions does not work [30].

In order to overcome this problem, Kubin resorted to a technique that uses
all of the data points in the training data frame as centers [30]. Although this
gives correct resynthesis, even allowing the resynthesis of continuous speech using
a frame-adaptive approach, it is unsatisfactory due to the very large number of
varying parameters, and cannot be seen as actually learning the dynamics of the
speech generating system.

Following their dynamical analysis of the Japanese vowel /a/, Tokuda et al.
constructed a feed-forward neural network to perform synthesis [71]. Their struc-
ture has three layers, with five neurons in the input layer, forty neurons in the
hidden layer, and one in the output layer. The time delay in the input delay vec-
tor is set at τ = 3 and the weights are learnt by back propagation. Using global
feedback, they report successful resynthesis of the Japanese vowel /a/. The signal is
noisy, but preserves natural human speech qualities. No further results in terms of
speech quality or resynthesis of other vowels are given.

An alternative neural network approach was proposed by Narasimhan et al.
This involves separating the voiced source from the vocal tract contribution, and
then creating a nonlinear dynamical model of the source [43]. This is achieved by
first inverse filtering the speech signal to obtain the linear prediction (LP) residual.
Next the residue waveform is low-pass filtered at 1 kHz, then normalized to give
a unit amplitude envelope. This processed signal is used as the training data in a
time-delay neural network with global feedback. The NN structure reported is ex-
tremely complex, consisting of a 30 tap delay line input and two hidden layers of
15 and 10 sigmoid activation functions, with the network training performed us-
ing back propagation through time. Finally, the NN model is used in free-running
synthesis mode to recreate the voiced source. This is applied to a LP filter in order
to synthesize speech. They show that the NN model successfully preserves the jitter
of the original excitation signal.
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RBF network for synthesis. A well-known nonlinear modeling approach is the ra-
dial basis function neural network. It is generally composed of three layers, made
up of an input layer of source nodes, a nonlinear hidden layer, and an output layer
giving the network response. The hidden layer performs a nonlinear transforma-
tion mapping the input space to a new space, in which the problem can be better
solved. The output is the result of linearly combining the hidden space, multiply-
ing each hidden layer output by a weight whose value is determined during the
training process.

The general equation of an RBF network with an input vector x and a single
output is

F
(

x(n)
) =

P∑

j=1

wjφ
(∥∥x − c j

∥
∥), (5.13)

where there are P hidden units, each of which is weighted by wj . The hidden units,
φ(‖x − c j‖), are radially symmetric functions about the point c j , called a center,
in the hidden space, with ‖ · ‖ being the Euclidean vector norm [42]. The actual
choice of nonlinearity does not appear to be crucial to the performance of the
network. There are two distinct strategies for training an RBF network. The most
common approach divides the problem into two steps. Firstly the center positions
and bandwidths are fixed using an unsupervised approach, not dependent on the
network output. Then the weights are trained in a supervised manner so as to
minimize an error function.

Following from the work of Kubin et al., a nonlinear oscillator structure is
used. The RBF network is used to approximate the underlying nonlinear dynam-
ics of a particular stationary voiced sound, by training it to perform the predic-
tion

xi+1 = F
(

xi
)
, (5.14)

where xi = {xi, x(i−τ), . . . , x(i−(m−1)τ)} is a vector of previous inputs spaced by some
delay τ samples, and F is a nonlinear mapping function. From a nonlinear dy-
namical theory perspective, this can be viewed as a time-delay embedding of the
speech signal into an m-dimensional state space to produce a state space recon-
struction of the original d-dimensional system attractor. The embedding dimen-
sion is chosen in accordance with Takens’ embedding theorem [67] and the em-
bedding delay, τ, is chosen as the first minimum of the average mutual information
function [18]. The other parameters that must be chosen are the bandwidth, the
number and position of the centers, and the length of training data to be used.
With these sets, the determination of the weights is linear in the parameters and is
solved by minimizing a sum of squares error function, ES(F̂ ), over the N samples
of training data:

Es(F̂ ) = 1
2

N∑

i=1

(
x̂i − xi

)2
, (5.15)
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where x̂i is the network approximation of the actual speech signal xi. Incorpo-
rating (5.13) into the above and differentiating with respect to the weights, then
setting the derivative equal to zero gives the least-squares problem [5], which can
be written in matrix form as

(
ΦTΦ

)
wT = ΦTx, (5.16)

where Φ is an N × P matrix of the outputs of the centers; x is the target vector of
length N ; and w is the P length vector of weights. This can be solved by standard
matrix inversion techniques.

Two types of center positioning strategy were considered.
(1) Data subset. Centers are picked as points from around the state space re-

construction. They are chosen pseudorandomly, so as to give an approx-
imately uniform spacing of centers about the state space reconstruction.

(2) Hyperlattice. An alternative, data independent approach is to spread the
centers uniformly over an m-dimensional hyperlattice.

Synthesis. From analysis, an initial set of parameters with which to attempt resyn-
thesis was chosen. The parameters were set at the following values.

Bandwidth = 0.8 for hyperlattice, 0.5 for data subset; dimension = 7; number
of centers = 128; hyperlattice size = 1.0; and training length = 1000.

For each vowel in the database, the weights were learnt, with the centers ei-
ther on a 7D hyperlattice, or chosen as a subset of the training data. The global
feedback loop was then put in place to allow free-running synthesis. The results
gave varying degrees of success, from constant (sometimes zero) outputs, through
periodic cycles not resembling the original speech signal and noise-like signals, to
extremely large spikes at irregular intervals on otherwise correct waveforms [33].

These results implied that a large number of the mapping functions learnt by
the network suffered from some form of instability. This could have been due to
a lack of smoothness in the function, in which case regularization theory was the
ideal solution. Regularization theory applies some prior knowledge, or constraints,
to the mapping function to make a well-posed problem [21].

The selection of an appropriate value for the regularization parameter, λ, is
done by the use of cross-validation [5]. After choosing all the other network pa-
rameters, these are held constant and λ is varied. For each value of λ, the MSE on
an unseen validation set is calculated. The MSE curve should have a minimum in-
dicating the best value of λ for generalization. With the regularization parameter
chosen by this method, the 7D resynthesis gave correct results for all of the signals
except KH /i/ and KH /u/ when using the data subset method of center selection.
However, only two signals (CA /i/ and MC /i/) were correctly resynthesized by
the hyperlattice method. It was found that λ needed to be increased significantly
to ensure correct resynthesis for all the signals when the hyperlattice was used.
Achieving stable resynthesis inevitably comes at some cost. By forcing smoothness
onto the approximated function there is the risk that some of the finer detail of
the state space reconstruction will be lost. Therefore, for best results, λ should be
set at the smallest possible value that allows stable resynthesis. The performance of
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Figure 5.17. Time domain examples of the vowel /u/, speaker MC. (a) Original signal and (b) linear
prediction synthesized signal; RBF network synthesized signal for (c) hyperlattice and (d) data sub-
set. (Reprinted from Signal Processing, Vol.81, Lain Mann and Stephen McLaughlin, “Synthesising
natural-sounding vowels using a nonlinear dynamical model,” pages 1743–1756 © 2001 with permis-
sion Elsevier Science.)

the regularized RBF network as a nonlinear speech synthesizer is now measured by
examining the time and frequency domains, as well as the dynamical properties.
In addition to comparing the output of the nonlinear synthesizer to the original
speech signal, the synthetic speech from a traditional linear prediction synthe-
sizer is also considered. In this case, the LP filter coefficients were found from the
original vowel sound (analogous to the training stage of the RBF network). The
estimate (Fs + 4) [56] was used to set the number of filter taps to 26. Then, using
the source-filter model, the LP filter was excited by a Dirac pulse train to pro-
duce the desired length LP synthesized signal. The distance between Dirac pulses
was set to be equal to the average pitch period of the original signal. In this way,
the three vowel sounds for each of the four speakers in the database were synthe-
sized.

Figure 5.17 shows the time domain waveforms for the original signal, the LP
synthesized signal and the two RBF synthesized signals, for the vowel /u/, speaker
MC. Figure 5.18 shows the corresponding frequency domain plots of the signals,
and the spectrograms are shown in Figure 5.19. In these examples, the regulariza-
tion parameter λ was set at 0.01 for the hyperlattice, and 0.005 for the data subset.
In the linear prediction case, the technique attempts to model the spectral fea-
tures of the original, hence results in the reasonable match seen in the spectrum
(although the high frequencies have been overemphasized), but the lack of resem-
blance in the time domain. The RBF techniques, on the other hand, resemble the
original in the time domain, since it is from this that the state space reconstruction
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Figure 5.18. Spectrums for examples of the vowel /u/, corresponding to the signals in Figure 5.17. (a)
Original signal, (b) linear prediction synthesized signal; RBF network synthesized signal for (c) hyper-
lattice, (d) data subset. (Reprinted from Signal Processing, Vol.81, Lain Mann and Stephen McLaughlin,
“Synthesising natural-sounding vowels using a nonlinear dynamical model,” pages 1743–1756 © 2001
with permission Elsevier Science.)
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Figure 5.19. Wideband spectrograms for examples of the vowel /u/ corresponding to the signals in
Figure 5.17. (a) Original signal, (b) linear prediction synthesized signal; RBF network synthesized sig-
nal for (c) hyperlattice, (d) data subset. (Reprinted from Signal Processing, Vol.81, Lain Mann and
Stephen McLaughlin, “Synthesising natural-sounding vowels using a nonlinear dynamical model,”
pages 1743–1756 © 2001 with permission Elsevier Science.)

is formed, although the spectral plots show the higher frequencies have not been
well modeled by this method. This is because the networks have missed some of
the very fine variations of the original time domain waveform, which may be due
to the regularization.

Further spectrogram examples for different vowels and speakers follow the
same pattern, with the size of λ being seen to influence the quality of the signal at
high frequencies.

Jitter and shimmer. Jitter and shimmer measurements were made on all of the
original and RBF synthesized waveforms, using epoch detection2 over a 500 mil-
lisecond window. Jitter is defined as the variation in length of individual pitch
periods and for normal healthy speech should be between 0.1% and 1% of the
average pitch period [61]. Table 5.1 shows the results of the average pitch length
variation, expressed as a percentage of the average pitch period length. Results

2Using entropic laboratory’s ESPS epoch function.
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Table 5.1. Percentage jitter and shimmer in original and synthesized waveforms (hyperlattice and
data subset) averaged over the vowels /i/, /a/, and /u/ for each speaker, and as an average over the data-
base. (Reprinted from Signal Processing, Vol.81, Lain Mann and Stephen McLaughlin, “Synthesising
natural-sounding vowels using a nonlinear dynamical model,” pages 1743–1756 © 2001 with permis-
sion Elsevier Science.)

Data type
MC CA Average

(male) (female) (female)

Hyperlattice jitter (%) 0.470 1.14 0.697

Data subset jitter (%) 0.482 0.663 0.521

Original jitter (%) 0.690 0.685 0.742

Hyperlattice shimmer (%) 1.00 1.33 0.922

Data subset shimmer (%) 0.694 7.65 2.34

Original shimmer (%) 4.21 7.06 5.17

for both center placing techniques are presented, with the jitter measurements of
the original speech data. The hyperlattice synthesized waveforms contain more
jitter than the data subset signals, and both values are reasonable compared to the
original.

Shimmer results (the variations in energy each pitch cycle) for the original and
synthesized waveforms are also displayed in Table 5.1. It can be seen that in general
there is considerably less shimmer on the synthesized waveforms as compared to
the original, which will detract from the quality of the synthetic speech.

Incorporating pitch into the nonlinear synthesis method. The approach adopted
here is to model the vocal tract as a forced nonlinear oscillator and to embed an
observed scalar time series of a vowel with pitch information into a higher dimen-
sional space. This embedding, when carried out correctly, will reconstruct the data
onto a higher dimensional surface which embodies the dynamics of the vocal tract,
(see, e.g., [63, 64] for issues regarding embedding).

Previous studies, discussed above, have successfully modeled stationary (i.e.,
constant pitch) vowel sounds using nonlinear methods, but these have very lim-
ited use since the pitch cannot be modified to include prosody information. The
new approach described here resolves this problem by including pitch informa-
tion in the embedding. Specifically, a nonstationary vowel sound is extracted from
a database and, using standard pitch extraction techniques, a pitch contour is cal-
culated for the time series so that each time domain sample has an associated pitch
value. In the present study measurements of rising pitch vowel sounds, where the
pitch rises through the length of the time series, have been used as the basis for
modeling; see, for example, Figures 5.20 and 5.21.

The time series is then embedded in an m-dimensional space, along with the
pitch contour, to form an (m+ 1)-dimensional surface. A mixed embedding delay
between time samples (greater than unity) is used to capture the variable time
scales present in the vowel waveform. The (m+ 1)-dimensional surface is modeled
by a nearest neighbor approach, which predicts the next time series sample given
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Figure 5.20. Synthesized vowel sounds together with desired and measured pitch profiles. (a) RV1,
(c) RV4.

a vector of previous time samples and a pitch value (it is envisaged that more
sophisticated modeling techniques will be incorporated at a later date).

Synthesis is then performed by a modification of the nonlinear oscillator ap-
proach [20], whereby the input signal is removed and the delayed synthesizer out-
put is fed back to form the next input sample. In contrast to previous techniques,
the required pitch contour is also passed into the model as an external forcing in-
put. Our results show that this method allows the vowel sound to be generated
correctly for arbitrary specified pitch contours (within the input range of pitch
values), even though the training data is only made up of the rising vowel time
series and its associated pitch contour. In addition, sounds of arbitrary duration
can be readily synthesized by simply running the oscillator for the required length
of time. Typical synthesis results are shown. It can be seen that the sinusoidal pitch
contour of the synthesized sound is quite different from the rising pitch profile of
the measured data; the duration of the synthesized data is also somewhat longer
than that of the measured data. The small offset evident between desired and syn-
thesized pitch contours is attributed to a minor calibration error.

The initial results presented here are encouraging. Indeed, perhaps somewhat
surprisingly so since a limited measured pitch excitation data set, involving a sim-
ple rising pitch profile with a small number of data points at each specific pitch
value, was used. Specifically, good synthesis results are obtained using a simple
nearest neighbor embedding model with only sparse data (typically around 1000
data points embedded in a space of dimension 17, corresponding to a very low
density of around only 1.5 data points per dimension).

Nonlinear function approximation models for chaotic systems. In their attempt to
model and analyze nonlinear dynamics in speech signals, Kokkinos and Maragos
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Figure 5.21. Synthesized vowel sounds together with desired and measured pitch profiles. (a) RV5,
(c) RV6.

[29] have explored the applicability of nonlinear function approximation meth-
ods for the approximation of the speech production system dynamics; as in re-
lated work, the modeling is done not on the scalar speech signal, but on its recon-
structed multidimensional attractor by embedding the scalar signal into a phase
space. However, in contrast to the aforementioned approaches to nonlinear speech
synthesis, the authors’ focus has been on facilitating the application of the meth-
ods of chaotic signal analysis even when only a short-time series is available, like
phonemes in natural speech utterances. This introduces an increased degree of
difficulty that has been dealt with by resorting to sophisticated function approx-
imation models that are appropriate for short data sets. A variety of nonlinear
models have been explored, ranging from commonly used approximations based
on global or local polynomials as well as approximations inspired from machine
learning such as radial basis function networks, fuzzy logic systems and support
vector machines.

Among the set of models explored, the authors opted for the use of the Takagi-
Sugeno-Kang [66] model from the fuzzy logic literature, which can be seen as a
special case of the probabilistic mixture of experts architecture used for function
approximation. The expression used for the approximation F̂ of the nonlinear
function F can be written as

F̂ (X) =
∑M

i=1 μi(X)�i(X)
∑M

i=1 μi(X)
, (5.17)

where μi measures the degree of membership of X in the ith fuzzy set and �i(X) is
the local model of the system dynamics for the ith fuzzy set. The term μi is typically
expressed as a radially symmetric function φ(X − Ci) centered around point Ci
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and �i are first-order polynomials in X . This expression was found experimentally
to give accurate approximations of complex functions using short data records,
while its probabilistic interpretation leaves open an interesting perspective for the
incorporation of probabilistic information in speech synthesis.

Using this model has enabled the computation of useful features, like Lya-
punov exponents, that are used to assist in the characterization of chaotic systems.
Specifically, in [29] promising experimental results are reported, demonstrating
the usefulness of Lyapunov exponents in the classification of speech phonemes in
broad phoneme classes.

5.2.6. Nonlinear methods in speech recognition

Despite many decades of research, the current automatic speech recognition (ASR)
systems still fall short from the corresponding human cognitive abilities, especially
in noisy environments, because of the limitations of their acoustic processing, pat-
tern recognition, and linguistic subsystems. Thus, there is an industrial need to
develop improved robust ASR systems. Further, the complexity of the problem
requires a long-term vision.

For developing the front end of ASR systems in a way consistent with the non-
linear structure of speech, one direction of nonlinear speech signal processing re-
search has been the work of Maragos, Potamianos, and their collaborators [13, 14,
37, 48, 50]. This consists of two goals: (1) development of new and robust acous-
tic speech representations of the nonlinear and time-varying type (modulations
and fractals) based on improved models for speech production and hearing, and
(2) integration/fusion of the perceptually important among the new speech repre-
sentations and the standard linear ones (cepstrum) to develop improved acoustic
processing front ends for general speech recognition systems.

The motivations for the above goals include the following. (i) Adding new in-
formation to the feature set such as nonlinear and instantaneous information and
good formant tracks derived from the nonlinear model can model better the aero-
dynamics and time evolution of speech features. (ii) Robustness to large speaker
population or large vocabularies with confusable words can be achieved by using
speech processing models motivated by the physics of speech production and audi-
tory perception. (iii) Feature specialization can be achieved by investigating which
of the new nonlinear features and the standard linear features correspond to the
various pieces of information conveyed by the speech waveform. Such a feature
tuning can lead to feature economy with corresponding reduction of computation
and better acoustic modeling.

Some of the first efforts on using fractal features for ASR include the experi-
ments in [37] on recognition of spoken letters from the E-set of the ISOLET data-
base. Incorporating the speech fractogram as additional features to the cepstral
feature vector led to a moderate decrease in the recognition error. Generalized
fractal features, extracted after embedding the speech signal in a multidimensional
space, have given good classification results [48] in discriminating among various
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sound classes, for example, fricatives, stops, vowels, and so forth, from the TIMIT
database. Further, fractal-related features like the correlation dimension and the
fractogram, extracted after a filtering of the nonlinear speech dynamics in the mul-
tidimensional embedding space, have yielded a notable decrease in recognition
error on standard databases such as AURORA 2, especially in noisy conditions
[12]. Finally, the AM-FM modulation features have given an even more signifi-
cant decrease in recognition error on standard databases such as TIMIT-plus-noise
and AURORA 3, as reported in [14]. It appears that these nonlinear features (of
the modulation and fractal type) increase the robustness of speech recognition in
noise. Ongoing work in this area deals with finding statistically optimal ways to
determining the relative weights for fusing the nonlinear with the linear (cepstral)
features.

5.3. Summary

In view of these observations, it seems likely that the data-based model of the vowel
dynamics possesses an important degree of structure, perhaps reflecting physio-
logical considerations, that requires further investigation. It is also clear that whilst
encouraging there is still some way to go in overcoming the limitations of the ap-
proach. It is clear that speech is a nonlinear process and that if we are to achieve
the holy grail of truly natural sounding synthetic speech than this must be ac-
counted for. It is also clear that nonlinear synthesis techniques offer some potential
to achieve this although a great deal of research work remains to be done. In the
field of speech recognition, there is also strong experimental evidence that acous-
tic features representing various aspects of the nonlinear structure of speech can
increase the robustness of recognition systems. However, more research is needed
to find optimal ways for fusing the nonlinear with the linear speech features.
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6
Communication system nonlinearities:
challenges and some solutions

G. Tong Zhou, Hua Qian, and Ning Chen

6.1. Introduction

A power amplifier (PA) is an essential part of a transmitter, which in turn is neces-
sary for all wireless communication systems, including wireless LAN devices, cel-
lular phones, wireless base stations, radio and TV stations, satellites and so forth.
Unfortunately, all PAs are nonlinear to a certain extent which creates nonlinear
distortions [8, 17, 25].

For some basic understanding of the nonlinear phenomenon, let us examine
a simple third-order nonlinear model [8, page 5],

ȳ(t) = ā1x̄(t) + ā2x̄
2(t) + ā3x̄

3(t), (6.1)

where x̄(t) is real-valued input, ȳ(t) is real-valued output, and {āi} are real-valued
coefficients.

Consider a two-tone input

x̄(t) = cos
(
ω1t

)
+ cos

(
ω2t

)
, (6.2)

where ω1 = ωc + ωa and ω2 = ωc + ωb. Assume that ωa < ωb (and thus ω1 < ω2),
and that |ωa|, |ωb| � ωc so x̄(t) can be viewed as a narrowband signal with ωc as
the carrier frequency.

Substituting (6.2) into (6.1), we can see from Table 6.1 that new frequencies
beyond those already present in x̄(t) are created in the output—a hallmark of any
nonlinear system. Since the contents around the zero frequency (DC), and the har-
monics (2ωc, 3ωc) are far away from the input carrier, they can be easily removed
by bandpass filtering around ωc. However, the frequencies 2ω1 −ω2 and 2ω2 −ω1

are sufficiently close to the frequencies of interest that they may not be eliminated
by filtering [17, page 2].

It is easy to see that (2k)th-order nonlinear terms generate frequencies that
are near 0, 2ωc, 4ωc, . . . , up to 2kωc, which can be ignored due to the bandpass fil-
tering. However, (2k + 1)th-order nonlinearities always generate (k + 1)ω1 − kω2
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Table 6.1. Frequency contents in (6.1).

Term Frequency content

ā1x̄(t) Around ωc : ω1,ω2

ā2x̄2(t)
Around DC Around 2ωc
0, ω2 − ω1 2ω1, 2ω2, ω1 + ω2

Around ωc Around 3ωc
ā3x̄3(t) ω1, ω2, 3ω1, 3ω2,

2ω1 − ω2, 2ω2 − ω1 2ω1 + ω2, ω1 + 2ω2

and (k + 1)ω2 − kω1 frequency terms that reside inside or near the wanted chan-
nel and thus cause concern. Nonlinearities can negatively impact communication
systems performance in terms of spectral efficiency, interference to other users, bit
error rate (BER), and so forth and must be carefully controlled.

RF PAs commonly employed in wireless systems have the following classical
modes of operation: Class A, Class AB, Class B, Class C. Their linearity decreases,
but their power efficiency increases, in the above order [8, Chapter 3] [1]. Power
efficiency is defined as η = P1/PDC, where P1 is the RF fundamental output power,
and PDC is the power drawn from the DC source [8, page 52]. High efficiency
leads to longer battery life and smaller battery size for the handheld device, or
lower operating cost for the base station.

For a given PA, power efficiency also depends on the input level. The closer
the PA is driven to saturation, the higher the power efficiency. Unfortunately, the
PA is also the most nonlinear near saturation. Reducing the input power, that is,
backing-off the PA, reduces nonlinear distortions, but also lowers the power effi-
ciency. A back-off level of 10 dB means that an amplifier capable of 10 times the
desired output power must be used; the power supplies, heatsinks and output de-
vices must all be considerably larger than those designed according to the actual
output power level [17, page 7].

We thus face a paradox in communication system applications—the opposing
relationship between PA linearity and efficiency and the desire to achieve high
levels of both.

In this chapter, we will first investigate characteristics and manifestations of
nonlinear effects in communication systems in Section 6.2. A certain amount of
nonlinearity is usually tolerated by the standards so quantitative analysis offered
in Section 6.3 can be useful. In Section 6.4, we will attempt to algorithmically “lin-
earize” a nonlinear PA so the resulting system can be both sufficiently linear and
power efficient. Testbed measurement results will be shown to demonstrate the
performance of the linearization algorithms.

6.2. Nonlinear communication system concepts

6.2.1. Passband versus baseband nonlinearities

Passband models such as (6.1) are often used in the literature, but it is sometimes
more convenient to work with baseband quantities. Unfortunately, the confusion
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e jωct

x(t) × Re{·} x(t)
PA

y(t) ×

2e− jωct

LPF
y(t)

Figure 6.1. Block diagram of a passband system.

often arises regarding the correct form of the baseband nonlinear model [35, 45]
[1, page 69] so it is helpful to elucidate here.

The block diagram in Figure 6.1 depicts the upconversion of the complex-
valued baseband signal x(t) to the passband, the amplification of the real-valued
passband input x̄(t), and the down-conversion of the passband output ȳ(t) into
a complex-valued baseband signal y(t). The relationship between the real-valued
passband input signal x̄(t) and the complex-valued baseband input signal x(t) is
given by

x̄(t) = Re
{
x(t)e jωct

}⇐⇒ x(t) = 2LPF
[
x̄(t)e− jωct

]
, (6.3)

where ωc is the carrier frequency, LPF[·] denotes the lowpass filtering operation,
and Re{·} denotes the real-value part.

Consider a memoryless polynomial nonlinear PA model in the passband,

ȳ(t) =
L∑

�=1

ā�
[
x̄(t)

]�
. (6.4)

It can be shown [45] that the baseband equivalent model is

y(t) = x(t)
K∑

k=0

a2k+1
∣
∣x(t)

∣
∣2k

(6.5)

=
K∑

k=0

a2k+1
[
x(t)

]k+1[
x∗(t)

]k
, (6.6)

where

a2k+1 = 1
22k

(
2k + 1
k

)

ā2k+1, (6.7)

and K = (L− 1)/2 if L is odd or K = L/2− 1 if L is even.
Although the passband polynomial model in (6.4), or equivalently, the base-

band polynomial model in (6.5) is quite simple, it has been shown to be accurate
for modeling memoryless nonlinear PAs [17, Section 2.13], [44] below the satura-
tion point. Nonlinear models with memory will be discussed later.

From this point on, we will be working with baseband quantities. We discuss
next, standard characterizations of memoryless nonlinear PAs.
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Figure 6.2. AM/AM and AM/PM characteristics of an actual Class AB PA.

6.2.2. AM/AM, AM/PM characteristics

Recall that x(t) is the baseband PA input and y(t) is the baseband PA output.
Usually, one would expect that the output amplitude |y(t)| depends on both the
input amplitude |x(t)| and the input phase ∠x(t). Interestingly however, for the
so-called (quasi) memoryless1 PAs, experimental evidence [17, page 64] shows that
both the output amplitude |y(t)| and the output phase deviation ∠y(t) − ∠x(t)
depend on the input amplitude |x(t)| alone. The relationship between |y(t)| and
|x(t)|,

∣
∣y(t)

∣
∣ = fa

(∣∣x(t)
∣
∣), (6.8)

or equivalently, the relationship between the gain function |y(t)/x(t)| and |x(t)|,
is referred to as the amplitude modulation to amplitude modulation (AM/AM)
conversion. The relationship between ∠y(t)−∠x(t) and |x(t)|,

∠y(t)−∠x(t) = fp
(∣∣x(t)

∣
∣), (6.9)

is referred to as the amplitude modulation to phase modulation (AM/PM) con-
version [17, page 64].

A strictly memoryless PA has AM/AM conversion but no AM/PM conver-
sion (i.e., fp(|x(t)|) is a constant). A quasimemoryless PA has both AM/AM and
AM/PM conversions [35]. An ideal linear PA would have fa(|x(t)|) = G|x(t)| and
fp(|x(t)|) = θ for all |x(t)| between 0 and the saturation point of the PA, where G
and θ are constants.

Figures 6.2(a) and 6.2(b) show the measured AM/AM and AM/PM charac-
teristics, respectively, of an actual Class AB PA. Gain compression is seen at large
input values, indicating the presence of nonlinear effects. Nonlinearity is also evi-
dent from the AM/PM curve.

1In a memoryless system, the output only depends on the input at the same time instant.
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Nonlinearity is not a problem for constant envelope signals. Suppose that
x(t) = Aejφt so |x(t)| = A is constant. We infer from (6.8) and (6.9) that |y(t)| =
G|x(t)|, and ∠y(t) = ∠x(t) + θ for some constants G and θ. Together, they give
rise to

y(t) = ∣∣y(t)
∣
∣e j∠y(t) = G

∣
∣x(t)

∣
∣e j(θ+∠x(t)) = (Gejθ)x(t). (6.10)

Although the underlying PA is still nonlinear, the constant amplitude signal
x(t) only “sees” or “experiences” a single point on the AM/AM or AM/PM curve
(e.g., point C in Figure 6.2). Thus, the PA “appears” linear to the constant ampli-
tude signal as indicated by (6.10).

This explains why nonlinear PAs are routinely used for constant envelope sig-
nals such as continuous wave (CW), frequency modulation (FM), classical fre-
quency-shift keying (FSK), and Gaussian minimum shift keying (GMSK) (used in
Global System for Mobile Communications—GSM) without causing performance
degradations [32].

6.2.3. Sensitivity of modern modulation formats to nonlinear effects

Denote by xn the Nyquist-rate sampled version of x(t) and by hn the discrete-time
equivalent pulse shaping filter. Even if the discrete-time source symbols sn have
a constant amplitude A, the digital communication signal after pulse shaping (∗
denotes convolution)

xn = sn ∗ hn =
∑

k

skhn−k (6.11)

does not have constant amplitude any more.
The peakedness or the dynamic range of a signal can be characterized by the

so-called crest factor, or the peak-to-average power ratio (PAR) which is the square
of the crest factor [17, page 46]. If sn has zero mean and |sn| = A, it can be shown
that the worst case PAR for the above xn is

(∑
n

∣
∣hn

∣
∣)2

∑
n

∣∣hn
∣∣2 ≥ 1. (6.12)

In contrast, the PAR of the constant amplitude sn is 1 (0 dB), so the PAR of xn
has increased beyond that of sn due to filtering. For example, square-root-raised-
cosine pulse shaping can cause the PAR to increase by 3–6 dB [32].

Orthogonal frequency division multiplexing (OFDM) is a popular transmis-
sion format that has been adopted by many standards including IEEE 802.11a,
IEEE 802.11g, IEEE 802.16, HIPERLAN 2, digital audio broadcast, and digital
video broadcast [16] [14, Section 1.2]. The Nyquist-rate sampled time-domain
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Figure 6.3. Amplitude of one realization of the OFDM signal with N = 52.

OFDM signal is given by [42]

xn = 1√
N

N−1∑

k=0

Xke
j(2πkn/N), 0 ≤ n ≤ N − 1, (6.13)

where N is the OFDM block length, and {Xk}N−1
k=0 is the frequency domain OFDM

signal belonging to a known constellation.
If Xk has constant modulus, it can be shown that the worst case PAR of the

OFDM signal xn is N [42]. However, worst case PAR values rarely happen. Since
PAR is a random variable, an appropriate descriptor of the PAR is the complemen-
tary cumulative distribution function (CCDF), Pr(PAR > γ), where γ is a given
PAR threshold.

Figure 6.3 shows the amplitude of one realization of the OFDM signal xn with
N = 52 as specified in the IEEE 802.11a standard [15]. Occasional large peaks are
observed.

Figure 6.4 shows the CCDF curves for certain modern communication sig-
nals. The solid line in Figure 6.4(a) is the empirical CCDF of the PAR of the OFDM
signal withN = 52. We infer for example that there is a 1% chance that the OFDM
block will have a PAR value ≥ 9.2 dB. The dashed line is the empirical CCDF of
the PAR of the OFDM signal with N = 256. In the probabilistic sense, the PAR
worsens as N increases.

Another signal that has a large dynamic range is the forward-link (i.e., base-
station to mobile) code-division multiple-access (CDMA) signal [22, 23]. Figure
6.4(b) shows the CCDF of the so-called instantaneous-to-average power ratio
(IAR) [23] of a 25-channel (3 overhead channels plus 22 traffic channels) forward-
link CDMA signal. We can see that 1% of the signal has IAR values in excess of
7.7 dB.

Now since |x(t)| traverses a large region of the PA characteristic (e.g., region
B-C in Figure 6.2), much of the inherent nonlinearity of the PA is now revealed to
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Figure 6.4. (a) CCDF of the PAR of OFDM signals; (b) CCDF of the IAR of a forward-link CDMA
signal with 25 active channels.

the input signal. The larger the dynamic range of the signal, the more sensitive the
signal is to the system nonlinearity.

6.2.4. Nonlinear effects with memory

Memoryless nonlinear PAs have been studied for decades. In the recent years, the
problem of nonlinear PAs with memory has attracted a great deal of attention.
Memory effects arise in high power amplifiers (such as those used in base sta-
tion applications) and/or when wideband signals (such as wideband CDMA) are
present at the PA input [3, 4, 38]. We are generally concerned with two types of
memory effects: (i) electrical memory effects; (ii) thermal memory effects.

Electrical memory effects are caused by varying envelope, fundamental or sec-
ond harmonic impedances at different modulation frequencies. With careful de-
sign, electrical memory effects can be limited to those caused by bias networks
[43].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


148 Communication system nonlinearities: challenges and some solutions

Thermal memory effects are caused by electro-thermal coupling, and these
affect low modulation frequencies up to a few megahertz (MHz) [43].

Frequency dependent behavior of the PA can often be ignored for narrowband
signals, but they must be accounted for when wideband signals are amplified.

Symptoms of the memory nonlinear effect include: (i) scattering and/or hys-
teresis of the AM/AM, AM/PM curves [20, 27] [9, page 99], (ii) asymmetry in
the intermodulation distortion (IMD) products [5, 20]; (iii) IMD variation as a
function of tone spacing in a two-tone test [20, 21, 43].

To understand the IMD behavior when memory effect is present, let us con-
sider a baseband equivalent memoryless nonlinear system:

w(t) =
∑

k

a2k+1
[
x(t)

]k+1[
x∗(t)

]k
, (6.14)

followed by a linear time-invariant (LTI) system with impulse response h(t):

y(t) = w(t)∗ h(t) =
∫∞

−∞
w(τ)h(t − τ)dτ, (6.15)

where∗ denotes convolution. The overall system linking x(t) to y(t) is a nonlinear
system with memory.

Suppose that a two-tone input

x(t) = Aejωat + Aejωbt (6.16)

is available and assume that ωb > ωa.
It is straightforward to show, by substituting (6.16) into (6.14), that both fre-

quency components of w(t) at

IMD2k+1,L = (k + 1)ωa − kωb,

IMD2k+1,H = (k + 1)ωb − kωa
(6.17)

have equal amplitudeA2k+1a2k+1 which does not depend on the tone spacing Δω =
ωb − ωa. This explains empirical observations [9, Section 3.5] that IMD products
from memoryless nonlinear devices appear symmetric and their magnitudes do
not depend on the tone spacing.

When the signal further propagates through the LTI system in (6.15), the fre-
quency component at IMD2k+1,L will have amplitude

A2k+1,L = A2k+1a2k+1H
(
ωa − kΔω

)
, (6.18)

whereas the frequency component at IMD2k+1,H will have amplitude

A2k+1,H = A2k+1a2k+1H
(
ωa + (k + 1)Δω

)
. (6.19)
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Figure 6.5. The IMD products versus the tone spacing for an Ericsson 45W PA.

In (6.18)-(6.19), H(ω) denotes the Fourier transform of h(t), that is, H(ω) is the
frequency response of the LTI system at frequency ω.

From (6.18)-(6.19), we see that |A2k+1,L| 
= |A2k+1,H | in general due to the
frequency response of h(t) at different frequencies. Moreover, the magnitudes of
these IMD products vary with the tone spacing Δω sinceH(ω) is generally nonflat.

The nonlinear system between x(t) and y(t) as described by (6.14)-(6.15) is
a Hammerstein system [26]. However, the above described behaviors of the IMD
products can also be observed if we have a general Volterra nonlinear system.

To provide an illustrative example, we conducted a two-tone experiment on
an Ericsson 45 W PA (19D903800G1). In this experiment, we fixed the peak PA
output power at 36.5 dBm but incrementally changed the tone spacing from
100 kHz to 20 MHz. Figure 6.5 shows the 3rd-order IMD product at the lower
sideband of the main channel (IMD 3,L) and at the upper sideband of the main
channel (IMD 3,U), as well as 5th-order IMD products IMD 5,L and IMD 5,U , when
the tone spacing is changed. We observe that the IMD products varied signifi-
cantly with changes in the tone-spacing (please note that the vertical axis is on the
dB scale), and appeared asymmetric between the lower and upper sidebands. In
this example, IMD 3,L and IMD 3,U differed by as much as 5 dB, whereas IMD 5,L

and IMD 5,U differed by as much as 9 dB. These results led us to believe that the
Ericsson 45 W PA exhibited significant memory effects.

A (2k + 1)th-order baseband Volterra model is given by

y(t) =
∑

k

∫

· · ·
∫

h2k+1
(
τ2k+1

) k+1∏

i=1

x
(
t − τi

) 2k+1∏

i=k+2

x∗
(
t − τi

)
dτ2k+1, (6.20)

where h2k+1(·) is the (2k + 1)th-order Volterra kernel, τ2k+1 = [τ1, τ3, . . . , τ2k+1]T ,
and dτ2k+1 = dτ1dτ3 · · ·dτ2k+1 [2]. It is a general nonlinear model with memory.
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Two special cases of the Volterra model are worth mentioning. The Wiener
model is a linear time-invariant block followed by a memoryless nonlinearity. In
the memory polynomial model, the Volterra kernels are zero everywhere except
along the main diagonals. Both the Wiener model [7] and the memory polynomial
model [19] have been shown to be appropriate for certain nonlinear PAs with
memory.

Time-delayed neural networks [24] and a frequency-dependent Saleh model
[17, page 79] are other notable alternatives for modeling nonlinear PAs with mem-
ory effects.

Next, we will describe and quantify distortions encountered in nonlinear com-
munication systems.

6.3. Nonlinear distortions

Digitally modulated signals occupy a continuum of frequencies within a given
bandwidth Bx. Suppose in (6.16) that −Bx/2 < ωa < ωb < Bx/2 so both ωa and
ωb appear in band. As we discussed earlier, a (2k + 1)th-order nonlinearity gener-
ates IMD products in the form of (k + 1)ωa − kωb that are of concern. These IMD
products can appear in band or out of band. For example, if ωa = Bx/4, ωb = Bx/3,
then IMD3 at 2ωa−ωb = Bx/6 resides in band, whereas if ωa = −Bx/4, ωb = Bx/3,
then 2ωa − ωb = −5Bx/6 appears in the adjacent channel.

Since Bx is much smaller than the carrier frequency, even if the IMD products
appear out of band, they may still be too close to the main channel to be removed
by filtering. Certainly, those in band IMD products cannot be eliminated using
filters.

In-band IMD components degrade the BER. The so-called error vector mag-
nitude (EVM) is often measured based on which inference on the BER can be indi-
rectly made. EVM measures the normalized difference (expressed as a percentage)
between the reference waveform and the measured waveform [29]. Typical figures
are in the range of 5%–15% for most mobile radio systems [17, pages 210–211].

Out of band IMDs cause adjacent channel interference which is measured by
the adjacent channel power ratio (ACPR) [6, 17]

ACPR =
∫ fo+0.5Badj

fo−0.5Badj
S( f )df

∫ 0.5Bch

−0.5Bch
S( f )df

. (6.21)

The numerator in (6.21) is the total interference power in a specified adjacent
channel bandwidth Badj, at a given frequency offset fo from the carrier frequency.
The denominator in (6.21) is the total main channel power in the specified channel
bandwidth Bch [18].

As an example, we show the spectral emission limits for wideband CDMA
(WCDMA) in Table 6.2 and the corresponding spectral mask2 in Figure 6.6.

2The shape of the spectral mask (including the “notch”) in Figure 6.6 is specific to WCDMA only.
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Table 6.2. Spectrum emission limits [28].

|Δ f | (MHz) Minimum requirement Measurement bandwidth

2.5− 3.5 −35− 15 · (|Δ f | − 2.5
)

(dBc) 30 kHz

3.5− 7.5 −35− 1 · (|Δ f | − 3.5
)

(dBc) 1 MHz

7.5− 8.5 −39− 10 · (|Δ f | − 7.5
)

(dBc) 1 MHz

8.5− 12.5 −49 dBc 1 MHz
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Figure 6.6. Spectral mask for WCDMA.

6.3.1. Spectral regrowth prediction

It would be useful to be able to predict the spectrum of the signal as it goes through
a nonlinear PA. Elegant closed-form solutions have been found [46] for the “sim-
ple” case of wide-sense stationary Gaussian input and polynomial nonlinear PA.

When the input is non-Gaussian, one can resort to cumulants [44] to analyze
the output autocovariance function, whose Fourier transform yields the power
spectral density (PSD). However, the combination of a non-Gaussian process and
a nonlinear system means that the complexity of the analysis can quickly get out
of hand.

A digital communication signal can be represented as

x(t) =
∑

m

smh(t −mT), (6.22)

where sm is the mth symbol, h(t) is the pulse shaping filter, and T is the symbol
period. Thus, x(t) is strict-sense cyclostationary. Interestingly, it is shown in [46]
that when the bandwidth of the pulse shaping filter is limited to 1/T (i.e., h(t)
has no excess bandwidth), x(t) in (6.22) is wide-sense stationary, meaning that
its autocovariance function does not depend on the time variable t. Furthermore,
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when x(t) is Gaussian, as is (approximately) the case with OFDM and forward-
link CDMA signals, the output signal PSD can be accurately predicted as described
below.

Theorem 6.1 (see [46]). Assume that x(t) is stationary, zero-mean, and circular
complex Gaussian distributed. If the output y(t) is related to the input x(t) through
(6.6), then the autocovariance function of y(t), defined as c2y(τ) = E[y∗(t)y(t+τ)],
is related to that of x(t) through

c2y(τ) =
K∑

m=0

α2m+1
∣
∣c2x(τ)

∣
∣2m

c2x(τ), (6.23)

where the constant coefficient

α2m+1 = 1
m + 1

∣∣
∣
∣
∣

K∑

k=m
a2k+1

(
k

m

)

(k + 1)!
[
c2x(0)

]k−m
∣∣
∣
∣
∣

2

,

(
k

m

)

= k!
m!(k −m)!

.

(6.24)

The PSD of y(t), defined as S2y( f ) = ∫∞
−∞ c2y(τ)e− j2π f τdτ, is related to that of x(t)

through

S2y( f ) =
K∑

m=0

α2m+1 S2x( f )∗· · · ∗ S2x( f )
︸ ︷︷ ︸

m+1

∗ S2x(− f )∗ · · · ∗ S2x(− f )
︸ ︷︷ ︸

m

, (6.25)

where ∗ denotes convolution.

The above theorem subsumes the specific-order nonlinearity results published
in [13, 40, 44].

We infer from (6.25) that the bandwidth of y(t) is 2K+1 times that of x(t) due
to spectral convolutions. The resulting spectral expansion causes adjacent channel
interference which is tightly controlled by the regulatory bodies.

As an illustration of the results obtained in Theorem 6.1, we show in Figure
6.7, S2x( f ) of an OFDM signal as dashed lines. The predicted output PSD S2y( f ),
as the result of passing through a 9th-order nonlinear PA model whose AM/AM,
AM/PM characteristics closely match those depicted in Figure 6.2, is shown as
solid lines in Figure 6.7. Simulation results [46] confirm that the formulas given in
Theorem 6.1 are accurate.

When excess bandwidth is present in x(t), spectral regrowth analysis becomes
more complicated but preliminary results are available in [37].
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Figure 6.7. PSDs of the input and the output of the PA.

6.3.2. Signal-to-noise-and-distortion ratio

So far, we have analyzed nonlinear distortions in the frequency domain in the form
of IMD or spectral regrowth. Next, we consider a completely different metric, the
so-called signal-to-noise-and-distortion ratio (SNDR) [30, 31]. The SNDR con-
cept is similar to the signal-to-noise ratio (SNR). The hope is to gain insight about
the BER through the SNDR in the context of nonlinear systems.

Let us first examine a simple, third-order baseband nonlinearity

y(t) = a1x(t) + a3x
2(t)x∗(t) + v(t), (6.26)

where v(t) is zero-mean additive noise and is assumed to be independent of the
signal x(t).

Since we are interested in linear amplification of x(t), we can regard the third-
order term, b(t) = a3x2(t)x∗(t), as a form of distortion.

If x(t) is zero-mean circular complex Gaussian distributed, that is, E[x2(t)] =
0, E[|x(t)|2] = σ2

x , we can find an equivalent representation of (6.26),

y(t) = μx(t) + d(t) + v(t), (6.27)

μ = a1 + 2a3σ
2
x , (6.28)

d(t) = a3x(t)
[∣∣x(t)

∣
∣2 − 2σ2

x

]
. (6.29)

In (6.27), we can view μx(t) as the useful signal and d(t) as the distortion.
The advantage of the decomposition in (6.27) is that d(t) can be shown to be
uncorrelated with x(t), that is, E[x∗(t)d(t)] = 0. In contrast, the b(t) term defined
earlier is correlated with x(t), that is, E[x∗(t)b(t)] 
= 0.
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Because d(t) and v(t) are both uncorrelated with x(t), we can lump their en-
ergies together and define the SNDR as [30]

SNDR = |μ|
2σ2

x

εd + σ2
v

, εd = E
[∣∣d(t)

∣∣2
]

, (6.30)

and use it to assess the condition of the nonlinear system.
Generalizing, we consider the nonlinear system

y(t) = h
(
x(t)

)
+ v(t), (6.31)

where h(·) is a memoryless nonlinear mapping. We can always decompose (6.31)
into

y(t) = μx(t) + d(t) + v(t), (6.32)

μ = E
[
x∗h(x)

]

σ2
x

, (6.33)

d(t) = h
(
x(t)

)− μx(t). (6.34)

The above decomposition ensures that d(t) is uncorrelated with x(t). The value of
μ and thus d(t) depend on h(·) and the probability density function (PDF) of x(t).

Substituting (6.33)-(6.34) into (6.30), the SNDR expression becomes

SNDR =
∣
∣E
[
x∗h(x)

]∣∣2
/σ2

x

E
[∣
∣h(x)

∣
∣2
]
− ∣∣E[x∗h(x)

]∣∣2
/σ2

x + σ2
v

. (6.35)

It is therefore possible to analyze the SNDR for a given nonlinearity and the input
signal PDF and make inference on the system performance.

We are interested in peak amplitude limited nonlinearities since physical de-
vices (such as PAs) are almost always peak amplitude (or peak power) limited.
Suppose that |h(·)| ≤ A: this amplitude constraint itself implies that h(·) is non-
linear. It will be easier to work with normalized quantities so let us set γ = |x|/σx
and define g(γ) = |h(x)|/A which implies 0 ≤ g(·) ≤ 1.

Some example g(·) functions are shown in Figure 6.8. An interesting question
to ask is, what kind of g(·) gives rise to the highest SNDR? The answer lies in the
following theorem.

Theorem 6.2 (see [34]). Within the class of g(·) satisfying 0 ≤ g(·) ≤ 1, the follow-
ing g(·) maximizes the SNDR expression in (6.35):

g(γ) =

⎧
⎪⎪⎨

⎪⎪⎩

γ

η�
, 0 ≤ γ < η�,

1, γ ≥ η�,
(6.36)
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Figure 6.8. Nonlinear mappings g(·) that satisfy the 0 ≤ g(·) ≤ 1 constraint.

where the threshold η� is found from3 η� = T−1(A2/σ2
v ), with

T(η) = η

C1(η)− ηC0(η)
,

C0(η) =
∫∞

η
p(γ)dγ,

C1(η) =
∫∞

η
γp(γ)dγ,

(6.37)

and p(γ) is the PDF of γ.

Theorem 6.2 establishes that the nonlinearity in the shape of Figure 6.8(c) is
optimal.

If a given system nonlinearity u(·) is undesirable and it is possible to apply
a predistortion mapping f (·), then according to Theorem 6.2, it is best to make
u( f (·)) equal to the g(·) function given in (6.36) (assume that u(·) is normalized

3We can show that T(·) is a monotonically increasing function and thus its inverse T−1(·) exists.
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to have a maximum amplitude of 1). This is the well-known linearization strategy
[17]. However, what was little understood before, was the selection of the threshold
η, or equivalently, the gain factor 1/η. Theorem 6.2 says that the optimal (in terms
of SNDR) η� depends on the PDF of γ and the peak signal-to-noise ratio PSNR =
A2/σ2

v . This naturally leads us to the next topic, PA linearization.

6.4. Digital baseband predistortion linearization

As we explained earlier, nonconstant envelope modulation schemes are sensitive
to the PA nonlinearity. In these applications, PA linearization is often pursued to
limit nonlinear distortions and to improve the efficiency of the PA. For mobile ter-
minals, increased efficiency means reduced battery drain, reduced battery size and
weight, and increased battery life. Power efficiency is also of prime importance for
base station applications for the purposes of reducing the equipment cost, size, and
network operating costs. According to a study described in [17, page 13], applica-
tion of PA linearization technologies is projected to yield annual power savings
of 164 million kilowatt hours for a surveyed network consisting of approximately
10,000 base sites.

PA linearization has been investigated for decades. Available techniques in-
clude feedback, feedforward, predistortion approaches; see [9, 17, 41] for compre-
hensive reviews of various linearization methods. The objective here is to discuss
recent developments that go beyond the established methods.

6.4.1. Baseband predistortion

We are interested in predistortion techniques as they offer good compromise be-
tween complexity, cost, and linearization performance. Figure 6.9 shows the block
diagram4 of the 2nd/3rd generation base transceiver station functionality. Predis-
tortion is now considered an essential element of the baseband processing unit.

The concept of predistortion can be explained using Figures 6.10 and 6.11.
When a varying signal envelope passes through a nonlinear PA (shown in Figures
6.10, 6.11 are baseband equivalent PAs), distortions occur to the signal waveform
especially at larger amplitudes due to gain compression. In predistortion, we first
pass the signal through a nonlinear block that is complementary to the PA re-
sponse. The signal is distorted, but after subsequent distortion by the PA, a linearly
amplified version of the original signal can be obtained.

Predistortion can be implemented at RF, IF, or baseband, and can employ ana-
log components or digital techniques. We are interested in digital baseband pre-
distortion (as pictured in Figure 6.9), since digital baseband processing is flexible
and it performs well.

With “direct” inversion techniques, one first selects a PA model, estimates its
parameters, and then constructs the predistorter (PD) as an (approximate) inverse
of the PA response. The PA can be described by a variety of models such as the

4See, for example, http://www.ti.com.
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Figure 6.10. Baseband equivalent PA characteristic.

Saleh model [38], [17, page 79], the Volterra (or polynomial) model [26, 39] and
so forth. For the latter, the so-called pth-order inverse [39, Chapter 7], [26, Chap-
ter 9] has been well developed. Under the pth-order inverse framework, we try to
find a Volterra (or polynomial) model for a given Volterra (or polynomial) model,
so the concatenation of the two has a (dominant) linear term, skips a few low-
order nonlinear terms, but faces some high-order nonlinear terms that, hopefully,
have negligible power.

For a simple illustration of the concept, let us consider a 3rd-order polynomial
PA model:

y(t) = b1 z(t) + b3 z
2(t)z∗(t), (6.38)

and a 3rd-order polynomial PD model:

z(t) = x(t) + a3 x
2(t)x∗(t). (6.39)
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Substituting (6.39) into (6.38), we find the input/output relationship for the PD-
PA concatenation:

y(t) = b1x(t) +
(
a3b1 + b3

)
x2(t)x∗(t) +

(
2a3 + a∗3

)
b3x

3(t)
[
x∗(t)

]2

+ a3b3
(
a3 + 2a∗3

)
x4(t)

[
x∗(t)

]3
+ a2

3a
∗
3 b3 x

5(t)
[
x∗(t)

]4
.

(6.40)

If we set a3 = −b3/b1, then the 3rd-order nonlinear term vanishes from the
y(t) in (6.40). Although concatenation of two 3rd-order nonlinearities produces
a 9th-order nonlinearity, the hope is that the 5th-, 7th-, and 9th-order nonlinear
terms in (6.40) have diminishing powers, and thus do not contribute significantly
to the overall system.

The challenges of such “direct” approaches are: (i) the PA model may not be
accurate; (ii) the PA model parameters may not be straightforward to extract; (iii)
the inverse of the nonlinear model may be difficult to find.

6.4.2. Indirect learning architecture

In the direct approaches described above, finding the PA model is only a means to
the end, since the ultimate goal is to construct the PD. It makes sense then to go
directly after the PD. We can possibly achieve this using the indirect learning archi-
tecture [12] described in Figure 6.12. The baseband predistorter input is denoted
by x(t), the predistorter output/baseband PA input is denoted by z(t), and the
baseband PA output is denoted by y(t). The feedback path labeled “Predistorter
Training (A)” has y(t)/G as its input, where G is the intended gain of the PA, and
ẑ(t) as its output. The actual predistorter (copy of A) is an exact copy of the pre-
distorter training branch. Since when y(t) = Gx(t), the error e(t) = z(t) − ẑ(t) is
0, the predistorter parameters can be found by minimizing ‖e(t)‖2.

Suppose that the PD is modeled as z(t) = f (x(t)). The following steps de-
scribe the iterative process of finding f (·) using the indirect learning architecture.
We use {tn}Nn=1 to denote the sampling instances (which do not have to be uni-
formly spaced); N is the total number of samples.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


G. Tong Zhou et al. 159

x(t) Predistorter
(copy of A)

FPGA/ASIC

z(t)
D/A

Up-
converter PA

Down-
converterA/D

y(t)/GPredistorter
training (A)

DSP

ẑ(t)

+
e(t)

Figure 6.12. The indirect learning architecture for the predistorter.

Step 1. Initialize the predistorter model with f (0)(x(tn)) = x(tn) and set the itera-
tion number i = 1.

Step 2. For a given block of input data {x(i)(tn)}Nn=1, calculate the predistorted sig-
nal

z(i)(tn
) = f (i−1)

(
x(i)(tn

))
, (6.41)

and measure the corresponding PA output {y(i)(tn)}Nn=1.

Step 3. Solve the parameters in f (i)(·) by treating y(i)(tn)/G as its input and z(i)(tn)
as its output.

Step 4. Increase i by one and go back to Step 2.

This iterative procedure ensures that the predistorter can adapt to slow chan-
ges in the PA characteristics due to biasing changes, ambient temperature varia-
tions, aging, and so forth.

If training is performed on-the-fly, {x(i)(tn)}Nn=1 will be different from block
to block. If training is performed off-line, {x(i)(tn)}Nn=1 can be the same data—this
will be helpful for speeding up the convergence.

It is advantageous to model the PD using basis functions. Let us write

z(t) =
K∑

k=1

ckφk
(
x(t)

)
, (6.42)

where {φk(·)}Kk=1 are a set of K known basis functions. In Step 3 of the indi-
rect learning algorithm, we replace x(t) by the measured y(t)/G and solve for the
{ck}Kk=1 coefficients using the linear least squares (LS) method described below.
Such a simple solution is possible since z(t) is linear in the unknowns {ck}Kk=1.
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Let us define N-by-1 data vectors

y = [y(t1
)
, . . . , y

(
tN
)]T

, z = [z(t1
)
, . . . , z

(
tN
)]T

, (6.43)

N-by-1 regressor vector

φk(y/G) = [φk
(
y
(
t1
)
/G
)
, . . . ,φk

(
y
(
tN
)
/G
)]T

, (6.44)

N-by-K regressor matrix

Φ =
[
φ1(y/G) φ2(y/G) · · · φK (y/G)

]
, (6.45)

and the K-by-1 parameter vector

c = [c1, c2, . . . , cK
]T
. (6.46)

When the PD has converged to the true inverse of the PA, we will have

z = Φc. (6.47)

The LS solution for c is

cLS =
(
ΦHΦ

)−1
ΦHz, (6.48)

where [·]H denotes the Hermitian transpose.

6.4.3. Orthogonal polynomials

A straightforward set of basis functions for (6.42) is the polynomial functions

φk
(
x(t)

) = ∣∣x(t)
∣
∣k−1

x(t). (6.49)

It is shown in [10] that by including even k terms in (6.42), predistortion per-
formance can be improved. Note that although the odd-order only baseband PA
model is well justified, the PD model can still contain even-order nonlinear terms.

As pointed out in [33, 36], a numerical instability problem can be encoun-
tered when we invert the K-by-K matrix ΦHΦ in (6.48). This is particularly the
case if high K values are used and/or quantization errors are present in the data.

To alleviate the numerical instability problem, we can replace φk(·) by the
following set of orthogonal polynomial basis functions:

ψk(x) =
k∑

l=1

(−1)l+k
(k + l)!

(l − 1)!(l + 1)!(k − l)!
|x|l−1x. (6.50)
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Table 6.3. Orthogonal polynomial basis functions ψk(x) for 1 ≤ k ≤ 5.

ψ1(x) = x

ψ2(x) = 4|x|x − 3x

ψ3(x) = 15|x|2x − 20|x|x + 6x

ψ4(x) = 56|x|3x − 105|x|2x + 60|x|x − 10x

ψ5(x) = 210|x|4x − 504|x|3x + 420|x|2x − 140|x|x + 15x

These functions are orthogonal in the sense that

E
[
ψ∗k (x)ψl(x)

] = 0, ∀k 
= l, (6.51)

when |x| is uniformly distributed in [0, 1]. The first five orthogonal polynomial
basis functions are listed in Table 6.3.

Although in reality, the uniform amplitude distribution assumption does not
hold for communication signals, the above basis functions can still serve to lower
the condition number of the ΨHΨ matrix (Ψ is obtained similarly to Φ, with
ψk replacing φk as the basis function), which is necessary for solving for the PD
parameters {βk}Kk=1 as in

z(t) =
K∑

k=1

βkψk
(
x(t)

)
. (6.52)

In practice, we do not require |x| to be exactly in [0, 1] in order for the orthogonal
polynomial basis function ψk(x) to be used. Details of the scaling operation can be
found in [33].

6.4.4. Memory polynomial predistorter

Although the Volterra series is a general nonlinear model with memory [26, 39],
its complexity is often prohibitive for real-time PD implementations. We resort to
the memory polynomial model which has been shown to be a robust preinverse
for a variety of nonlinear systems with memory [11]. The discrete-time memory
polynomial PD model is given by

z(n) =
K∑

k=1

Q∑

q=0

akq
∣
∣x(n− q)

∣
∣k−1

x(n− q), (6.53)

where K is the highest polynomial order and Q is the largest delay tap. To improve
modeling accuracy, both even- and odd-order terms are included in (6.53) [10].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


162 Communication system nonlinearities: challenges and some solutions

Digital output
64 M memory

High-speed
digital I/O

system

Digital input
64 M memory

16-bit
150 MW/s

14-bit
160 MSPS

16-bit
150 MW/s

12-bit
170 MSPS

DAC

ADC

DSP

× ×

DUTLO1 LO2

× ×

Figure 6.13. Schematic of the testbed.

Matrix inversion will be needed when we solve for the PD parameters {akq}
using LS. For better numerical stability, we suggest the use of the orthogonal poly-
nomial basis in (6.50), that is,

z(n) =
K∑

k=1

Q∑

q=0

αkqψk
(
x(n− q)

)
, (6.54)

and solve for the parameters {αkq}.

6.4.5. Testbed and measurement results

We have carried out experiments to demonstrate the performance of our model-
based predistortion algorithms.

We show in Figure 6.13 the configuration of our testbed. The high-speed dig-
ital I/O system has a 150 million samples per second (MSPS) 16-bit digital in-
put/output capability. In the transmission mode, the digital I/O system first gen-
erates digital baseband data x(tn), predistorts it to yield z(tn), digitally upcon-
verts z(tn) to an intermediate frequency (IF) of 30 MHz, and then sends out the
14-bit data stream to the digital-to-analog (D/A) converter at a sampling rate of
120 MSPS. In the acquisition mode, the digital I/O system acquires 12-bit digital
IF data at the sampling rate of 120 MSPS from the analog-to-digital (A/D) con-
verter. In the figure, y(tn) is obtained by converting the PA output to baseband
and removing the time delay τ between the input and the output of the digital
I/O system. Since the signal is modulated in the digital domain, any in-phase and
quadrature imbalance problem in the quadrature modulator is obviated. Super-
heterodyne up-conversion and down-conversion chains are adopted to convert the
digital IF signal to and from the radio frequency (RF). We have designed the RF
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Figure 6.14. Measured PA output PSDs for a Siemens 1 W PA: (a) without predistortion; (b)–(d)
with conventional memory polynomial predistortion at iteration numbers 3, 4, and 5; (e)–(g) with
orthogonal memory polynomial predistortion at iteration numbers 3, 4, and 5. Both the conventional
and the orthogonal polynomial predistorters used K = 5 and Q = 4.

transmit and receive chains to have a linear response over a wide bandwidth and a
large dynamic range.

First, we would like to compare the performance of the conventional memory
polynomial predistorter (6.53) with that of the orthogonal memory polynomial
predistorter (6.54). In this experiment, the device under test (DUT) was a Siemens
1 W PA. The input signal was a 1.25 MHz bandwidth CDMA signal with a PAR of
6 dB. The peak envelope power (PEP) of the PA output was 28 dBm.

In Figure 6.14, line (a) is the PA output PSD without predistortion; lines (b)–
(d) are the PA output PSDs with conventional memory polynomial predistor-
tion at iteration numbers 3, 4, and 5; lines (e)–(g) are the PA output PSDs with
orthogonal memory polynomial predistortion at iteration numbers 3, 4, and 5. In
this experiment, we observed that the conventional memory polynomial predis-
torter performance was not stable (the lines fluctuated up and down). In contrast,
the orthogonal memory polynomial predistorter showed stability and effective-
ness; it successfully suppressed the IMD in the adjacent channel by 22 dB. In the
remaining experiments, the orthogonal polynomial basis (6.50) is adopted.

Next, we compared the performances of the memoryless and memory poly-
nomial predistorters. We first used the Siemens 1 W PA as the DUT. The input
signal was a 1.2 MHz bandwidth 8-tone signal with 150 kHz tone spacing. The
PEP of the PA output was 28 dBm.

Figure 6.15 shows the performance of the memory polynomial predistorter
and the memoryless polynomial predistorter in terms of PSD of the PA output.
In Figure 6.15, line (a) is the PA output PSD with memory polynomial predistor-
tion; line (b) is the PA output PSD with memoryless polynomial predistortion; line
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Center 836 MHz
#Res BW 30 kHz VBW 30 kHz

Span 5 MHz
Sweep 11.32 ms (401 pts)

VAvg
100
V1 V2
V3 FC

AA

Ref-10 dBm
Samp
Log
10
dB/

Atten 5 dB
Mkr1Δ 150 kHz
−51.13 dB

∗1R

(b)

(a)

1

(c)

Figure 6.15. Measured PA output PSD for a Siemens 1 W PA: (a) with the K = 5, Q = 9 memory
polynomial predistorter; (b) with the K = 5 memoryless predistorter; (c) without predistortion.

(c) is the PA output PSD without predistortion. In this experiment, we observed
that the memory polynomial predistorter suppressed almost all the spectral re-
growth. In the adjacent channel, the memory polynomial predistorter suppressed
the nearest IMD product by 33 dB, while the memoryless polynomial predistorter
gave 23 dB of IMD reduction. The memory polynomial predistorter outperformed
the memoryless predistorter by about 10 dB.

Next, we used the Ericsson 45 W PA as the DUT. The input signal was a
2.5 MHz bandwidth 2-carrier CDMA signal with a PAR of 8.5 dB. The PEP of the
PA output was 36.5 dBm.

Figure 6.16 shows the performances of the memory polynomial predistorter
and the memoryless polynomial predistorter in terms of PSD of the PA output. In
Figure 6.16, line (a) is the PA output PSD with memory polynomial predistortion;
line (b) is the PA output PSD with memoryless polynomial predistortion; line (c)
is the PA output PSD without predistortion. In this experiment, we observed that
the memory polynomial predistorter suppressed the IMD in the adjacent channel
by 15 dB, whereas the memoryless polynomial predistorter only gave 8 dB of IMD
reduction. The results showed that the memory polynomial predistorter had a sig-
nificant advantage over the memoryless polynomial predistorter for the PA with
memory effects.

6.5. Summary

The PA is an important element in wireless transmission systems and is inherently
nonlinear. Nonconstant envelope signals are particularly sensitive to the nonlinear
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Center 881 MHz
#Res BW 30 kHz VBW 30 kHz

Span 10 MHz
Sweep 22.64 ms (401 pts)
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Figure 6.16. Measured PA output PSD for an Ericsson 45 W PA: (a) with the K = 5, Q = 4 memory
polynomial predistorter; (b) with the K = 5 memoryless predistorter; (c) without predistortion.

effects in the PA. We describe here characteristics of the PA and prevailing black-
box types of modeling approaches. Several nonlinear distortion descriptors—
IMD, spectral regrowth (ACPR), SNDR, are introduced and analyzed for polyno-
mial types of nonlinearities. PA linearization is often pursued in order to achieve
higher levels of linearity and power efficiency. We introduce the indirect learn-
ing architecture and advocate the use of basis expansion models for the PD, espe-
cially the orthogonal polynomial basis for improved numerical stability. We dis-
cuss memory effects in the PA—origins, symptoms, models, and remedies. Testbed
measurement results on real PAs are provided to support the claims.
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7
Nonlinear multichannel active
noise control

Giovanni L. Sicuranza and Alberto Carini

7.1. Introduction

The principle of active noise control (ANC) has been well known for many years,
as shown by the seminal contributions in [28, 33]. However, methods for ANC
have been intensively studied only in the last three decades as a consequence of the
developments in the area of digital technologies. Such studies have already pro-
vided a good comprehension of the theory and consequently useful applications
in vibration and acoustic noise control tasks. Generally speaking, active control of
vibrations and acoustic noises are based on the same principle of the destructive
interference in a given location between a disturbance source and an appropriately
generated signal with the same amplitude as the disturbance source but with an
opposite phase. The main difference in the two situations is due to the nature of
the actuators used to generate the interfering signal, which are mainly mechanical
in the case of vibration control while they are electroacoustical devices, as loud-
speakers, in the case of acoustic noise control.

The vibration control is also related to the problem of attenuating the cor-
responding sound generated by the vibrations in the auditory spectrum. Studies
in this field are currently developed with reference to environmental and legal re-
strictions concerning people’s safety and health. Among many examples, we may
refer to the application of actively controlling the inputs to vibrating structures,
such as airplane cockpits, to minimize the sound radiation.

On the other hand, in most cases the acoustic noise can be directly reduced
by introducing a secondary noise source, such as a loudspeaker, which produces a
sound field that destructively interferes with the original noise in a desired location
where the so-called error microphone is placed. The secondary noise source is
driven by the active noise controller that is adapted according to the error signal
and the input signal collected by a reference microphone in proximity of the noise
source. Successful implementations of this approach can be found in systems such
as air conditioning ducts, to attenuate the low frequency noise due to the fans, or
in transport systems, to reduce the noise generated by the engines inside propeller
aircrafts, vehicles, and helicopters.
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170 Nonlinear multichannel active noise control

Physical limitations generally restrict the frequency range of ANC systems
below a few hundred hertz. The main limitation is related to the wavelength of
the acoustic waves in connection to the extension of the silenced area. At higher
frequencies, it is still possible to cancel the sound in a limited zone around, for
example, a listener’s ear, and suitable systems have been already successfully im-
plemented for active headsets. To attenuate disturbance frequencies above 1 kH,
passive systems, based on the absorption and reflection properties of materials, are
widely used and give good performances.

The initial activities on vibration and noise control originated in the field of
control engineering [24, 32, 53], while in recent years the advantages offered by
the signal processing methodologies have been successfully exploited [18, 19, 27].
The latter approach offers great opportunities for real-time implementations as a
consequence of recent advances in electroacoustic transducers, digital signal pro-
cessors, and adaptation algorithms.

Most of the studies presented in the literature refer to linear models and lin-
ear adaptive controllers represent the state of the art in the field. However, lin-
ear controllers can hardly provide any further improvements in terms of control
performance. On the other hand, nonlinear modeling techniques may bring new
insights and suggest new developments. In fact, it is often recognized that nonlin-
earities may affect actual applications. Nonlinear effects arise from the behavior of
the noise source which rather than a stochastic process may be described as a non-
linear deterministic process, sometimes of chaotic nature [30, 45]. Moreover, the
paths modeling the acoustic system may exhibit a nonlinear behavior, thus further
motivating the use of a nonlinear controller [26].

The simplest and most frequently used ANC systems exploit a single-channel
configuration where the primary path P consists of the acoustic response from
the noise source to an error microphone located at the canceling point. The noise
source is sensed by a single reference microphone and an interfering signal is pro-
duced by a single loudspeaker. A single-channel active noise controller gives, in
principle, attenuation of the undesired disturbance only in the proximity of the
error microphone. Even though the silenced region may be relatively large at low
frequencies, that is, in a region that is appropriately small with respect to the wave-
length of the corresponding acoustical waves, to spatially extend the silenced re-
gion a multichannel approach may be preferred. In this case, sets of reference sen-
sors, actuators, and error microphones are used increasing the complexity of the
ANC system.

In this chapter, the main aspects of the active control of acoustic noises are
reviewed from a signal processing point of view with particular attention to the
nonlinear multichannel framework. While different nonlinear models for the con-
trollers have been considered recently, polynomial or Volterra filters [29] have been
shown to be particularly useful. Thus in this chapter we will refer to a class of non-
linear controllers that contains all the filters that are characterized by a linear rela-
tionship of the output with respect to the filter coefficients. Such a class includes in
particular truncated Volterra filters [29] as well as functional-link artificial neural
networks [35].
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The main problems arising in the nonlinear controllers are the following.
(i) The increase in the computational load caused by the complexity of both

the multichannel approach and the representation of nonlinearities.
(ii) The correlations existing among signals in multichannel schemes due to

the similarities in the acoustic paths and their interaction.
(iii) The correlations existing, even when the input signals are white, between

the elements of the input vectors to the Volterra filters which are given
by products of samples [29, page 253].

All these problems have an impact on the efficiency and the accuracy of the adap-
tation algorithms used for the controllers. As a consequence, the main aspect to
study is the derivation of fast and reliable adaptation algorithms for nonlinear
multichannel controllers. It is worth noting that this research area represents a
challenge for modern nonlinear signal processing.

In this chapter, a description of the ANC scenario is given first with partic-
ular reference to the so-called filtered-X adaptation algorithms for linear single-
channel and multichannel schemes. Then, the nonlinear effects that may influence
the behavior of an ANC system are reviewed. It is also shown how the filtered-X
updating algorithms previously described can be profitably applied to the class of
nonlinear active noise controllers whose filters are characterized by a linear rela-
tionship of the output with respect to the filter coefficients. A few experimental
results for nonlinear multichannel active noise controllers belonging to this class
are presented and commented. Finally, current work and future research lines are
exposed.

7.2. The active noise control scenario

Actual ANC systems are essentially mixed analog-digital systems that require A/D
and D/A converters, power amplifiers, loudspeakers, and transducers. In this sec-
tion, the digital core of single-channel and multichannel ANC systems is briefly
described, together with the corresponding algorithms used for adapting the con-
trollers in the linear case. The feedforward adaptation algorithms are considered
in more detail since they can be profitably exploited in nonlinear situations. The
derivations that lead to the filtered-X least mean square (LMS) and the filtered-
X affine projection (AP) algorithms for single-channel and multichannel schemes
are summarized. All the derivations make use of a vector-matrix notation. Due to
space limitations, in some cases only the rational of the adaptation algorithms is
reported while the detailed derivations can be found in the specific papers referred
to.

7.2.1. Single-channel and multichannel schemes for active noise control

A typical single-channel acoustic noise control scheme is shown in Figure 7.1.
The primary path P consists of the acoustic response from the noise source

to the error microphone located at the canceling point. The noise source is sensed
by a reference microphone that collects the samples of the noise source ns(n) and
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Primary path

Error
microphone

Noise
source

ns(n)

Reference
microphone

u(n)

Secondary path
Adaptive
controller

e(n)

Figure 7.1. Principle of single-channel active noise control.
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Figure 7.2. Block diagram of a single-channel active noise control system.

feeds them as input to the adaptive controller. The controller is adapted using
ns(n) and the error signal e(n) sent back by the error microphone. The signal
u(n), generated by the controller through a loudspeaker and traveling through the
secondary path S, gives a signal which destructively interferes with the undesired
noise at the error microphone location. A block diagram depicting this situation
is shown in Figure 7.2. In this scheme, P and S represent the transfer functions of
the primary and secondary paths, respectively, and dp(n) and ds(n) are the signals
that destructively interfere at the location where the error microphone is placed.
D is the transfer function of the detector path, that is, the path between the noise
source and the reference microphone, while F is a transfer function modeling the
acoustical feedback between the loudspeaker and the reference microphone. Fi-
nally, nm(n) is an added measurement noise, described as a white or colored zero
mean noise process uncorrelated with the noise source. In general, all the various
paths, and thus the corresponding transfer functions, are assumed to be linear,
even though, as discussed below, there is the evidence that nonlinear distortions
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Figure 7.3. Feedforward scheme for active noise control.

may affect all these paths. This general block diagram includes the most relevant
schemes that have been studied in the literature [23]. The first assumption that
the acoustical feedback is negligible leads, in fact, to the widely used feedforward
schemes [18]. By further neglecting the detector path and the measurement noise,
the simplified scheme of Figure 7.3 is derived. In a linear and time-invariant envi-
ronment, it is often assumed that the secondary path has been modeled by sepa-
rate estimation procedures in the form of an FIR filter with impulse response s(n).
Then, the signal ds(n) is given as the linear convolution of s(n) with the signal y(n)
and thus the error signal can be expressed as

e(n) = dp(n) + ds(n) = dp(n) + s(n)∗ y(n), (7.1)

where ∗ indicates the operation of linear convolution. This is the basis for the
derivation of the so-called filtered-X algorithms [1, 18, 38] where the adaptive
controller is modeled as an FIR filter. In case the acoustical feedback can not be
neglected, the controller needs to be an IIR filter. Its coefficients are adapted using
the so-called filtered-U algorithm [20], which is based on the pseudolinear regres-
sion method proposed by Feintuch for adaptive IIR filters [21].

The model of Figure 7.2 also includes the other broad class of active noise
controllers, that is, the feedback schemes [18, 31]. In fact, assuming that the detec-
tor path equals the primary path and the intrinsic feedback equals the secondary
path, with the condition that there is no output measurement noise, the scheme
of Figure 7.4 is derived which coincides with the scheme of a feedback structure.
The lack of a reference signal is characteristic for the feedback schemes and this
arrangement is used when it is difficult to put a reference microphone or a trans-
ducer in proximity of the noise source. The most successful development of these
systems is in active headsets where an actuator source (a loudspeaker) and an er-
ror sensor (a microphone) are located in very close positions within the earcup.
Since the earcup cavity is small with respect to the sound wavelengths, the diffi-
culties related to the extension of the silenced zone are alleviated. It was reported
in 1995 [24] that in the market there were about a dozen of different compet-
ing headsets, offering sound reductions of more than 10 dB up to about 500 Hz.
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Figure 7.4. Feedback scheme for active noise control.
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Figure 7.5. Multichannel active noise control.

However, to avoid the delays in the feedback loop of these systems, the first feed-
back controllers used analog circuits optimized to work well with a given distur-
bance spectrum. Experiments on active headphone sets in a digital context are
reported in [31], where also some reference to nonlinear effects is made.

The single-channel ANC scheme gives, in principle, attenuation of the un-
desired disturbance in the proximity of the point where the error microphone
collects the error signal. To spatially extend the silenced region a multichannel
approach can be applied using sets of reference sensors, actuator sources, and er-
ror microphones [16, 17]. A general scheme describing this situation is shown
in Figure 7.5, where I input sensors are used to collect the corresponding input
signals. In the controller, any input i, 1 ≤ i ≤ I , is usually connected to the out-
put j, 1 ≤ j ≤ J , via an FIR filter, and thus the controller computes J output
signals which are propagated to the K error sensors. As shown in [15], the main
drawbacks of this approach are the complexity of the coefficient updates, the data
storage requirements, and the slow convergence of the adaptive algorithms.
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A commercial application of a multichannel controller has been developed,
for example, by Saab for the reduction of the interior noise in a Saab 340 pro-
peller aircraft [24]. The reference signals are generated from synchronization sig-
nals taken from the propeller shafts. The controller is implemented by means of
FIR filters equipped with a multichannel version of the filtered-X algorithm. A
system of 24 sources and 48 microphone errors are used and a noise attenuation
of about 10 dB is reached. Other experiments are reported in [15] for the active
control of the air compressor noise. Different multichannel structures have been
simulated using air compressor data measured in an anechoic environment result-
ing in significant levels of attenuation.

7.2.2. Filtered-X LMS algorithm for linear single-channel controllers

With reference to Figure 7.3, we can express the output from the single-channel
controller at time n as

y(n) = hT(n)x(n), (7.2)

where x(n) is the vector of the lastN input samples from the reference microphone

x(n) =
[
x(n) x(n− 1) · · · x(n−N + 1)

]T
(7.3)

and h(n) is the vector of the N coefficients of the FIR filter implementing the
controller at time n

h(n) =
[
h(n; 0) h(n; 1) · · · h(n;N − 1)

]T
. (7.4)

The signal collected at the error microphone is then expressed as

e(n) = dp(n) + ds(n)

= dp(n) + s(n)∗ y(n)

= dp(n) + s(n)∗ {hT(n)x(n)
}

,

(7.5)

where the symbol ∗ indicates the operation of linear convolution between the
finite-impulse response s(n) modeling the secondary path and the signal at the
output of the controller. The coefficients in the vector h(n) need to be updated
so that the error function E[e2(n)] is minimized. By applying the steepest descent
algorithm, the updating equation becomes

h(n + 1) = h(n)− α∂E
[
e2(n)

]

∂h(n)
. (7.6)
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According to the stochastic gradient approximation, the updating terms are com-
puted as

∂E
[
e2(n)

]

∂h(n)
� ∂

(
e2(n)

)

∂h(n)
= 2e(n)

∂
(
dp(n) + s(n)∗ {hT(n)x(n)

})

∂h(n)

= 2e(n)
(
s(n)∗ x(n)

)
.

(7.7)

The complete updating equation then becomes

h(n + 1) = h(n)− μe(n)
(
s(n)∗ x(n)

)
, (7.8)

where μ = 2α is the step size, or adaptation constant, controlling the convergence
properties of the algorithm. It is worth noting that the adaptation equation in (7.8)
requires the a priori knowledge or estimation of the impulse response s(n) of the
secondary path.

7.2.3. Filtered-X LMS algorithm for linear multichannel controllers

The single-channel updating algorithm can be easily extended to the multichan-
nel scheme. With reference to Figure 7.5, I input signals enter into the controller
whose outputs drive J loudspeakers. The linear controller is modeled as a set of
J · I FIR filters with memory length equal to Ni, 1 ≤ i ≤ I , connecting each input
i to each output j. The adaptation algorithm exploits the K signals fed back by
the error microphones. Updating the notation used for the single-channel case, it
is possible to write for each actuator j of the multichannel scheme the following
equations:

yj(n) =
I∑

i=1

hTji(n)xi(n), (7.9)

where xi(n) is the vector of the last Ni input samples from the reference micro-
phone i,

xi(n) =
[
xi(n) xi(n− 1) · · · xi

(
n−Ni + 1

)]T
(7.10)

and h ji(n) is the vector of the Ni coefficients of the FIR filter connecting at time n
the input i to the output j of the controller

h ji(n) =
[
hji(n; 0) hji(n; 1) · · · hji

(
n;Ni − 1

)]T
. (7.11)
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The signal collected at the kth error microphone is then expressed as

ek(n) = dpk(n) + dsk(n) = dpk(n) +
J∑

j=1

sk j(n)∗ yj(n)

= dpk(n) +
J∑

j=1

sk j(n)∗
⎧
⎨

⎩

I∑

i=1

hTji(n)xi(n)

⎫
⎬

⎭ ,

(7.12)

where the signal dsk(n) takes into account all the contributions given by the J ac-
tuator sources. The coefficients in each vector h ji(n) are still updated so that the

whole error function E[
∑K

k=1 e
2
k(n)] is minimized. According to the stochastic gra-

dient approximation, the updating terms for each of the vectors h ji(n) are com-
puted as

∂
(∑K

k=1 e
2
k(n)

)

∂h ji(n)
= 2

K∑

k=1

ek(n)
∂
(
dpk(n) +

∑J
j=1 sk j(n)∗ {∑I

i=1 hTji(n)xi(n)
})

∂h ji(n)

= 2
K∑

k=1

ek(n)
(
sk j(n)∗ xi(n)

)
.

(7.13)

The complete updating equation for the FIR filter connecting the input i to the
output j can be written as

h ji(n + 1) = h ji(n)−
K∑

k=1

μkek(n)
(
sk j(n)∗ xi(n)

)
, (7.14)

where μk, k = 1, . . . ,K , are the step sizes, or adaptation constants, controlling the
convergence properties of the algorithm. It is worth noting that the coefficients
of each filter in the controller are updated independently from those of the other
filters using a weighted combination of the errors at the K sensors. The adaptation
equation in (7.14) requires the a priori knowledge or estimation of the impulse
responses sk j(n) of the secondary paths.

7.2.4. Filtered-X AP algorithm for linear single-channel controllers

While the filtered-X LMS algorithm minimizes, according to the stochastic gradi-
ent approximation, the single error at time n, the aim of the filtered-X AP algo-
rithm of order L is to minimize the last L errors at times n,n−1, . . . ,n−L+ 1 [34].
More specifically, the desired minimization is obtained by finding the minimum
norm of the coefficient increments that set to zero the last L a posteriori errors
defined as

εn+1(n− l + 1) = dp(n− l + 1) + s(n− l + 1)∗ {hT(n + 1)x(n− l + 1)
}

,
(7.15)
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for 1 ≤ l ≤ L. A suitable error function is defined and then minimized by using a
set of Lagrange’s multipliers. The set of constraints for an Lth-order filtered-X AP
algorithm is given by the following equations:

dp(n) + s(n)∗ {hT(n + 1)x(n)
} = 0,

dp(n− 1) + s(n− 1)∗ {hT(n + 1)x(n− 1)
} = 0,

...
dp(n− L + 1) + s(n− L + 1)∗ {hT(n + 1)x(n− L + 1)

} = 0.

(7.16)

The function ε(n) to be minimized is defined as

ε(n) = δhT(n + 1)δh(n + 1)

+
L∑

l=1

λl
(
dp(n− l + 1) + s(n− l + 1)∗ {hT(n + 1)x(n− l + 1)

})
,

(7.17)

where

δh(n + 1) = h(n + 1)− h(n) (7.18)

are the coefficient increments and λl are the Lagrange’s multipliers. By differenti-
ating ε(n) with respect to δh(n + 1) the following set of N equations is obtained:

2δh(n + 1) = −
L∑

l=1

λls(n− l + 1)∗ x(n− l + 1), (7.19)

where the linearity of the convolution operation has been exploited. Equation
(7.19) can be also rewritten as

2δh(n + 1) = −G(n)Λ, (7.20)

where the N × L matrix G(n) is defined as

G(n) =
[
s(n)∗ x(n) s(n− 1)∗ x(n− 1) · · · s(n− L + 1)∗ x(n− L + 1)

]
,

(7.21)

and the L× 1 vector Λ is defined as

Λ =
[
λ1 λ2 · · · λL

]T
. (7.22)

By premultiplying (7.20) by GT(n), the following equation is obtained:

Λ = −(GT(n)G(n)
)−1

GT(n)2δh(n + 1). (7.23)
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The L× 1 vector GT(n)2δh(n + 1) can be also written as

GT(n)2δh(n + 1) = 2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(
s(n)∗ xT(n)

)
δh(n + 1)

(
s(n− 1)∗ xT(n− 1)

)
δh(n + 1)

...(
s(n− L + 1)∗ xT(n− L + 1)

)
δh(n + 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (7.24)

Apart from the factor 2, the lth element of this vector (l = 1, . . . ,L) can be written,
after some manipulations, as

(
s(n− l + 1)∗ xT(n− l + 1)

)(
h(n + 1)− h(n)

)

= s(n− l + 1)∗ {hT(n + 1)x(n− l + 1)
}

− s(n− l + 1)∗ {hT(n)x(n− l + 1)
}

= −dp(n− l + 1)− s(n− l + 1)∗ {hT(n)x(n− l + 1)
}

= −e(n− l + 1).

(7.25)

In deriving this expression, the linearity of the convolution operation and the con-
straints given by (7.16) have been exploited. As a conclusion, (7.24) can be rewrit-
ten as

GT(n)2δh(n + 1) = −2e(n), (7.26)

where e(n) is the L× 1 vector of the filtered-X a priori estimation errors

e(n) =
[
e(n) e(n− 1) · · · e(n− L + 1)

]T
. (7.27)

By combining (7.20), (7.23), and (7.26), the following relation is derived:

δh(n + 1) = −G(n)
(

GT(n)G(n)
)−1

e(n). (7.28)

In conclusion, the filtered-X AP adaptation rule for a linear controller can be writ-
ten as

h(n + 1) = h(n)− μG(n)
[

GT(n)G(n)
]−1

e(n), (7.29)

where μ is a parameter that controls both the convergence rate and the stability of
the filtered-X AP algorithm. The L × L matrix GT(n)G(n) represents an estimate
of the autocorrelation matrix of the input signal x filtered by the transfer function
S of the secondary path, obtained using the last L input vectors. The computation
of its inverse is required at every time instant n. For low orders of AP, that is, with
L = 2, 3, the direct inversion of the matrix is an affordable task. The only necessary
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care in order to avoid possible numerical instabilities is to add a diagonal matrix
δI, where δ is a small positive constant, to the matrix GT(n)G(n) so that

h(n + 1) = h(n)− μG(n)
[

GT(n)G(n) + δI
]−1

e(n). (7.30)

A general and efficient solution which can be applied to any order L of AP is shown
in [7] by resorting to a simpler and more stable estimate for the inverse of the ma-
trix GT(n)G(n), based on the matrix inversion lemma, as usually done in classical
RLS algorithms.

It is worth noting that for L = 1 the matrix G(n) reduces to

G(n) = [s(n)∗ x(n)
]

(7.31)

and thus the updating rule becomes

h(n + 1) = h(n)− μ s(n)∗ x(n)
∥∥s(n)∗ x(n)

∥∥2 e(n). (7.32)

This updating rule coincides with the normalized filtered-X LMS algorithm.

7.2.5. Filtered-X AP algorithm for linear multichannel controllers

As already noted, the peculiarity of the AP algorithms [34] is that a set of L − 1
previous errors are considered in addition to the present one. To derive in the
multichannel case an exact AP filtered-X algorithm, similar to the one given by
(7.30) for the single-channel controller, it is necessary to arrange all the coefficients
of the J · I FIR filters of the controller in a single vector h(n). To this purpose, let
us first define the following vectors and matrices:

xi(n) =
[
xi(n) xi(n− 1) · · · xi(n−N + 1)

]T
(7.33)

is a column vector which collects the last N samples at the input i, 1 ≤ i ≤ I . For
sake of simplicity, it has been assumed here that the memory of all the FIR filters
in the controller is equal to N .

x(n) =
[

xT1 (n) xT2 (n) · · · xTI (n)
]T

(7.34)

is a column vector with I×N elements, formed by arranging in sequence the input
column vectors xi(n).

y(n) =
[
y1(n) y2(n) · · · yJ(n)

]T
(7.35)

is the J × 1 column vector of the outputs from the controller.

h ji(n) =
[
hji(n; 0) hji(n; 1) · · · hji(n;N − 1)

]T
(7.36)
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is the N · 1 column vector formed by the coefficients at time n of each FIR filter,
with 1 ≤ j ≤ J , 1 ≤ i ≤ I .

H(n) =

⎡

⎢
⎢
⎢
⎢
⎣

h11(n) h21(n) · · · hJ1(n)
h12(n) h22(n) · · · hJ2(n)

...
h1I(n) h2I(n) · · · hJI(n)

⎤

⎥
⎥
⎥
⎥
⎦

(7.37)

is the (I ·N)× J matrix formed by the J · I FIR filters of the controller.
Using such notations, the input-output relationship of the controller is given

by

y(n) = HT(n)x(n). (7.38)

Then, the column vector h(n) collecting all the Ntot = J · I · N coefficients of the
FIR filters can be obtained by the equation

h(n) = vec
(

H(n)
)
, (7.39)

where vec(·) is the vector operator which casts in a single column all the columns
of a matrix. It is easy to show that the updating rules of (7.29) and (7.30) are still
valid for the multichannel case if the matrix G(n) is suitably redefined. To this
purpose, let us introduce the following K column vectors of dimensions Ntot × 1
which collect the results of the convolutions among the secondary path impulse
responses sk j(n) and the input signals xi(n), for 1 ≤ j ≤ J and 1 ≤ i ≤ I ,

χk(n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sk1(n)∗ x1(n)

sk1(n)∗ x2(n)
...

sk1(n)∗ xI(n)

sk2(n)∗ x1(n)

sk2(n)∗ x2(n)
...

sk2(n)∗ xI(n)
...
...

skJ(n)∗ x1(n)

skJ(n)∗ x2(n)
...

skJ(n)∗ xI(n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.40)
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where 1 ≤ k ≤ K . Then, the Ntot × (K · L) matrix G(n) is defined as

G(n) =
[
χ1(n) χ1(n− 1) · · · χ1(n− L + 1) χ2(n) χ2(n− 1) · · ·
χ2(n− L + 1) χK (n) χK (n− 1) · · · χK (n− L + 1)

]
.

(7.41)

It is worth noting that in the present situation GT(n)G(n) is a symmetric matrix
that plays the role of a normalization factor. As a consequence, the exact filtered-X
AP algorithm takes into account the interactions among the different paths and
filters in the adaptation rule, in contrast to the multichannel LMS algorithm in
(7.14). The computational complexity of the algorithm clearly depends on the di-
mensions (K · L) × (K · L) of this matrix, which needs to be inverted at each
iteration. Therefore, to reduce the implementation complexity, approximate AP
algorithms need to be devised.

7.2.5.1. Two approximate filtered-X AP algorithms

In order to derive the approximate filtered-X AP algorithms, it is convenient to
subdivide the matrix G(n) in K submatrices of dimensions Ntot × L,

Gk(n) =
[
χk(n) χk(n− 1) · · · χk(n− L + 1)

]
, (7.42)

for 1 ≤ k ≤ K , so that

G(n) =
[

G1(n) G2(n) · · · GK (n)
]
. (7.43)

Then, a first approximate filtered-X AP algorithm can be obtained by replacing the
matrix GT(n)G(n) with the block-diagonal matrix

G̃T(n)G̃(n) =

⎡

⎢
⎢
⎢
⎢
⎣

GT
1 (n)G1(n)

GT
2 (n)G2(n)

. . .
GT
K (n)GK (n)

⎤

⎥
⎥
⎥
⎥
⎦
. (7.44)

The updating relationship then becomes

h(n + 1) = h(n)− μG(n)
[

G̃T(n)G̃(n) + δI
]−1

e(n). (7.45)

In this case, the inversion of K matrices L×L is required in place of the inver-
sion of the (K ·L)× (K ·L) matrix of the exact algorithm. It has been shown in [9]
that this algorithm has better convergence behavior than the LMS algorithm while
the computational complexity is much lower than the updating rule of (7.30) and
(7.41).
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Another possibility, which has been actually considered first in [40], consists
in additionally splitting the matrices Gk(n) in J · I submatrices N × L, Gk ji(n), so
that

Gk(n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Gk11(n)

Gk12(n)
...

Gk1I(n)

Gk21(n)

Gk22(n)
...

Gk2I(n)
...

GkJ1(n)

GkJ2(n)
...

GkJI(n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.46)

In this case, the coefficients of each filter in the controller are updated with a rule
that, apart from the normalization matrices, is similar to the filtered-X LMS algo-
rithm in (7.14). The complete derivations, given in [40] for linear and quadratic
filters, lead to the following expression for the updating of the FIR filters involved
in the linear controller

h ji(n + 1) = h ji(n)−
K∑

k=1

μkGk ji(n)
[

GT
k ji(n)Gk ji(n) + δI

]−1
ek(n), (7.47)

where

ek(n) =
[
ek(n) ek(n− 1) · · · ek(n− L + 1)

]
(7.48)

with ek(n) defined in (7.12). It is worth noting that each filter in the controller
is adapted independently as in (7.14). With respect to the previous approximate
method, further partitioned matrices are used, and thus the inversion of K · J · I
matrices L × L are required. As a consequence, it is in general more computa-
tionally expensive than the previous method. Moreover, the correlations existing
among the filtered-X signals, due to the similarities among the signals collected
by the reference microphones and among the impulse responses of the secondary
paths, can degrade the convergence behavior of the algorithm. To avoid possible
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numerical instabilities, the use of a small leakage factor γ is suggested in [40]. The
final updating relationship then becomes

h ji(n + 1) = (1− γ)h ji(n)−
K∑

k=1

μkGk ji(n)
[

GT
k ji(n)Gk ji(n) + δI

]−1
ek(n).

(7.49)

7.3. Nonlinear active noise controllers

In this section we review the main nonlinear effects that may influence the behav-
ior of an active control system and thus motivate the use of nonlinear active noise
controllers.

7.3.1. Nonlinear reference noise

It has been recently noted [45, 49] that the noise generated by a dynamic system
can often be modeled as a nonlinear and deterministic process, such as a chaotic
process rather than a stochastic one, as usually assumed in the studies on adaptive
filters. In particular, it has been shown in [30] that the noise of the fan in a duct
is well modeled by a chaotic process. Three kinds of chaotic noises, that is, logis-
tic, Lorenz, and Duffing noises, have been applied in [45] to test the nonlinear
controller proposed there. Among those noises, the logistic chaotic noise offers an
extremely useful test signal since it is a second-order white and predictable non-
linear process. It is usually generated by the following expression:

ξ(n + 1) = λξ(n)
(
1− ξ(n)

)
, (7.50)

where λ = 4 and ξ(0) is a real number in the range (0, 1). The nonlinear process
is, in general, normalized in order to have a unit signal power, that is,

x(n) = ξ(n)
σξ

, (7.51)

with σξ = E[ξ2(n)]. A segment of 512 samples of a zero mean logistic noise with
ξ(0) = 0.8 is shown in Figure 7.6 and the corresponding spectrum is shown in
Figure 7.7.

The impact of this kind of noise on the controller performance becomes ev-
ident when the secondary path between the actuator source and the error sensor
is modeled as a nonminimum-phase FIR filter. In fact, the transfer function of the
controller that minimizes the square of the error signal is given by −P · S−1. If the
secondary path is described by a linear and minimum-phase FIR filter, its inverse
is represented by a stable causal IIR filter. This filter can be replaced, in general, by
an approximating FIR filter of suitable length. However, if the secondary path is
described by a nonminimum-phase FIR filter, its unstable IIR inverse requires an
approximating noncausal FIR filter. In contrast to other applications where a linear
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Figure 7.6. Logistic noise for λ = 4 and ξ(0) = 0.8.
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Figure 7.7. Spectrum of the logistic noise for λ = 4 and ξ(0) = 0.8.

inverse to a nonminimum-phase system can be provided by accepting a suitable
delay, as in adaptive inverse control and adaptive equalization, in this application
such an approach is not possible. Nevertheless, if the input signal is stochastic non-
Gaussian or deterministic, a zero-delay nonlinear inverse exists. In fact, it has been
shown in [45] that the minimum mean square error estimate of the disturbing
noise at the error sensor is compensated by two terms involving the parameters of
the controller and of the secondary path. The first term is a linear combination of
present and past input samples (the causal part) while the second part is a linear
combination of future input samples (the noncausal part). This second term can
be viewed as a linear combination of multistep predictors acting on the input sam-
ples. Therefore, if the input signal is non-Gaussian and is not independent from
sample to sample, then the optimal predictor is nonlinear. This predictor can be
approximated in practice by using multilayer perceptrons, radial basis functions,
or Volterra filters, as discussed in [45, 49].
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7.3.2. Nonlinear primary path

Another situation in which a nonlinear model is required is when the primary
path exhibits some nonlinear distortions. Evidence of this fact can be found, for
example, in systems where the noise is propagating with high sound pressure [26]
and the nonlinearity of the air is taken into account. It was reported in [26] that a
sinusoidal wave at 500 Hz propagating in a duct at a sound pressure of 140 dB SPL
produces harmonic distortions of about 1% after traveling a distance of 1 m.

A practical model commonly used to describe a nonlinear primary path is
based on quadratic and cubic pointwise nonlinearities. If some additional mem-
ory effect described in general by a linear convolution model is present, then the
result is a nonlinear model given in terms of quadratic and cubic kernels of the
well-known Volterra series [29]. This kind of model demands a nonlinear con-
troller described by a Volterra filter. It is worth mentioning that for these filters
it is possible to derive efficient updating algorithms by exploiting the linearity of
their output with respect to the kernel coefficients. The derivation of filtered-X
algorithms for Volterra filters will be described in detail in the next sections.

Primary paths with cubic nonlinearities and reference noises modeled with a
sinusoidal wave corrupted by a Gaussian noise, with a logistic chaotic noise, and
with a white Gaussian and not predictable noise, respectively, have been tested in
[49] in presence of minimum and nonminimum-phase secondary paths. Improve-
ments of performance in terms of residual MSE have been demonstrated under all
these conditions except when the logistic noise is applied and the secondary path is
minimum phase. In such a case, in fact, an FIR controller achieves about the same
MSE than a second-order or third-order Volterra controller. This result is expected
since the reference noise itself contains second- and higher-order terms so that
their linear combination due to the FIR filter can approximate a Volterra model.
However, when the secondary path exhibits a nonminimum-phase behavior, the
performance improvement due to the use of a Volterra controller is confirmed to
be significant.

7.3.3. Nonlinear secondary path

The effects on nonlinearities in the secondary path have been also studied in the
literature. In fact, actual ANC systems use in the secondary paths A/D and D/A
converters, power amplifiers, loudspeakers, and transducers. Overdriving the elec-
tronics or the loudspeakers gives rise to nonlinear effects. An accurate study of the
impact of a nonlinearity in the secondary path has been presented in [13] for the
filtered-X LMS algorithm. The analysis is limited, however, to the presence of a
zero-memory saturation nonlinearity. The degree of nonlinearity is defined by a
steady-state parameter that describes the power limitation in the output of the sec-
ondary path due to the nonlinear distortion. Several examples are considered to
illustrate the accuracy of the performed analysis for small, moderate, and large de-
grees of nonlinearity. The analytical and simulation results show that even a small
nonlinearity may significantly affect the controller behavior.
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Nonlinear paths and nonlinear distortions have been also considered in the
framework of the feedback schemes. In particular, in [31] a frequency selective
feedback structure has been described. This structure works essentially in the fre-
quency domain and is considered as nonlinear since signal amplitudes and phases
are adapted in place of the controller coefficients. It is also shown that in active
headphone sets, which still contain microphones, amplifiers, and loudspeakers
in the secondary path, nonlinear behaviors have been noticed [31]. In fact, the
tests with three frequency components pointed out nonlinear modulation effects.
Therefore, it has been concluded that it is necessary to control not only the funda-
mental harmonic of a disturbance frequency but also the first upper harmonic.

7.3.4. Nonlinear models for the controller

The presence of nonlinear effects in the source noise and in the primary and sec-
ondary paths motivates the use of a nonlinear controller. The models proposed in
recent contributions can be grouped in the following categories.

(i) Neural networks (examples can be found in [2, 3, 12, 30, 35, 36, 44]).
(ii) Radial basis functions (examples can be found in [45]).

(iii) Volterra filters (examples can be found in [7, 40, 41, 45, 48, 49]).
(iv) Frequency selective filters, (examples can be found in [31, 47]).
(v) Fuzzy systems (examples can be found in [10, 11, 43]).

7.4. A class of nonlinear feedforward active noise controllers

The updating algorithms described in Section 7.2 can be easily adapted to deal
with the class of nonlinear filters characterized by a linear relationship of the filter
output with respect to the filter coefficients. Specifically, such a class is defined by
the input-output relationship

y(n) = hT(n)x(n), (7.52)

where h(n) is the vector formed by the filter coefficients and x(n) is expressed as a
vector function of the input samples, that is,

x(n) =
[
f1{x} f2{x} · · · fM{x}

]T
, (7.53)

where fr{·}, r = 1, . . . ,M, is a time-invariant functional of its argument. In ad-
dition to linear filters, (7.52) and (7.53) include truncated Volterra filters of any
order p as well as structures based on trigonometric functional expansions [14]
and other nonlinear functionals as, for example, saturating nonlinearities. It will
be shown in this section that for this class of filters the updating rules presented
in Section 7.2 require only a redefinition of the coefficient vectors and of the cor-
responding input vectors. Appropriate arrangements need to be found, according
to the specific form of the input-output relationship. To this purpose, Volterra fil-
ters and structures based on functional expansions will be first briefly described
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and then the formulations of the updating rules for nonlinear single-channel and
multichannel controllers will be discussed.

7.4.1. Polynomial and Volterra filters

Discrete-time causal polynomial filters [29] are described by the input-output re-
lationship

y(n) =
P∑

p=0

gp
(
x(n), x(n− 1), . . . , x

(
n−Nx + 1

)
, y(n− 1), . . . , y

(
n−Ny + 1

))
,

(7.54)

where gp(·) is a polynomial of order p in the variables within the parentheses. The
linear filter is a particular case of polynomial filters since the relation in (7.54) be-
comes linear if gp(·) = 0 for all p �= 1. With reference to (7.54), polynomial filters
can be classified into recursive and nonrecursive filters. Recursive filters are char-
acterized by possibly nonlinear feedback terms in their input-output relationships.
They possess an infinite memory, as linear filters with infinite impulse response. A
simple example of a recursive filter is the bilinear filter represented by the following
equation:

y(n) =
N1−1∑

i=0

aix(n− i) +
N2−1∑

j=1

bj y(n− j) +
N3−1∑

i=0

N4−1∑

j=1

ci jx(n− i)y(n− j). (7.55)

In consideration of its infinite memory, a recursive polynomial filter admits, within
some stability constraints, a convergent Volterra series expansion [29] of the form

y(n) = h0 +
∞∑

m1=0

h1
(
m1
)
x
(
n−m1

)

+
∞∑

m1=0

∞∑

m2=0

h2
(
m1,m2

)
x
(
n−m1

)
x
(
n−m2

)
+ · · ·

+
∞∑

m1=0

∞∑

m2=0

· · ·
∞∑

mp=0

hp
(
m1,m2, . . . ,mp

)

x
(
n−m1

)
x
(
n−m2

) · · · x(n−mp
)

+ · · · ,

(7.56)

where hp(m1,m2, . . . ,mp) denotes the pth-order Volterra kernel of the nonlinear
filter.

Nonrecursive polynomial filters, commonly called Volterra filters, are charac-
terized by input-output relationships that result from a double truncation of the
Volterra series, that is, a memory truncation, by limiting the memory of the filters
to a finite number of elements in the summations of (7.56) and an order trunca-
tion by limiting the number of Volterra kernels. As a consequence, a Volterra filter
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of order p is described by the equation

y(n) = h0 +
N1−1∑

m1=0

h1
(
m1
)
x
(
n−m1

)

+
N2−1∑

m1=0

N2−1∑

m2=0

h2
(
m1,m2

)
x
(
n−m1

)
x
(
n−m2

)
+ · · ·

+
Np−1∑

m1=0

Np−1∑

m2=0

· · ·
Np−1∑

mp=0

hp
(
m1,m2, . . . ,mp

)

x
(
n−m1

)
x
(
n−m2

) · · · x(n−mp
)
.

(7.57)

A Volterra filter characterized by a single nonzero kernel is called a homogeneous
Volterra filter.

The simplest nonlinear filter belonging to the class of filters in (7.57) is the
quadratic filter obtained by limiting the terms to the linear and the second-order
kernels. Using a vector-matrix representation, the filter output can be expressed as

y(n) = hT1 x1(n) + xT2 (n)H2x2(n), (7.58)

where x1(n) and x2(n) are the vectors of the most recent N1 and N2 input samples,
respectively, h1 is the vector formed by the N1 coefficients of the linear filter and
H2 is the N2 × N2 matrix representing the second-order Volterra kernel. Without
loss of generality, the second-order Volterra kernel can be assumed as symmetric
and thus the matrix H2 is symmetric too. For a more efficient realization, H2 can
be modified to assume the upper triangular form [29, page 35]. This representa-
tion is the basis of the implementation of the quadratic filter as a multichannel
filter bank. This structure is frequently implemented in current applications and
is also used in the field of nonlinear active noise control to derive efficient adap-
tation algorithms, as those shown in the next sections. It is essentially based on
the so-called diagonal representation [37] that allows a truncated Volterra system
of any order p to be described by a “diagonal” arrangement of the entries of each
one of its kernels. In fact, if the pth-order kernel is represented as a sampled hy-
percube of the same order, then the diagonal representation implies the change of
the Cartesian coordinates to coordinates that are aligned along the diagonals of the
hypercube. In this way, a homogeneous Volterra filter of any order p can be im-
plemented by a filter bank where each channel contains an FIR filter formed with
the coefficients of the diagonals of the hypercube. The input signal is formed by
the corresponding products of p input samples. Figure 7.8 shows the multichan-
nel implementation of a homogeneous quadratic filter. It is worth noting that this
structure is computationally efficient since the products of input samples com-
puted at the present time instant are then suitably delayed across the FIR struc-
tures. Then, a complete Volterra filter can be realized using the parallel connection
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FIR

+
y(n)

Figure 7.8. Multichannel implementation of a homogeneous quadratic filter.

of the filter banks implementing each kernel. This structure can be described in
the form of (7.52) where the complete vector h of the filter coefficients is obtained
by arranging in sequence the elements of the linear kernel, those of the diagonals
of the quadratic kernel, and so on till the kernel of order p. The input vector is
derived by using the corresponding samples and products of input samples. As
an example, in the case of a quadratic filter, the complete input vector x(n) is a
collection of samples and products of two samples of the input as shown by the
following expression:

x(n) =
[
x(n) x(n− 1) · · · x

(
n−N1 + 1

)

x2(n) x2(n− 1) · · · x2
(
n−N2 + 1

)

x(n)x(n− 1) · · · x
(
n−N2 +D2

)
x
(
n−N2 + 1

)]T
,

(7.59)

whereN1 is the memory length of the linear kernel,N2 is the memory length of the
quadratic kernel, and D2 is the number of implemented diagonals of the quadratic
kernel. The number of elements in x(n) and h isM = N1 +D2 ·N2−D2 ·(D2−1)/2.

It is worth noting that another powerful tool for the analysis of Volterra filters
has been recently introduced in [5], the so-called V-vector algebra. This algebra
has been used in [5] to make feasible the extension of adaptation algorithms used
for linear filters to Volterra filters. The main element of this algebra is the V-vector
which is defined as a nonrectangular matrix whose rows are arranged in a de-
creasing length order. For what concerns the present discussion, it is sufficient to
point out that the rows of the V-vectors simply correspond to the diagonals of the
Volterra kernels and to the corresponding products of input samples, respectively,
as in the diagonal representation. Therefore, the channels are again modeled as
FIR filters but they are now hierarchically arranged according to the number of
the respective filter coefficients [41].
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Figure 7.9. Schematic diagram of a FLANN.

7.4.2. Structures based on functional expansions

The functional-link artificial neural network (FLANN) [35] has been recently pro-
posed in the field of neural networks as an alternative system capable of simplify-
ing the learning algorithms and offering simple structures for hardware imple-
mentations. More recently, this structure has been applied in active noise control
applications [14]. The schematic diagram of a FLANN is depicted in Figure 7.9.
It is essentially based on the functional expansions fr{·} of the input signal x(n).
Therefore, it is a member of the nonlinear class described by (7.52) and (7.53). The
functional expansions suggested in [14] have been orthogonal polynomials, as for
example Legendre, Chebyshev, and trigonometric polynomials. Among them, the
trigonometric basis functions of order P, given by

{
x, sin(πx), cos(πx), sin(2πx), cos(2πx), . . . , sin(Pπx), cos(Pπx)

}
, (7.60)

provide a compact and efficient representation in the mean square sense [14].
Therefore, if N is the length of the input vector x(n) then the length of the vec-
tor representing its functional expansion is M = N · (2P + 1) since any input
sample is expanded using (7.60).

As an example, let us now consider the simple case of a first-order trigono-
metric expansion, that is, P = 1. With reference to (7.53), the input signal is given
by

x(n) =
[
x(n) x(n− 1) · · · x(n−N + 1)

sin
(
πx(n)

)
sin

(
πx(n− 1)

) · · · sin
(
πx(n−N + 1)

)

cos
(
πx(n)

)
cos

(
πx(n− 1)

) · · · cos
(
πx(n−N + 1)

)]T
.

(7.61)

The corresponding implementation is shown in Figure 7.10. The memory of the
three FIR filters is equal toN so that the total number of coefficients of the FLANN
structure isM = 3N . This structure shares with that of Figure 7.8 the characteristic
of being efficient since the elements of the functionals fr{·} are computed using
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Figure 7.10. Implementation of a trigonometric functionally expanded network with P = 1.

the input sample at the present time instant and then the corresponding delayed
terms are obtained through the FIR filters.

7.4.3. Single-channel active noise controllers

A single-channel nonlinear filtered-X LMS algorithm based on a Volterra model
has been first proposed in [48, 49], where a multichannel implementation for a
quadratic controller is analyzed, by exploiting the diagonal coordinate system pro-
posed in [37]. As mentioned in [49], extensions of this approach to Volterra filters
of any order P are quite straightforward.

A single-channel nonlinear filtered-X AP algorithm based on a Volterra mod-
el has been first described in [7]. A description similar to the diagonal coordinate
representation has been used for the so-called simplified Volterra filters (SVF).
The homogeneous quadratic filter has been specifically considered. An SVF is still
implemented as a filter bank but here the emphasis is on the fact that, according
to the characteristics of many measured second-order kernels, it is possible to use
a reduced number of active channels.

The extension of the filtered-X AP algorithms to higher-order Volterra fil-
ters has been discussed in [41] where the V-vector algebra [5] has been exploited.
This algebra can directly lead to the implementation of Volterra filters of any or-
der P in the form of a multichannel filter bank. The channels are again modeled
as FIR filters but they are now hierarchically arranged according to the number
of the respective filter coefficients. In such a way, it is possible to devise models
of reduced complexity by cutting the last and usually less relevant channels. The
specific derivations and arrangements required in the single-channel case to illus-
trate the application of the diagonal or V-vector representations are deferred to
the next subsection since they can be viewed as a particular case of the general
multichannel configuration.

FLANN structures for single-channel ANC based on trigonometric expan-
sions have been studied in [14] where the normalized LMS algorithm is used and
a fast implementation is proposed too.

7.4.4. Multichannel active noise controllers

While linear multichannel filtered-X LMS and AP algorithms have been studied
for many years [4, 15, 17], a nonlinear multichannel filtered-X AP algorithm for
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controllers based on filters belonging to the class in (7.53) has been only recently
proposed in [40]. A quadratic Volterra model has been used and an approximate
AP algorithm has been studied. The main definitions used to derive the adaptation
algorithm described in [40] are reported here since they are useful to illustrate the
redefinitions that permit to extend the applicability of the adaptation algorithms
described in Section 7.2 to nonlinear multichannel ANC schemes. These defini-
tions illustrate in practice the concepts implied by the diagonal and V-vector rep-
resentations.

We will start dealing with a multichannel scheme using I reference micro-
phones, J actuators, and K error microphones. It is worth noting that definitions
and arrangements required in the single-channel case can be easily inferred by the
multichannel case by assuming I=1, J=1, and K=1. Let us first refer to a homo-
geneous quadratic filter described by means of its triangular representation [29,
page 35]. Thus, using the filter bank structure of Figure 7.8 in each of the cross-
paths of the adaptive controller in Figure 7.5, it is possible to write any output
yj(n), 1 ≤ j ≤ J , from the multichannel quadratic controller as

yj(n) =
I∑

i=1

M∑

m=1

yjim(n). (7.62)

In this equation M is the number of channels actually used, with M ≤ N , where N
is the memory length of the quadratic filter connecting the input i to the output j
of the controller. The variable yjim(n) represents the output from the channel m,
1 ≤ m ≤M and is defined as

yjim(n) =
N−m∑

r=0

hji(n; r, r +m− 1)xi(n− r)xi(n− r −m + 1), (7.63)

where hji(n; ·, ·) denotes the coefficients of the quadratic kernel at time n. Using a
vector notation, (7.63) becomes

yjim(n) = hTjim(n)xim(n), (7.64)

where h jim(n) is the vector formed by theN−m+1 coefficients of themth channel
at time n,

h jim(n) =
[
hji(n; 0,m− 1) hji(n; 1,m) · · · hji(n;N −m,N − 1)

]T
.
(7.65)

The corresponding input vector xim(n), again formed by N − m + 1 entries, is
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defined as

xim(n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xi(n)xi(n−m + 1)

xi(n− 1)xi(n−m)
...

xi(n−N +m)xi(n−N + 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (7.66)

Let us now define two vectors of Q =∑M
q=1(N − q + 1) elements

h ji(n) =
[

hTji1(n) hTji2(n) · · · hTjiM(n)
]T

,

xi(n) =
[

xTi1(n) xTi2(n) · · · xTiM(n)
]T

(7.67)

formed, respectively, with the vectors h jim(n) and xim(n) related to the single chan-
nels of the filter bank. Thus, the output of the homogeneous quadratic filter con-
necting the input i to the output j of the controller can be written as

yj(n) =
I∑

i=1

hTji(n)xi(n). (7.68)

The scalars yj(n), 1 ≤ j ≤ J , and the vectors xi(n) and h ji(n), 1 ≤ i ≤ I and
1 ≤ j ≤ J , defined above play now the role of the corresponding scalar and vectors
used in Section 7.2.5 to derive the linear multichannel filtered-X AP algorithms.
Therefore, by redefining all the other vectors and matrices used in Section 7.2.5
making use of these scalar and vectors, the same final updating rules given by
(7.29) and (7.30) formally still apply. In addition, the two approximate relation-
ships of (7.45) and (7.49) can be applied too. The updating rule of (7.49) has been
explicitly derived in [40], where it has been also noted that it includes

(i) for L=1 and I= J=K =1, the single-channel filtered-X LMS algorithm
for linear controllers given in [15], and that for quadratic controllers
given in [49], apart from the normalization factor used here;

(ii) for L > 1 and I = J =K = 1, the single-channel filtered-X AP algorithm
for quadratic controllers proposed in [7];

(iii) for L = 1 and I > 1 or J > 1 or K > 1, the multichannel filtered-X LMS
algorithm for linear controllers given in [15], again apart from the nor-
malization factor used here;

(iv) for L≥1 and I >1 or J >1 or K >1, the multichannel filtered-X approxi-
mate AP algorithm for quadratic controllers.

Moreover, the exact AP updating rule and the approximate rule of (7.45) have
been presented in [8, 9] together with a theoretical analysis of their transient and
steady-state behaviors. In [8, 9] it has been proven that the filtered-X AP algo-
rithms provide a biased estimate of the minimum mean square solution of mul-
tichannel ANC problem. However, since in many cases the bias is small, AP algo-
rithms can be efficiently applied in nonlinear ANC problems.
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In the case of a nonhomogeneous quadratic filter, the linear term can be con-
sidered as an additional channel. The vectors h ji(n) and xi(n) are modified by
inserting on the top the coefficients of the linear filter and the samples of the in-
put signal, respectively, as shown for a single filter in (7.59). Similar considerations
apply to higher-order Volterra kernels, and thus to Volterra filters of any order P,
again exploiting the principles of the diagonal coordinate or V-vector representa-
tions [41].

Finally, as noted in the single-channel case, the class of nonlinear filters de-
scribed by (7.52) and (7.53) includes also in the multichannel case other useful
structures, for example, those based on functional expansions. The study of these
structures for multichannel ANC is presently under development. It can be antici-
pated that since they belong to the same class of nonlinear filters, adaptation algo-
rithms of the type proposed for Volterra filters can be derived for these structures
too, and in fact an example is given in the next section using an AP adaptation
algorithm.

7.5. Simulation results

In this section, a couple of applications of nonlinear multichannel active noise
controllers belonging to the class of nonlinear filters described by (7.52), (7.53) is
presented and commented.

7.5.1. Experiment 1

As for single channel active noise controllers, a nonlinear controller can be re-
quired also in the multichannel case if the input noise is a nonlinear and de-
terministic process of a chaotic rather than stochastic nature. As mentioned in
Section 7.3, such a noise can be, for example, modeled with the logistic noise that
is a second-order white and predictable nonlinear process generated by (7.50). In
the following example ξ(0) is chosen equal to 0.9. In the multichannel case we are
considering that the controller has one input (I = 1) and two outputs (J = 2)
and two error microphones (K = 2) are used. The nonlinear process has been
normalized in order to have unit signal power as in (7.51). A Gaussian noise with
SNR = −30 dB has been added to the logistic noise at the input and a Gaussian
noise with SNR = −40 dB has been added to the two signals sensed at the error
microphones. The transfer functions of the primary and secondary paths are given
as follows:

P11(z) = z−4 − 0.3z−5 + 0.2z−6,

P21(z) = z−4 − 0.2z−5 + 0.1z−6,

S11(z) = z−2 + 1.5z−3 − z−4, S12(z) = z−2 + 1.3z−3 − z−4,

S21(z) = z−2 + 1.3z−3 − z−4, S22(z) = z−2 + 1.2z−3 − z−4.

(7.69)

The exact solution of the multichannel ANC problem requires the inversion
of the 2× 2 matrix S formed with the transfer functions Sk j in (7.69). The inverse
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Figure 7.11. Mean attenuation at the error microphones in a multichannel active noise controller
using quadratic filters.

matrix S−1 is thus formed with IIR transfer functions where the poles are given
by the roots of the determinant of S. It is easy to verify that in our example there
is a root outside the unit circle so that the IIR transfer functions are unstable and
the approximating FIR filters in the controller need to be noncausal. Nevertheless,
as in the single-channel case, if the input noise is a nonlinear and deterministic
process, a zero-delay nonlinear inverse matrix exists. The system is identified using
two second-order Volterra filters with linear and quadratic parts of memory length
N = 8. The quadratic kernels include only two channels (M = 2) corresponding to
the principal diagonal and the adjacent one in the triangular representation. The
adaptation algorithm used is the approximate rule of (7.49). In the experiment
both the step sizes of the linear and quadratic parts have been fixed equal to 3 ×
10−3, the leakage factor γ has been set equal to zero, and the constant δ has been
set equal to 10−3. Figure 7.11 shows the ensemble average of the mean attenuation
at the error microphones for 50 runs of the simulation system. The three curves
refer to different values of the AP order L. The order L = 1 corresponds to an
NLMS adaptation algorithm. For higher orders of AP the improvement can be
easily appreciated.

To further validate these results, a few tests have been performed using only
linear filters in the controller. If we use FIR filters of complexity equivalent to that
of the quadratic filters, that is, with 23 coefficients, the diagrams shown in Figure
7.12 are obtained. These results are derived by assuming the same experimental
conditions as before, but with an optimized step size set equal to 6×10−3. The com-
parison of the diagrams in Figure 7.11 with those in Figure 7.12 demonstrates that
second-order Volterra filters offer better performance than FIR filters of equivalent
complexity in the experimental environment considered.

7.5.2. Experiment 2

The experimental setup is the same as in the previous example. The ensemble aver-
ages of the mean attenuation at the error microphones for 50 runs and L = 1, 2, 3

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


G. L. Sicuranza and A. Carini 197

0
−2

−4

−6

−8

−10

−12

−14

−16

−18

−20

M
ea

n
at

te
n

u
at

io
n

0 0.5 1 1.5 2

×104Number of iterations

L = 1

L = 2
L = 3

Figure 7.12. Mean attenuation at the error microphones in a multichannel active noise controller
using linear filters.

0

−2

−4
−6

−8

−10

−12

−14

−16

−18

−20

M
ea

n
at

te
n

u
at

io
n

0 0.5 1 1.5 2

×104Number of iterations

L = 1

L = 2

L = 3

Figure 7.13. Mean attenuation at the error microphones in a multichannel active noise controller
using quadratic filters.

are reported in Figure 7.13 for a controller using two quadratic filters with linear
and quadratic parts of memory length N = 8. The quadratic kernels include only
two channels (M = 2) corresponding to the principal diagonal and the adjacent
one in the triangular representation. Therefore, the total number of coefficients is
equal to 23. The adaptation algorithm used is the approximate AP rule of (7.45).
The step sizes are equal to 5×10−3 for both the linear and quadratic parts, and the
constant δ has been set equal to 10−3. Again, the improvement offered by the AP
method can be easily appreciated.

Figure 7.14 shows the ensemble averages of the mean attenuation at the error
microphones for 50 runs and L = 1, 2, 3 for the same system using a trigonometric
functional expansion with P = 1. The length of the FIR filters has been fixed equal
to 8 so that the total number of coefficients is equal to 24. The step size has been
fixed equal to 5 × 10−3. The diagrams in Figure 7.14 show the good convergence
behavior and the effect of the AP order.
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Figure 7.14. Mean attenuation at the error microphones in a multichannel active noise controller
using a trigonometric functional expansion.

7.6. Current work and future developments

Current work includes the search for efficient implementations for nonlinear mul-
tichannel filtered-X LMS and AP algorithms. A recently considered strategy, ap-
plied in [42] to quadratic controllers, is based on the use of different methods for
partial update. The so-called partial errors (PE) technique consists of using in the
coefficient update only one of the K error vectors ek(n) at the time. In the block
partial updates (PU) technique, each measurement of the error vectors ek(n) is
used to adapt a block of coefficients. The set membership filtering (SMF) concept
is also adopted. In this case, the filter coefficients are updated sparsely in time,
according to the following rule:

h ji(n + 1) =
⎧
⎨

⎩
Update h ji(n) if

∣
∣ek,1(n)| > eb,

No update otherwise
(7.70)

for a suitable choice of the threshold error eb [54]. All these methods have been
studied and implemented in [42] for quadratic filters. Figures 7.15 and 7.16 show
a few results for the experimental setup of the previous section. In particular,
Figure 7.15 shows the ensemble average of the mean attenuation at the error mi-
crophones for 50 runs of the simulation system using the updating rule of (7.49)
and the PE-PU-SMF techniques with an error bound eb = 0.1. Figure 7.16 shows
the corresponding results obtained for eb = 0.2. The step sizes have been optimized
and are chosen equal to 5× 10−2 for both the linear and quadratic parts.

In the PU technique, the coefficients of each quadratic filter in the controller
have been subdivided in 3 blocks of 8, 8, and 7 coefficients, respectively. Com-
paring these results with those in Figure 7.11, it is easy to see that the conver-
gence behavior is only slightly degraded while the number of operations is strongly
reduced. In fact, using the PE-PU strategies, the computational load is approxi-
mately reduced by a factor 2×6, since K = 2 and 3 blocks of 8, 8, 7 coefficients are
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Figure 7.15. Mean attenuation at the error microphones with error bound eb = 0.1.
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Figure 7.16. Mean attenuation at the error microphones with error bound eb = 0.2.

used for each quadratic filter. Then, a further reduction ranging for L = 3 from 2
to 5 is obtained according to the SMF strategy, as shown in Table 7.1.

Another possibility for reducing the computational complexity is employed
in [15] where a new efficient implementation of the single-channel filtered-X LMS
algorithm is derived exploiting computational reduction techniques developed for
fast projection algorithms [25, 50]. The same techniques could be applied to the
derivation of efficient implementations of the algorithms presented in this chapter.

A topic recently investigated is the transient and steady-state analysis of ex-
act and approximate multichannel filtered-X AP algorithms of the type presented
in Section 7.2 for the class of nonlinear filters described in Section 7.4. Condi-
tions for the stability of the multichannel adaptive filtered-X AP algorithms have
been derived in [9]. Accurate expressions of the asymptotic mean square error
and mean standard deviation of the filter coefficients have been derived too. One
of the results is that filtered-X AP algorithms always provide a biased estimate of
the minimum mean square solution. Nevertheless, in many cases the bias is small
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Table 7.1. Average number of updates in 20 000 iterations for the PE-PU-SMF algorithm.

eb L = 1 L = 2 L = 3

0.1000 11 721 10 723 10 089

0.2000 4901 4287 3840

and thus these algorithms can be profitably applied to active noise control. The
analysis developed in [9] is based on the methodology presented in [46] and can
be adapted for studying the convergence properties of other filtered-X algorithms,
allowing an accurate prediction of the actual behavior of the adaptive controllers.

Future perspectives in this area include further studies on
(i) the optimal step size control,

(ii) the analysis of the effects due to the correlations among channels,
(iii) the steady-state and transient analysis of adaptation rules using partial

update methods,
(iv) the analysis of models with uncertain or not known secondary paths,
(v) the analysis of models with nonlinearities with memory in the secondary

paths.

7.7. Summary

In this chapter, a description of the ANC scenario has been given with reference, in
particular, to the feedforward schemes and the filtered-X adaptation algorithms.
The nonlinear effects that may influence the behavior of ANC systems have been
reviewed subsequently to motivate the use of nonlinear controllers. The filtered-
X LMS and AP adaptation algorithms have been explicitly derived for the lin-
ear single-channel and multichannel schemes. Then, the point of view adopted
throughout the rest of the chapter is to show how these algorithms can be prof-
itably extended to the class of nonlinear active noise controllers whose filters are
characterized by a linear relationship of their output with respect to the filter co-
efficients. This class of filters includes, of course in addition to linear filters, trun-
cated Volterra filters of any order p, FLANN structures and other nonlinear func-
tional expansions. It is shown that, basically, the adaptation algorithms remain the
same as in the linear case and only a suitable redefinition of the coefficient vectors
and of the corresponding input vectors is required. A few experimental results for
nonlinear multichannel active noise controllers belonging to this class have been
presented and commented. Finally, current work and future research lines have
been briefly exposed.
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[43] C. A. Silva, J. M. Sousa, and J. M. G. Sá da Costa, “Active noise control based on fuzzy models,”
in Proceedings of 4th European Conference on Noise Control (EURONOISE ’01), pp. 1–14, Patras,
Greece, January 2001.

[44] S. D. Snyder and N. Tanaka, “Active control of vibration using a neural network,” IEEE Transac-
tions on Neural Networks, vol. 6, no. 4, pp. 819–828, 1995.

[45] P. Strauch and B. Mulgrew, “Active control of nonlinear noise processes in a linear duct,” IEEE
Transactions on Signal Processing, vol. 46, no. 9, pp. 2404–2412, 1998.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


G. L. Sicuranza and A. Carini 203

[46] A. H. Sayed, Fundamentals of Adaptive Filtering, John Wiley & Sons, New York, NY, USA, 2003.
[47] T. J. Sutton and S. J. Elliott, “Active attenuation of periodic vibration in nonlinear systems using

an adaptive harmonic controller,” Journal of Vibration and Acoustics, Transactions of the ASME,
vol. 117, pp. 355–362, 1995.

[48] L. Tan and J. Jiang, “Filtered-X second-order Volterra adaptive algorithms,” Electronics Letters,
vol. 33, no. 8, pp. 671–672, 1997.

[49] L. Tan and J. Jiang, “Adaptive Volterra filters for active control of nonlinear noise processes,” IEEE
Transactions on Signal Processing, vol. 49, no. 8, pp. 1667–1676, 2001.

[50] M. Tanaka, Y. Kaneda, S. Makino, and J. Kojima, “Fast projection algorithm and its step size
control,” in Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing
(ICASSP ’95), vol. 2, pp. 945–948, Detroit, Mich, USA, May 1995.

[51] O. J. Tobias and R. Seara, “Performance comparison of the FXLMS, nonlinear FXLMS and leaky
FXLMS algorithms in nonlinear active control applications,” in Proceedings of 11th European Sig-
nal Processing Conference (EUSIPCO ’02), vol. 1, pp. 155–158, Toulouse, France, September 2002.

[52] A. K. Wang and W. Ren, “Convergence analysis of the filtered-U algorithm for active noise con-
trol,” Signal Processing, vol. 73, no. 3, pp. 255–266, 1999.

[53] G. E. Warnaka, “Active attenuation of noise—the state of the art,” Noise Control Engineering,
vol. 18, no. 3, pp. 100–110, 1982.

[54] S. Werner and P. S. R. Diniz, “Set-membership affine projection algorithm,” IEEE Signal Processing
Letters, vol. 8, no. 8, pp. 231–235, 2001.

Giovanni L. Sicuranza: Department of Electrical, Electronic, and Computer Engineering,
University of Trieste, Via A. Valerio 10, 34127 Trieste, Italy

Email: sicuranza@univ.trieste.it

Alberto Carini: Information Science and Technology Institute, University of Urbino,
Piazza della Repubblica 13, 61029 Urbino, Italy

Email: carini@sti.uniurb.it

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

mailto:sicuranza@univ.trieste.it
mailto:carini@sti.uniurb.it
http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


8
Chaotic sequences for digital
watermarking

Nikos Nikolaidis, Anastasios Tefas, and Ioannis Pitas

8.1. Introduction

The design of robust techniques for copyright protection and content verification
of multimedia data became an urgent necessity in the last years due to the prolifer-
ation of digital media that made unauthorized use, distribution, and processing of
content an easy task. This demand has been lately addressed by the emergence
of a variety of watermarking methods. Such methods target towards hiding in
the original data an imperceptible and undetectable signal which conveys infor-
mation about the host medium (owner or authorized user, transaction or prod-
uct ID, etc). For a review of existing schemes and a detailed discussion on the
main requirements of a watermarking scheme, the interested reader may consult
[5, 9].

The field of nonlinear dynamics which has its roots in the work of French
mathematician H. Poincaré (1854–1912) is dealing with the study of the systems
whose time evolution equations are of nonlinear nature. Under certain conditions,
some nonlinear systems give rise to chaos, that is, a complex, aperiodic, and ap-
parently random behavior. However, neither is the random and complex behavior
of chaotic systems the result of uncontrolled external factors, namely, noise, nor is
it necessarily attributed to the complexity of the system; most chaotic systems are
deterministic in nature and can be described by very simple equations. Chaotic
behavior can result, for example, from the iterative application of an appropriate
nonlinear scalar map f (·):

x[n] = f
(
x[n− 1]

) = f n
(
x[0]

) = f
(
f
( · · · ( f

︸ ︷︷ ︸
n times

(
x[0]

)) · · · )), (8.1)

where x[0] denotes the system initial condition and f n(x[0]) denotes the nth ap-
plication of the map. The logistic map is a well-known example of such a 1D it-
erated map that can exhibit the chaotic behavior for the appropriate values of the
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parameter A:

x[n] = Ax[n− 1]
(
1− x[n− 1]

)
, 0 ≤ x[n] ≤ 1, 0 ≤ A. (8.2)

The points x[0], x[1], x[2], . . . generated by the recursion (8.1) form an orbit
of the chaotic system which can be viewed as a 1D discrete-time chaotic sequence.
Thus, a chaotic sequence x is fully described by the map f (·) and the initial con-
dition x[0]. An important characteristic of chaotic systems is their sensitivity to
initial conditions. Starting from two initial conditions that are very close to each
other, a chaotic system will generate completely different orbits.

During the last decades, methods and principles of chaos and nonlinear dy-
namics have found numerous applications in a wide spectrum of scientific dis-
ciplines that include, but are not limited to, physics, economics, social science,
and engineering. Chaos-based cryptography and chaotic spread spectrum com-
munications are two prominent application examples of chaotic systems within
the electrical engineering discipline. For a thorough treatment of the field of chaos
and nonlinear dynamics, the reader can consult one of the many textbooks in this
area, for example, [12, 23].

In this chapter, two applications of chaotic systems in digital watermarking
are presented. The first involves chaotic systems as watermark signal generators
in blind watermarking schemes employing correlation detection. Statistical prop-
erties of watermark sequences generated by piecewise linear Markov maps are ex-
ploited for both additive and multiplicative watermark embedding and the perfor-
mance of such systems is theoretically evaluated. The major advantage of chaotic
sequences in this context is their easily controllable spectral/correlation properties,
a fact that makes them a good alternative to the widely used pseudorandom sig-
nals [29, 31]. Chaotic watermarks can be embedded either in the temporal/spatial
domain or in a transform domain where their correlation/spectral properties can
be exploited more efficiently for obtaining robust watermarking schemes. Such a
transform-domain watermarking technique is exemplified. The scheme involves
multiplicative embedding of high-frequency chaotic watermarks in the low fre-
quencies of the discrete Fourier transform (DFT). The corresponding watermark-
ing scheme guarantees robustness against lowpass attacks, along with enhance-
ment of the detector reliability. The complete theoretical justification and statis-
tical analysis of correlation-based additive and multiplicative schemes employing
chaotic watermarks can be found in [11, 28, 29].

The second application deals with watermark generation by mixing (scram-
bling) a binary logo or encrypting other forms of messages using 2D chaotic maps.
Mixing using chaotic maps provides excellent security and has many favorable
cryptographic properties, stemming from the map sensitivity to initial conditions.
An example of a system that utilizes such a chaotic mixing along with appropriate
watermark embedding and detection functions is presented.

This chapter is organized as follows. Additive and multiplicative embedding
correlation-based watermarking schemes employing Markov chaotic sequences
are presented and analyzed in Section 8.2. Watermark generation by the chaotic

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


Nikos Nikolaidis et al. 207

mixing is described in Section 8.3. Other applications of chaotic signals in water-
marking are reviewed in brief in Section 8.4.

8.2. Correlation-based watermarking schemes employing
Markov chaotic sequences

Watermarking schemes where watermark detection is performed through a corre-
lation detector have been extensively used and studied in the corresponding liter-
ature. In this section, the use of sequences generated by chaotic systems as water-
mark signals in correlation-based watermarking schemes is examined and the per-
formance of such schemes is compared against schemes utilizing pseudorandom
sequences. Two different schemes are presented and analyzed. The first scheme in-
volves additive watermark embedding and demonstrates the superior performance
obtained when highpass chaotic signals are incorporated. Building on the analysis
and the results derived for this scheme, a second scheme that incorporates multi-
plicative embedding of highpass chaotic signals in the low frequencies of the DFT
domain in order to achieve robustness to lowpass manipulations is also presented
and analyzed.

8.2.1. General model of a correlation-based watermarking scheme

A watermarking system encompasses three major functionalities, namely, water-
mark generation, watermark embedding, and watermark detection. The aim of
watermark generation is to construct a sequence w,w[i] ∈ R, consisting of N
samples using an appropriate function g:

w = g(K ,N), (8.3)

where K denotes the watermark key. Watermark embedding aims at inserting
within a host signal fo the watermark signal w in a way that guarantees robust-
ness in case of both intentional or unintentional attacks and imperceptibility of
the distortions caused to the host signal. Watermark embedding can be performed
in any suitable domain, that is, in the temporal/spatial domain or in a properly
selected transform domain (DFT, DCT, wavelet transform, etc).

The aim of watermark detection is to verify whether or not a given watermark
wd resides in a test signal ft. Thus, watermark detection can be considered as a
binary hypothesis test. The two hypotheses involved in this test are

(i) H0: the test signal ft hosts the watermark wd,
(ii) H1: the test signal ft does not host the watermark wd or it hosts a differ-

ent watermark we �= wd than the one under investigation.
A test statistic that has been frequently employed in the watermarking lit-

erature for examining whether the signal ft hosts a watermark wd or not is the
correlation between ft and the watermark:

c = 1
N

N−1∑

n=0

ft[n]wd[n]. (8.4)
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T

Pfr Pfa

N(μC/H1 , σC/H1 ) N(μC/H0 , σC/H0 )

Figure 8.1. Conditional pdf ’s of the correlator output under hypotheses H0, H1.

Such a detection scheme is usually called a correlation detector. The decision on
the valid hypothesis is taken by comparing c against a properly selected thresh-
old T . A decision to adopt hypothesis H0 is taken when c > T . Obviously such a
scheme is a zero-bit scheme in the sense that the detection procedure can provide
only information on whether a specific watermark is indeed embedded in the host
image or not.

The detection performance of a zero-bit watermarking scheme can be mea-
sured using the probability of false alarm Pfa(T), which is defined as the probabil-
ity to detect a watermark in a signal that is not watermarked or hosts a different
watermark, and the probability of false rejection Pfr(T), defined as the probabil-
ity of failing to detect a watermark in a signal that is watermarked, for a certain
threshold T ,

Pfa(T) = Prob
{
c > T | H1

} =
∫∞

T
fc|H1 (t)dt, (8.5)

Pfr(T) = Prob
{
c < T | H0

} =
∫ T

−∞
fc|H0 (t)dt, (8.6)

where fc|H0 , fc|H1 are the conditional probability density functions of the correla-
tion c in (8.4) under the hypotheses H0 and H1, respectively (Figure 8.1).

By solving both (8.5) and (8.6) for T and equating the results, one can express
Pfr as a function of Pfa. The plot of Pfa versus Pfr is called the receiver operating
characteristic (ROC) curve of the corresponding watermarking system. This curve
conveys all the information required in order to judge the detection performance
of a such a system. Using the ROC curve one can evaluate various performance
indicators, including the equal error rate (EER) point, that is, the point on the
curve where Pfa = Pfr. EER can be used as a simple scalar metric of a watermarking
scheme’s performance.

8.2.2. Use of Markov chaotic sequences as watermark signals

In most watermarking schemes, the construction of the watermark signal that
will be embedded in the host data involves a function that generates pseudo-
random numbers. Samples generated by such functions can be safely modeled as

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


Nikos Nikolaidis et al. 209

identically distributed independent random variables following a uniform distri-
bution. Zero-mean, pseudorandom sequences distributed in the interval [−0.5,
0.5] are used in most cases and will be the subject of comparison with chaotic se-
quences in this chapter. Watermark signals obeying Gaussian distributions are also
frequently encountered in the corresponding literature.

Sequences generated by chaotic maps (8.1) can be used as an efficient alterna-
tive to watermarking sequences generated by pseudorandom number generators.
Chaotic sequences x are usually generated in the interval [0, 1]. A chaotic water-
mark sequence whose values reside in a different interval can be constructed as

w = x − d1, (8.7)

where d is a constant that controls the range of the watermark sequence and 1 =
[1, 1, . . . , 1]T .

By imposing certain constraints on the map or the initial condition, sequences
of infinite period can be obtained. Thus, if one considers two sequences x, y of
finite length generated by the recursive application of the same chaotic map f on
two different initial conditions x[0], y[0], that belong to the same chaotic orbit,
there will always be an integer k > 0 such that the following expressions hold:

x[0] = f k
(
y[0]

)
or y[0] = f k

(
x[0]

)
. (8.8)

Therefore, the samples x[n], y[n] are associated through the following expression
for a properly selected value of k > 0:

y[n] = f n
(
y[0]

) = f n
(
f k
(
x[0]

)) = x[n + k] or x[n] = y[n + k].
(8.9)

From now on, the constant k will be called sequence shift.
A class of 1D chaotic systems that lend themselves to analysis are the even-

tually expanding, piecewise linear Markov maps. A map M : [0, 1] → [0, 1] is
an eventually expanding, piecewise linear Markov map if it satisfies the following
conditions.

(1) The map is a piecewise linear one, that is, there exists a set of points
0 = α0 < α1 < · · · < αM = 1 (called partition points) such that, when
the map is restricted to each of the intervals (αi−1,αi) (called partition
elements), it is affine.

(2) The map satisfies the Markov property, that is, the partition points are
mapped to partition points:

∀i ∈ [0, . . . ,M], ∃ j ∈ [0, . . . ,M] : M
(
αi
) = αj . (8.10)

(3) The map is eventually expanding, that is, there exists an integer r > 0
such that

inf
x∈[0,1]

∣∣
∣
∣
d

dx
Mr(x)

∣∣
∣
∣ > 1. (8.11)
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0 1α x

1

T(x)

Figure 8.2. The skew tent map.

For brevity, maps satisfying the above definition will be referred to simply as
Markov maps when no risk of ambiguity arises. The Markov sequences that will
be used in the sequel have exponential autocorrelation function.

A piecewise linear Markov map with very interesting properties is the skew
tent map [25]. This map is illustrated in Figure 8.2 and can be expressed as

T : [0, 1] �→ [0, 1], T (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
α
x, 0 ≤ x ≤ α,

1
α− 1

x +
1

1− α , α < x ≤ 1,
α ∈ (0, 1).

(8.12)

A chaotic orbit t[k] can be obtained by iterating this map

t[k] = T
(
t[k − 1]

) = T k
(
t[0]

)
. (8.13)

Another interesting member of this family is the m-way Bernoulli shift which
is defined as

Bm : [0, 1] �→ [0, 1], Bm(x) = mx (mod1). (8.14)

Sequences generated by Markov maps posses properties that make them su-
perior to pseudorandom signals when used as watermarks in correlation-based
schemes. This will become obvious in the following sections that provide a theo-
retical and experimental performance analysis of such schemes.

8.2.3. Additive embedding correlation-based schemes
employing Markov chaotic sequences

Additive watermark embedding is one of the most frequently used embedding
rules:

fw = fo + pw, (8.15)
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where fw is the watermarked signal and p is a constant that controls the watermark
embedding power, which will be called hereafter watermark embedding factor and
is closely related to the watermark perceptibility. Additive watermark embedding
can be performed in any suitable domain. In the following, we will assume spa-
tial domain embedding. However, readers should bear in mind that the analysis
presented below can be applied, with certain adaptations, for other embedding
domains as well.

Assuming that the test signal has not been subject to manipulations, the bi-
nary hypothesis test involved in watermark detection in case of additive embed-
ding can be expressed as follows:

(i) H0: the test signal ft hosts the watermark wd, that is, ft = fo + pwd,
(ii) H1: the test signal ft does not host the watermark wd, that is, ft = fo or it

hosts a different watermark we �= wd than the one under investigation.
The following formula can be used to summarize both events mentioned above:

ft = fo + pwe. (8.16)

In this formula, the watermark wd is indeed embedded in the signal if p �= 0 and
we = wd (event H0), and it is not embedded in the signal if p = 0 (the signal hosts
no watermark, an event that will be denoted as H1a) or we �= wd (the signal hosts
a different watermark, denoted as event H1b).

8.2.3.1. Theoretical performance analysis

In an additive embedding scheme the correlation detector can be expressed as

c = 1
N

N−1∑

n=0

ft[n]wd[n] = 1
N

N−1∑

n=0

(
fo[n]wd[n] + pwe[n]wd[n]

)
. (8.17)

Although samples of Markov chaotic watermarks are correlated for small k >
0, since they possess exponential autocorrelation function and wd is a shifted ver-
sion of we (cf. (8.9)), the central limit theorem for random variables with small
dependency [3] may be used in order to establish that the correlation c in (8.17)
attains a Gaussian distribution, even in the case of event H1b (assuming that N is
sufficiently large). Therefore, for sequences generated by piecewise linear Markov
maps, fc|H0 , fc|H1 are normal distributions. The same can be shown for pseudoran-
dom sequences. Thus, fc|H0 , fc|H1 can be fully determined in terms of their means
μc|H0 , μc|H1 and variances σ2

c|H0
, σ2

c|H1
. As a consequence, the performance of an

additive embedding correlation-based watermarking scheme for this type of wa-
termark signals depends only on those four parameters and the ROC curve can be
described through the following expression:

Pfa = 1
2

[
1− erf

[√
2σc|H0 erf−1 (2Pfr − 1

)
+ μc|H0 − μc|H1√

2σc|H1

]]
. (8.18)
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A close look at Figure 8.1 reveals that the system performance improves (i.e.,
both the probability of false alarm and the probability of false rejection decrease
for a certain value of the threshold T) when the two distributions move apart, that
is, when the difference μc|H0−μc|H1 increases. In a similar manner, the performance
improves when the variances of the two distributions σ2

c|H0
, σ2

c|H1
decrease.

Expressions for the mean and variance of the correlation c can be easily ob-
tained:

μc = E[c] = 1
N

N−1∑

n=0

E
[
fo[n]

]
E
[
wd[n]

]
+

1
N

N−1∑

n=0

pE
[
we[n]wd[n]

]
,

σ2
c = E

[
c2]− E[c]2 = E

[(
1
N

N−1∑

n=0

(
fo[n]wd[n] + pwe[n]wd[n]

)
)2]

− μ2
c

= 1
N2

E

[ N−1∑

n=0

(
fo[n]wd[n] + pwe[n]wd[n]

)2

+
N−1∑

n=0

N−1∑

m=0,
m�=n

(
fo[n]wd[n] + pwe[n]wd[n]

)

× ( fo[m]wd[m] + pwe[m]wd[m]
)
]

− μ2
c

= 1
N2

[ N−1∑

n=0

(
E
[
f 2
o [n]

]
E
[
w2
d[n]

]
+ p2E

[
w2
d[n]w2

e [n]
]

+ 2pE
[
fo[n]

]
E
[
we[n]w2

d[n]
])

+
N−1∑

n=0

N−1∑

m=0,
m�=n

(
E
[
fo[n] fo[m]

]
E
[
wd[n]wd[m]

]

+ pE
[
fo[n]

]
E
[
wd[n]we[m]wd[m]

]

+ pE
[
fo[m]

]
E
[
we[n]wd[m]wd[n]

]

+ p2E
[
we[n]we[m]wd[n]wd[m]

])
]

− μ2
c .

(8.19)

The above expressions hold for both events H0 (wd = we) and H1 (wd �=
we or p = 0). The statistical independence between the host signal fo and both
watermarks we, wd has been exploited in the derivation of the formulas above.

Obviously, several moments need to be evaluated if μc, σ2
c are to be computed

using (8.19). In order to proceed with such an evaluation, one has to make certain
assumptions about the statistical properties of the host signal. In our case, the host
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signal was assumed to be wide-sense stationary, thus

E
[
fo[n]

] = μ fo ∀n, n = 0, . . . ,N − 1,

E
[
fo[n] fo[n + k]

] = Rfo[k] ∀n, n = 0, . . . ,N − 1.
(8.20)

Furthermore, the host signal was assumed to follow a first-order exponential au-
tocorrelation function model:

Rfo[k] = μ2
fo

+ σ2
fo
βk, k ≥ 0, |β| ≤ 1. (8.21)

In the previous equation, β is the parameter of the autocorrelation function and
σ2
fo

is the host signal variance:

σ2
fo
= E

[
f 2
o [n]

]− E[ fo[n]
]2
. (8.22)

This model has been chosen because of its simplicity and tractability. Moreover,
it can model sufficiently well the autocorrelation function of image scanlines and
speech signals [8, 14, 19]. Despite their simplicity, the assumptions mentioned
above have enabled us to derive theoretical results that are very close to the exper-
imental results, when audio signals were considered as host signals (see, Section
8.2.3.2).

By substituting (8.7) in (8.19) while taking into account the fact that wd[n] =
we[n + k], according to (8.9), one can derive general expressions for the mean
value and the variance of the correlation c. These expressions are rather complex
and lengthy and thus will not be replicated here. The interested reader can consult
[29]. Much simpler expressions can be obtained if the constant value d in (8.7) is
chosen so that watermarks have zero mean value (which according to [19] results
in better system performance) and the test signal mean value is subtracted prior to
detection (an action which was shown in [29] to result in a decrease of the variance
of the correlation, thus resulting in better system performance):

μc = p
(
Rx[k]− μ2

x

)
, (8.23)

σ2
c =

p2

N2

N−1∑

m=0

(N −m)
(
2− δ(m)

)

× {μ2
x

(
2Rx[m] + Rx[m + k] + Rx[k −m]

)− μx
(
Rx[k,m] + Rx[m,m + k]

+ Rx[k, k −m] + Rx[k,m + k]
)

+ Rx[m, k,m + k]
}

+
1
N2

N−1∑

m=0

(N −m)
(
2− δ(m)

)(
Rx[m]− μ2

x

)
Rfo[m]− p2(Rx[k]− 2μ2

x

)2
,

(8.24)

where δ(m) is the Dirac delta function and Rx[k] is a statistic of the form

Rx[k] = Rx
[
k1, k2, . . . , kr] = E

[
x[n]x

[
n + k1

]
x
[
n + k2

] · · · x[n + kr
]]
. (8.25)
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This statistic will be called hereafter rth-order correlation statistic of a wide-sense
stationary signal x.

Similar to expressions (8.19), expressions (8.23) and (8.24) can encompass all
three events H0, H1a, H1b, provided that piecewise linear Markov maps are used
to generate the watermark sequence. In other words, event H1a can be represented
by setting p to zero, event H0 can be represented by using a positive watermark
embedding factor and k = 0, whereas event H1b can be represented by a positive
embedding factor and k > 0.

When event H1b holds, that is, under the worst case assumption, both μc
(8.23) and σ2

c (8.24) converge to constant values for large values of k. In such a
case, Pfa|H1b substitutes Pfa|H1 since this is the worst case. Pfa|H1b can be estimated
using the limit values of μc and σ2

c when k tends to infinity. The values of Pfr can
be estimated using the values of μc and σ2

c for k = 0 (which corresponds to event
H0). Subsequently, ROC curves can be evaluated using (8.18).

A close examination of (8.23) reveals that the correlation mean value depends
on the embedding factor and the variance of the watermark but is independent of
the type of the watermark signal generator (chaotic or pseudorandom) that has
been used and the spectral properties of the watermark signal (see [29] for a more
detailed explanation). Thus the performance of a watermarking system that in-
volves watermark signals of the same embedding factor and the same variance is
affected only by the variance of the correlation detector. The performance of such
a system improves as long as the variance of the correlation for events H0 and H1

decreases. This fact implies that in order to improve the performance one has to
design watermarks that result in small correlation variance. According to (8.24),
such a design objective can be achieved by employing watermark signals with suit-
able first-, second-, and third-order correlation statistics. Chaotic watermark sig-
nals posses such desirable properties as will be shown in the rest of this section.

In order to gain further insight on (8.23), (8.24), we rewrite them below so
that the two events H0 and H1a are expressed separately:

μc =
⎧
⎨

⎩

0, p = 0
(
H1a

)
,

pσ2
x , k = 0, p �= 0

(
H0
)
,

(8.26)

σ2
c =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N
σ2
x σ

2
fo

+
2
N2

N−1∑

m=1

(N −m)
(
Rx[m]− μ2

x

)
Rfo[m], p = 0

(
H1a

)
,

1
N
σ2
x σ

2
fo

+
p2

N

(
4μ2

xRx[0]− 4μxRx[0, 0] + Rx[0, 0, 0]
)

−p2
(
Rx[0]− 2μ2

x

)2
+

2p2

N2

N−1∑

m=1

(N −m)

×{4μ2
xRx[m]−2μx

(
Rx[0,m]+Rx[m,m]

)
+Rx[0,m,m]

}

+
2
N2

N−1∑

m=1

(N−m)
(
Rx[m]−μ2

x

)
Rfo[m], k=0, p�=0

(
H0
)
.

(8.27)
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In case of event H1a, one can easily observe that the correlation variance de-
pends only on the autocorrelation function Rx[m] of the watermark signal which
in turn is directly associated with its power spectral density (PSD) through the
following formula:

Sx(ω) =
∞∑

k=−∞
Rx[k]e− jωk = Rx[0] +

∞∑

k=1

Rx[k]
(
e− jωk + e jωk

)
. (8.28)

As a consequence, the variance of the correlation for the event H1a is determined
by the spectral characteristics of the watermark signal in use. Furthermore, having
in mind that Markov chaotic sequences have an exponential autocorrelation func-
tion such as that presented in (8.21), it can be easily concluded that the correlation
variance (8.27) depends on the sum of the samples of the autocorrelation func-
tion, evaluated over the interval [0,N − 1]. This sum is minimized for β → −1,
and maximized for β → 1. Through (8.28), one can conclude that these two cases
correspond to the most highpass and the most lowpass signals that can be gener-
ated with an exponential autocorrelation function. The discussion above can lead
to the conclusion that highpass watermarks result in smaller correlation variance
than lowpass ones when no attacks on the watermarked signal are considered and
thus attain a better performance. In case of event H1b, the correlation variance
σ2
c|H1b

still depends only on the spectrum of the watermark signal, as was shown in
[29].

Based on the previous analysis, another extremely interesting conclusion can
be also drawn: two sequences having the same variance, embedding factor, and
spectral properties might exhibit different performance in a watermarking scheme.
In case of event H1, the correlation mean and variance of such sequences would
have the same value. However, the variances of the correlation for the event H0

might differ, since in this case the variance depends also on the second- and third-
order correlation statistics Rx[0,m], Rx[m,m], and Rx[0,m,m] of the watermark.
As a result, one can generate, for example, white chaotic watermark sequences
that perform better than white sequences generated by a pseudorandom generator.
This fact will be exemplified in Section 8.2.3.2.

Obviously, in order to proceed with the performance analysis of watermarking
systems based on chaotic sequences, expressions for the correlation statistics, that
are involved in expressions (8.23) and (8.24), must be derived. A linear operator,
which is referred to as the Frobenius-Perron (FP) operator [17], can be defined so
that

pn(·) = Pf
{
pn−1(·)} = Pnf

{
p0(·)}, (8.29)

where pn(·) denotes the probability density function of the nth iterate x[n] in
(8.1). The FP operator describes the evolution in time of the density pn(·) for
a specific chaotic map. In the general case, the probability density functions at
distinct iterates n will differ. However, there can be certain choices of p0(·) such
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that the densities of subsequent iterates do not change over time, that is,

p(·) = Pnf
{
p(·)} ∀n. (8.30)

A density p(·) that satisfies this property is called the invariant density of the map
f (·). A map might have more than one invariant density. The invariant density
plays an important role in the computation of time-averaged statistics of time se-
ries generated by nonlinear dynamical systems. When p0(·) is chosen to be an
invariant density, one can verify that the resulting stochastic process is stationary
and, subject to certain constraints on the map, ergodic [17].

The Markov maps described in Section 8.2.2 possess a number of useful prop-
erties. All Markov maps posses invariant densities and are ergodic under easily
verifiable conditions [4]. Moreover, sequences generated by Markov maps, when
suitably quantized, are equivalent to Markov chains. As already mentioned, the
Markov sequences that were used in this study attain exponential autocorrelation
function given by (8.21), where β is an eigenvalue of the corresponding FP matrix
[16]. The higher-order correlation statistics of Markov maps can also be deter-
mined in closed form. A general strategy for computing these statistics was devel-
oped in [13]. The results obtained by applying this strategy on the Markov maps
are detailed in [29] and will not be repeated here due to lack of space. Readers
interested in obtaining more details on this analysis can consult this publication.

The analysis techniques presented above can be exemplified using the skew
tent map, which, as already mentioned, is a piecewise linear Markov map. The
invariant density of this map can be shown to be uniform. Following the method-
ology described in brief above, the statistical properties of sequences produced
using the skew tent map can be derived as was shown in [29]. Among the formulas
derived in this publication were analytical expressions for the first-, second-, and
third-order correlation statistics (8.25) required for evaluating the performance of
watermarking schemes based on the skew tent map. For example, the first-order
correlation statistic, namely, the autocorrelation function, was shown to be

Rt[k] = 1
4

+
1

12
ek2 =

1
4

+
1

12
(2α− 1)k, (8.31)

where e2 = 2α − 1 is an eigenvalue of the FP matrix P3 (for more details, consult
[13, 29]). According to this expression, the autocorrelation function of the skew
tent map depends only on its parameter α. Therefore, by controlling α, one can
generate sequences that have any desirable exponential autocorrelation function.
Using (8.28) and (8.31), the PSD of sequences generated by the skew tent map can
be easily evaluated:

St(ω) = 1− e2
2

12
(
1 + e2

2 − 2e2 cosω
) . (8.32)

Thus, highpass (α < 0.5) or lowpass (α > 0.5) sequences can be generated. The
value α = 0.5 corresponds to the symmetric tent map. Sequences generated by this
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map have a Dirac delta autocorrelation function and thus possess a white spec-
trum. The control over the spectral properties of watermarking sequences pro-
vided by chaotic functions is very useful, since the spectral characteristics of the
watermark sequence are related to watermark robustness against common attacks,
such as filtering and compression.

Using the analytical expressions for the correlation statistics of skew tent se-
quences derived in [29] one can derive the mean value and the variance of the
correlation detector for this map:

μc =
⎧
⎪⎨

⎪⎩

0, p = 0
(
H1a

)
,

p

12
, k = 0, p �= 0

(
H0
)
,

σ2
c =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
fo

12N2

N − 2βe2 −Nβ2e2
2 + 2

(
βe2

)N+1

(
1− βe2

)2 , p = 0
(
H1a

)
,

p2

180N2

N − 2e1 −Ne2
1 + 2eN+1

1
(
1− e1

)2

+
σ2
fo

12N2

N − 2βe2 −Nβ2e2
2 + 2

(
βe2

)N+1

(
1− βe2

)2 , k = 0, p �= 0
(
H0
)
,

(8.33)

where e1, e2 are eigenvalues of the FP matrix P3 and β is the host signal autocor-
relation function parameter in (8.21). Using these expressions, one can derive an
analytical expression for the ROC curve of a watermarking system that employs
sequences generated by the skew tent map.

The methodology presented above can be also used to derive the statistics
required for the performance analysis of a watermarking system utilizing m-way
Bernoulli maps. A detailed study on the performance of correlation-based water-
marking schemes based on Bernoulli maps, using a different methodology than
the one introduced in [29] and described in this section, can be found in [31]. For
m-way Bernoulli sequences, the first-order correlation statistic can be shown to be

Rb[k] = E
[
b[n]b[n + k]

] = 1
4

+
1

12mk
. (8.34)

By comparing (8.31), (8.34) one can conclude that for α = (m+1)/2m the tent map
generates sequences that have the same spectral properties with the correspond-
ing Bernoulli sequences. It is worth noting here that Bernoulli maps can generate
only lowpass sequences. As m tends to infinity, Bernoulli sequences tend towards
obtaining a white spectrum. The most lowpass sequence that can be generated us-
ing Bernoulli maps is the one obtained for m = 2. Thus, Bernoulli maps lack in
flexibility. On the contrary, tent chaotic watermarks can generate sequences with
exponential autocorrelation function and any desirable spectral characteristics.
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8.2.3.2. Experimental performance evaluation

The results obtained through the theoretical analysis presented in the previous
sections were verified experimentally. In order to do so, a watermarking system
based on correlation detection was used to watermark music audio signals. In this
section we will present results for such a signal of 1-second duration (sampling
frequency 44.1 kHz, 16 bits per sample). The audio signal was assumed to comply
with the signal model of (8.21) and the value of the audio signal autocorrelation
parameter β was experimentally evaluated to be equal to 0.97. The performance
of the system was measured for three classes of watermark signals, that is, chaotic
watermarks generated by tent maps with different spectral properties, pseudoran-
dom white watermarks, and lowpass watermarks generated by Bernoulli chaotic
sequences. A total of 10 000 keys for each class of signals were used in all the exper-
iments. In all cases, a watermark embedding factor p chosen so that the resulting
watermarked signals had an SNR equal to 30 dB has been used. In the analysis be-
low, ROC curve evaluation is performed under the worst case assumption for Pfa

evaluation (event H1b). In other words, experiments performed for the evaluation
of Pfa were conducted upon signals being watermarked by a watermark different
than the one used in detection.

The statistical and spectral properties of the tent chaotic watermarks were
experimentally evaluated and found to be in agreement with the analytical expres-
sions presented above. Moreover, the experiments verified that the spectrum of
tent chaotic watermarks can be easily controlled by the parameter α: it is highpass
for small values of α (i.e., values close to zero), becomes white for α = 0.5, and
tends to lowpass as α tends to one.

Next, the influence of the map parameter α on the performance of the water-
marking system was evaluated in a set of experiments. ROC curves were evaluated
both theoretically and experimentally for lowpass (α = 0.7), white (α = 0.5),
and highpass (α = 0.3) tent chaotic watermarks. The results verified the supe-
rior performance of the highpass tent chaotic watermarks, as can be observed in
Figure 8.3(a). A considerably inferior performance is obtained when white tent
watermarks are used, whereas lowpass watermarks result in the worst performance.
Furthermore, the validity of the theoretical derivations was verified by the good
agreement between the theoretical and experimental results.

The fact that schemes employing watermark signals of exactly the same spec-
tral characteristics may exhibit different performance was also illustrated experi-
mentally. In other words, it was verified that, in the case of event H1, two water-
marking schemes using sequences of the same spectral characteristics attain the
same correlation mean and variance, but can exhibit different correlation variance
when event H0 holds, since in that case the variance depends also on the second-
and third-order correlation statistics (8.27). For this purpose, white tent chaotic
watermarks (i.e., tent watermarks generated using α = 0.5) were compared against
pseudorandom white watermarks. Moreover, lowpass tent watermarks were com-
pared against lowpass Bernoulli watermarks, possessing exactly the same spectral
characteristics.
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Figure 8.3. (a) ROC curves for watermarking schemes based on highpass, lowpass, and white skew
tent chaotic watermarks. (b) Comparison between sequences with the same spectral characteristics.
(Reproduced from A. Tefas et al. “Performance analysis of correlation-based watermarking schemes
employing Markov chaotic sequences,” IEEE Transactions on Signal Processing, Vol. 51, no. 7, pages
1979–1994, © 2003 IEEE.)

Experimental results showed that sequences produced by white tent maps
have superior performance when compared to white pseudorandom watermarks.
Similarly, lowpass sequences generated by tent maps outperform lowpass Bernoulli
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sequences of the same spectral characteristics. The experimentally and theoreti-
cally evaluated ROC curves for white tent (α = 0.5), pseudorandom white, low-
pass tent (α = 0.6), and lowpass Bernoulli (m = 5) watermarks are plotted in
Figure 8.3(b). In addition to the superiority of the tent maps, the figure verifies
that theoretical and experimental ROCs are indeed in accordance.

8.2.4. Multiplicative embedding transform domain correlation-based
scheme employing Markov chaotic sequences

According to the additive, correlation-based system analysis presented in Sections
8.2.3.1 and 8.2.3.2 above, when no distortions are imposed on the signal, high-
pass chaotic watermarks achieve superior performance when compared to those
exhibiting lowpass or white spectral characteristics. However, in order to meet the
requirement of robustness to common signal distortions and unauthorized in-
tentional manipulations, the watermark should be embedded in the perceptually
most significant components of the host data, which are usually the low-frequency
regions [6, 18]. By doing so, an attacker would have to distort the fundamental data
components, and thus cause severe quality degradation in his attempt to remove
the watermark. Moreover, most signal processing techniques tend to leave such
components intact. Therefore, a methodology that exploits the desirable prop-
erties of the high-frequency chaotic watermarks presented in the previous sec-
tions and in the same time performs watermark embedding in the perceptually
significant low-frequency region of the signal should be devised. The method de-
scribed in this section achieves this by embedding a highpass watermark in the
low-frequency subbands of the DFT domain, where most of the host signal energy
is concentrated in a way that does not impose significant distortions to the sig-
nal. Thus the method guarantees imperceptibility, improved detection reliability,
and robustness to manipulations. For a more detailed description of the proposed
system the reader can consult [11, 28].

Without restriction of the generality, 1D discrete-time signals will be consid-
ered. Let s(n), n = 0, 1, . . . ,Ns − 1, be samples of the original 1D signal of length
Ns and let S(k), k = 0, 1, . . . ,Ns − 1, be the DFT coefficients of s(n). Watermark
embedding is performed by modifying the magnitude F(n) = |S(k)| of the DFT
coefficients. In other words, the magnitude F(n) will be considered hereafter as the
host signal. The DC coefficient is considered to be located at S(0) and thus indices
of low-frequency DFT coefficients are close to zero or Ns − 1. Furthermore, the
DFT magnitude is symmetric with respect to the coefficient Ns/2 since s(n) is a
real signal.

A basic watermark signal Wo(i) ∈ R is utilized for the construction of the
final watermark W(n). Wo(i) consists of N samples and is generated through an
appropriate function g (8.3). Wo is embedded in the low-frequency components
around zero. Due to the fact that the DFT magnitude is symmetric, a reflected
version of Wo is also embedded in the low-frequency components around Ns −
1. Since the final watermark signal W(n) should affect a specific low-frequency

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


Nikos Nikolaidis et al. 221

subband of the host signal, it can be represented by the following formula:

W(n) =

⎧
⎪⎪⎨

⎪⎪⎩

Wo
(
n− aNs

)
, if aNs ≤ n ≤ bNs,

Wo
(
Ns − n− aNs

)
, if (1− b)Ns ≤ n ≤ (1− a)Ns,

0, otherwise,

(8.35)

where n = 0, 1, . . . ,Ns−1 and the coefficients a and b (0 < a < b ≤ 0.5) control the
subband (frequency coefficients) that will be modified. Obviously, the length of the
basic watermark is N = �(b− a)Ns�. Zero-mean watermarks that guarantee better
system performance, as shown in [19], will be treated throughout this section.

A multiplicative superposition rule is used for the watermark embedding be-
cause it incorporates a simple perceptual masking effect by modifying coefficients
proportionally to their magnitude:

F′(n) = F(n) + pW(n)F(n), (8.36)

where F′(n) is the watermarked signal and p is the corresponding watermark em-
bedding factor. Obviously p is closely related to the watermark perceptibility as in
the case of the additive watermark presented in the previous sections.

For a multiplicatively embedded watermark, the expression for the correlation
detector (8.4) takes the following form:

c = 1
N

N−1∑

n=0

Ft(n)Wd(n) = 1
N

N−1∑

n=0

(
Fo(n)Wd(n) + pWe(n)Fo(n)Wd(n)

)
. (8.37)

For a test signal Ft(n), and a watermark Wd(n) whose existence in Ft(n) is to be
checked, the watermark detection procedure in the case of multiplicative embed-
ding involves the following hypotheses:

(i) H0: the test signal Ft(n) contains the watermark Wd(n), that is, Ft(n) =
Fo(n) + pWd(n)Fo(n), Fo(n) being the host signal, that is, the DFT mag-
nitude,

(ii) H1: the test signal Ft(n) does not host the watermark Wd(n).
Similar to the additive embedding case presented in Section 8.2.3, event H1

can be further broken down into the events H1a, corresponding to the case where
the test signal is not watermarked, that is, Ft(n) = Fo(n) andH1b, corresponding to
the case where the test signal is watermarked with a different watermark W ′

d(n) �=
Wd(n), that is, Ft(n) = Fo(n) + pW ′

d(n)Fo(n).
All these events can be combined in the following expression:

Ft(n) = Fo(n) + pWe(n)Fo(n), (8.38)

where the watermarkWd(n) is indeed embedded in the signal if p�=0 andWe(n)=
Wd(n) (event H0), and it is not embedded in the signal if p = 0 (no watermark
is present, event H1a) or p �= 0 and We(n) �= Wd(n) (a different watermark is
present, event H1b).
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8.2.4.1. Theoretical performance analysis

Using a similar justification as in the additive case, one can safely assume that,
for sequences generated by piecewise linear Markov maps and pseudorandom se-
quences, the correlation c in (8.37) obeys a Gaussian distribution and thus fc|H0 ,
fc|H1 can be fully determined in terms of their means and variances whereas the
ROC curve describing such a system is given by (8.18).

Using expression (8.37), the mean value of the correlation detector c can be
evaluated as follows:

μc = E[c] = 1
N

( N−1∑

n=0

E
[
Fo(n)

]
E
[
Wd(n)

]
+
N−1∑

n=0

pE
[
Fo(n)

]
E
[
We(n)Wd(n)

]
)

.

(8.39)

The corresponding expression for the variance σ2
c = E[c2]−E2[c] of the correlation

detector is given by

σ2
c =

1
N2

[ N−1∑

n=0

(
E
[
F2
o (n)

]
E
[
W2

d (n)
]

+ p2E
[
F2
o (n)

]
E
[
W2

d (n)W2
e (n)

]

+ 2pE
[
F2
o (n)

]
E
[
We(n)W2

d (n)
])

+
N−1∑

n=0

N−1∑

m=0,
m�=n

(
E
[
Fo(n)Fo(m)

]
E
[
Wd(n)Wd(m)

]

+ pE
[
Fo(n)Fo(m)

]
E
[
We(m)Wd(n)Wd(m)

]

+ pE
[
Fo(n)Fo(m)

]
E
[
We(n)Wd(n)Wd(m)

]

+ p2E
[
Fo(n)Fo(m)

]
E
[
We(n)We(m)Wd(n)Wd(m)

])
]

− μ2
c .

(8.40)

The above formulas are general and can be used to describe all three events, H0,
H1a and H1b. In order to proceed with the theoretical analysis and derive closed-
form expressions for μc and σ2

c , all moments that appear in (8.39) and (8.40)
should be estimated. To do so, the host signal, that is, the magnitude of the DFT
coefficients, was assumed to be wide-sense stationary, following an exponential
autocorrelation function like the one described in Section 8.2.3.1. Although these
assumptions are rather simplistic, the validation of the theoretical results using ex-
periments on audio signals in Section 8.2.4.2, verified that the assumptions hold
in a great extent.

Before proceeding with the theoretical analysis, we will adopt the subtraction
of the mean value E[Ft(n)] from the test signal Ft(n) prior to detection. This proce-
dure, as mentioned in Section 8.2.3.1 and detailed in [29], improves the detection
reliability for watermarks embedded in an additive way. It can be easily proven
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that subtraction of the signal mean value improves the performance of multiplica-
tive embedding watermarking schemes too. By utilizing zero-mean watermarks
(8.7) and since for watermarks generated by chaotic maps Wd[n] = We[n + k]
(see (8.9)), σ2

c and μc in (8.40) and (8.39) can be shown to be

σ2
c =

1
N

(
Rx[0, k, k]− 2μxRx[0, k] + 2μ2

xRx[0]

− 2μxRx[k, k] + 4μ2
xRx[k]− 3μ4

x

)
p2RFo[0]

+
1
N

(
2pRx[k, k]− 4pμxRx[k] +

(
1− 2pμx

)
Rx[0] + 4pμ3

x − μ2
x

)
σ2
Fo

+
2
N2

[ N−1∑

m=1

(N −m)
(
RFo[m]− μ2

Fo)Rx[m]

+
(
4pμ3

x − μ2
x

) N−1∑

m=1

(N −m)
(
RFo[m]− μ2

Fo

)

− pμx

N−1∑

m=1

(N −m)
(
RFo[m]− μ2

Fo

)

×(2Rx[m] + 2Rx[k] + Rx[m + k] + Rx[k −m]
)

+ p
N−1∑

m=1

(N −m)
(
RFo[m]− μ2

Fo

)(
Rx[k, k −m] + Rx[k,m + k]

)

+
N−1∑

m=1

(N −m)RFo[m]

×{p2Rx[m, k,m + k]

− p2μx
(
Rx[m, k] + Rx[m,m + k] + Rx[k, k −m] + Rx[k,m + k]

)

+ p2μ2
x

(
2Rx[m] + 2Rx[k] + Rx[k −m] + Rx[m + k]

)}

− 3p2μ4
x

N−1∑

m=1

(N −m)RFo[m]

]

− μ2
c ,

(8.41)

μc = pμFo
(
Rx[k]− μ2

x

)
. (8.42)

The evaluation of expressions (8.42) and (8.41) requires the evaluation of several
moments of the chaotic watermark x[n] which can be derived using the method-
ology presented in Section 8.2.3.1 and detailed in [13, 26, 29].

The above equations continue to be general and encompass all three events,
H0, H1a, H1b. In detail, expressions for the event Ho can be obtained by setting the
sequence shift k equal to zero and using an embedding factor p > 0. The event H1a

can be described by an embedding factor p having zero value whereas expressions
for the event H1b can be obtained by using k > 0 and p �= 0.
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A close examination of (8.42) leads to the conclusion that the mean value
becomes zero in the case of event H1a. For the event H1b, the mean value of the
correlation detector output converges quickly to zero as k increases. Furthermore,
in the case of the correct watermark presence (event H0), the mean value depends
not only on the embedding factor and the variance of the watermark like in the
additive watermark case (see (8.26)), but also on the mean value μFo of the host
signal (where Fo refers to the DFT coefficients magnitude for the original signal).
However, it is independent from the watermark spectrum. Therefore, for water-
marks of the same embedding factor, the system performance is affected only by
the variance of the correlation detector which in turn depends on the correlation
(or, equivalently, spectral) characteristics of the watermark sequence. This remark
justifies the use of sequences generated by chaotic maps as watermark signals,
since one can exploit their easily controllable correlation/spectral characteristics
to achieve improved system performance, as will be shown in Section 8.2.4.2.

Equations (8.42) and (8.41) can be modified so that they describe the two
events H0 and H1a in a simplified form:

μc =
⎧
⎨

⎩
0, p = 0

(
H1a

)
,
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(8.43)

By inspecting the previous formula, it is obvious that the system performance
depends on the watermark autocorrelation function Rx[m], which, as mentioned
in Section 8.2.3.1, is closely related to its power spectral density. As demonstrated
in [29], highpass watermarks lead to reduced correlation variance for additive
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embedding and, thus, better performance when no attacks are inflicted on the
host signal. In the multiplicative embedding model under investigation, highpass
watermarks still outperform lowpass and white spectrum watermarks as will be
shown in Section 8.2.4.2. This fact is exploited by embedding highpass watermarks
in the low-frequency subbands in order to take advantage of the correlation prop-
erties of such watermarks and, at the same time, achieve robustness to attacks of
lowpass nature.

By substituting the correlation statistics of the skew tent sequences (presented
in detail in [29]) in (8.43), the mean value and the variance of the correlation
detector for multiplicative embedding watermarking systems employing such se-
quences can be derived:

μc =
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(8.44)

where e1 = 3α2 − 3α + 1, e2 = 2α− 1 are eigenvalues of the FP matrix P3 and β is
the parameter of the host signal autocorrelation function given by (8.21).

8.2.4.2. Experimental performance evaluation

The multiplicative embedding transform domain watermarking model was tested
on a number of mono music audio signals. The DFT coefficients of these signals
were used as host signals. Results will be presented below for such a signal of ap-
proximately 5.94-second duration, sampled at 44.1 kHz with 16 bits per sample.
In the subsequent analysis, experiments were performed by employing chaotic
watermark signals generated by the skew tent map. All sets of experiments were
conducted using 10 000 keys and the system detection performance was measured
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in terms of the ROC curves. In all experiments, a skew tent map parameter α = 0.3
has been used, leading to highpass watermarks.

In the first set of experiments, the just-noticeable distortion for watermark
embedding in different frequency bands of the host signal was evaluated. For this
purpose, six overlapping frequency subbands of lengths equal to the 10% of the
entire host signal were used. For each of these bands, their symmetric band was
also utilized, and thus 20% of the host signal samples were watermarked. The se-
lected subbands varied from very low frequencies (a = 0.01, b = 0.11) to middle
frequencies (a = 0.15, b = 0.25) and high frequencies (a = 0.30, b = 0.40), with
a, b being the coefficients in (8.35). For each of these frequency bands, the em-
bedding factor p was increased gradually and a number of listeners were asked to
verify that signal distortions could not be perceived. The point, where any addi-
tional increase of p would lead to perceptible distortions, was considered as the
maximum watermark embedding factor p tolerated by this band, namely, the just
noticeable distortion level. Results proved that watermark embedding in the lowest
frequency band (a = 0.01, b = 0.11) provides great perceptual capacity, enabling
the use of low SNR values without resulting in perceptual distortion of the host
signal.

In the second set of experiments, the influence of the frequency band selec-
tion on the detection performance, both with and without attacks was investi-
gated. To do so, the method under investigation was tested against lossy MPEG
audio-I layer III compression at 64 kbps. The ROC curves for the undistorted and
the compressed signal can be seen in Figure 8.4. Inspection of the curves reveals
that embedding in the lowest subband (a = 0.01, b = 0.11) attains by far the
highest robustness to compression. High-frequency bands (a = 0.20, b = 0.30
and a = 0.30, b = 0.40) exhibit better performance than other subbands when no
distortions occur on the signal (Figure 8.4(a)). In fact, it was not possible to plot
the ROC curve for the subband with a = 0.30, b = 0.40 in Figure 8.4(a) within
the selected axis range. However, the content of these bands is severely affected by
the compression algorithm and thus these bands do not provide sufficient robust-
ness to attacks of this nature. The lowest frequency band (a = 0.01, b = 0.11)
was ranked third when no distortions were imposed on the signal. The results
of this and the previous experiments prove that this band is the best choice for
embedding as it combines superior robustness to attacks of lowpass nature, suffi-
cient performance in the case of distortion-free signals and can tolerate significant
watermark-induced distortions. For these reasons, the lowest frequency subband
was selected for embedding.

In order to compare the performance of the presented watermarking scheme
against the performance of alternative techniques, experiments were conducted
for two competitive embedding schemes. For all methods, watermarks that are
just below the just noticeable distortion have been incorporated. For all three
schemes, a correlation detector, applied in the appropriate domain, was used. The
first alternative embedding scheme involved white pseudorandom watermark se-
quences (w(i) ∈ {−1, 1}) that were embedded multiplicatively in the same low-
frequency DFT subband (a = 0.01, b = 0.11), producing watermarked signals
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Figure 8.4. Experimental ROC curves for various frequency bands (skew tent sequences): (a) five
frequency bands without attacks, (b) six frequency bands after MPEG compression at 64 kbps.
(Figure 8.4(b) is reproduced from A. Tefas et al. “Enhanced transform-domain correlation-based audio
watermarking,” 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol.
2, pages 1049–1052, Philadelphia, © 2005 IEEE.)

with SNR = 23 dB. The second scheme was based on the time-domain audio
watermarking scheme proposed in [2]. In this technique, a bipolar white pseu-
dorandom watermark w(n) (w(n) ∈ {−1, 1}) was modulated according to the
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Figure 8.5. ROC curves for the three watermarking schemes (tent and white watermarks in the DFT
domain and prefiltered watermarks in the time domain) in distortion-free signals and after MPEG
compression at 64 kbps. (Reproduced from A. Tefas et al. “Enhanced transform-domain correlation-
based audio watermarking,” 2005 IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, Vol. 2, pages 1049–1052, Philadelphia, © 2005 IEEE.)

amplitude of the original audio signal m(n) using a multiplicative law:

w′(n) = p
∣
∣m(n)

∣
∣w(n), (8.45)

with p being the embedding factor. In the next stage, a 25th-order lowpass Ham-
ming filter with cut-off frequency of 2205 Hz was applied on w′(n) in order to
improve imperceptibility and robustness to lowpass attacks. The resulting filtered
watermark signal w′′(n) was embedded in the time domain of the original signal
m(n):

mw(n) = m(n) +w′′(n), (8.46)

producing the watermarked signal mw(n) with SNR = 22 dB. Figure 8.5 illustrates
the superior performance of highpass tent watermarks embedded in the low fre-
quencies of the DFT transform against the two techniques described above both
when no distortions occur and when 64 kbps MPEG-I layer III encoding is applied
on the signal. In addition, the proposed method exhibited better performance than
the other methods in a number of other attacks that included mean and median
filtering and resampling. Details can be found in [28].
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(a) (b)

Figure 8.6. (a) A sample image that can be used as logo for the watermark generation. (b) The image
Lenna to be watermarked by using this logo.

8.3. Watermark generation by chaotic mixing

The watermarking systems described in Section 8.2 utilize zero-bit watermarks.
In certain applications however, multiple-bit watermarks, that is, watermarks that
can encode a number of information bits, are required. Watermarks that can em-
bed an image logo within the host medium are an example of multiple-bit wa-
termarks. A logo l(x) ∈ {1, 2} is usually a binary image of dimensions N1 × N2

(Figure 8.6(a)). Using a logo as the information to be embedded is of interest in
cases where a visually meaningful detected watermark whose integrity can be ver-
ified by visual inspection is desired. In such a case, a mechanism for construct-
ing a watermark signal starting from the binary logo is required. This mechanism
should be able to scramble or mix the logo and produce a watermark signal with
the desired characteristic. Scrambling a logo is needed in order to prevent statisti-
cal estimation of the final watermark by an attacker. The same need arises when a
nonvisually meaningful multiple-bit message has to be encrypted prior to embed-
ding in order to increase security. Such a mixing procedure can be implemented
efficiently by using chaotic mixing systems [10].

Chaotic maps used for chaotic mixing provide excellent security and have
many desired cryptographic properties. They are simple to implement and achieve
high encryption speed. Their basic property that makes them suitable for infor-
mation encryption is their sensitivity to initial conditions. When a chaotic map is
iteratively applied to two closely positioned points, their positions diverge quickly.
Thus, local logo image correlation is destroyed. Another advantage of chaotic mix-
ing is that it can lead to a private/public key watermarking scheme. That is, using
chaotic mixing, one can have a certain key (private key) for watermark embedding
and a different key (public key) for watermark detection. In that case, a potential
attacker can not use the parameters of the public key for embedding, since this will
result in a different watermark.

In the following sections, a description of a watermarking system that incor-
porates chaotic mixing will be provided. Readers interested in obtaining additional
details can consult [30, 33].
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8.3.1. Watermark generation

A 2D chaotic mixing can be considered as spatial transformation of planar regions.
It is represented by a map

A : U2 �→ U2, U = [0, 1) ⊂R, (8.47)

and is defined by the formula

xn+1 =
(

Axn
)

mod 1, x ∈ U2, (8.48)

where A is a square matrix having integer elements, det A = 1, and mod 1 operator
is the modulo operator that gives the decimal part of every element of Axn.

Successive applications of the map A on a point x0 form a dynamical system
described by the following iterative process:

xn =
(

Anx0
)

mod 1. (8.49)

Although these systems are strongly chaotic, they possess a set of periodic orbits.
An orbit is periodic if it is finite, that is, there exists a number T of iterations such
that xT = x0. The necessary and sufficient condition for an orbit to be periodic
is for the initial position x0 to have rational coordinates [1]. The interested reader
may refer to [1, 24] for details on chaotic mixing and to [33] for an application of
chaotic mixing to copyright protection.

Chaotic maps can be easily applied on discrete lattices (e.g., images) of di-
mensions N ×N , N ∈ Z, by modifying (8.48) to

xn+1 =
(

Axn
)

modN , x ∈ F = [0,N − 1]× [0,N − 1] ⊂ Z2. (8.50)

In the case of images, the lattice location x is equivalent to the position of a pixel.
The least common multiple of the periods of all orbits in an image is called recur-
rence time. It is obvious that

(
ARx

) = x, ∀x ∈ F , (8.51)

where R indicates the recurrence time of the image. The recurrence time is deter-
mined by the dimension N of the square lattice and the type of chaotic map that
is used for mixing.

Considering that in chaotic maps det A = 1, the following formula can be
used to define a two-parameter family of maps:

A =
(

1 a
b ab + 1

)

, (8.52)

where a, b ∈ Z. The above map can be used for mixing an image logo l(x) in order
to create the final watermark w(x). First, the logo is superimposed at the position
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m of a larger region (i.e., a region equal in size to the host image) to form the
ternary unmixed watermark w′(x):

w′(x) =
⎧
⎨

⎩
l(x−m) if m ≤ x ≤m +

(
N1,N2

)
,

0 otherwise.
(8.53)

If the number of pixels in the image logo is smaller or bigger than the number of
the host image pixels that we want to affect through watermarking, the logo image
can be resized or repeated in different positions so that its pixel number is close to
the desirable number. The above procedure results in an initial ternary unmixed
watermark w′(x) ∈ {0, 1, 2}.

Subsequently, the watermark w′(x) is mixed using the chaotic mixing pro-
cedure described above to generate the final watermark w(x) ∈ {0, 1, 2} which
is subsequently used for image watermarking. Instead of a single chaotic mixing
step, a series of such steps with different parameters can be applied on w′(x) for
additional security and uncorrelated spatial spreading of the initial logo. In that
case, the position of a pixel after i + 1 mixing steps is given by

xi+1 =
(

Ani
i xi

)
modNi, xi ∈ F = [0,Ni − 1

]× [0,Ni − 1
] ⊂ Z2, (8.54)

where xi is the position of the pixel after i mixing procedures. Accordingly, the
inverse procedure can be applied iteratively to the mixed image resulting in the
initial image:

xi =
(

ARi−ni
i xi+1

)
modNi, xi+1 ∈ F = [0,Ni − 1

]× [0,Ni − 1
] ⊂ Z2, (8.55)

where Ri is the recurrence time for a given map Ai and dimension Ni.
All the parameters of the mixing procedure except for the parameters ni in

(8.54) are generated using a pseudorandom sequence having as a seed the owner’s
key k. If the system is to be used within a private/public key framework, the private
key is comprised of the owner’s key k and the parameters ni in (8.54). For example,
if three mixing steps are usedKpr = {k,n1,n2,n3}. The public key is produced after
the embedding and is comprised of the owner’s key k and the parameters Ri − ni
in (8.55), that is, for three mixing steps Kpub = {k,R1 − n1,R2 − n2,R3 − n3}.

The initial unmixed watermark with the logo superimposed in several ran-
domly selected positions is illustrated in Figure 8.7(a). The result of the watermark
mixing using three steps with different parameters according to (8.54) is shown in
Figures 8.7(b), 8.7(c), 8.7(d). The inverse procedure for recovering the embedded
logo according to (8.55) is illustrated in Figure 8.8.

The chaotic mixing watermark generation procedure described in this sec-
tion can be applied to any watermarking scheme for generating the watermark
sequence. In the two sections that follow, an embedding and a detection scheme
that can be combined with this generation procedure will be presented.
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(a) (b)

(c) (d)

Figure 8.7. The watermark generation procedure by using chaotic mixing. (a) Initial random positions
of the logo. (b) First mixingM1 with parameters generated from the owner’s watermark key. (c) Second
mixing M2 with parameters generated from the owner’s watermark key. (d) Final watermark image
generated by a third mixing M3. (Reproduced from A. Tefas and I. Pitas, “Image authentication using
chaotic mixing systems,” 2000 IEEE International Symposium on Circuits and Systems, Vol. 1, pages
216–219, Geneva, Switzerland, © 2000 IEEE.)

8.3.2. Watermark embedding

Watermarks generated through the procedure described in the previous section
can be embedded in images by altering the intensity of the pixels of the host image
f (x) according to the following formula:

fw(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (x) if w(x) = 0,

g1
(
f (x), N (x)

)
if w(x) = 1,

g2
(
f (x), N (x)

)
if w(x) = 2,

(8.56)

where g1, g2 are appropriate embedding functions and N (x) is a local operator that
involves pixels in a neighborhood around x. The computation of N (x) does not
include the pixel x. The functions g1, g2 are selected so that suitable detection func-
tions G( fw(x), N (x))—that is, functions that, when applied on the watermarked
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(a) (b)

(c) (d)

Figure 8.8. The watermark detection (logo recovering) procedure by using chaotic mixing. (a) Initial
detection image by applying the detection function in the image. (b) First inverse mixing M−1

3 with
parameters generated from the owner’s watermark key. (c) Second inverse mixingM−1

2 with parameters
generated from the owner’s watermark key. (d) Final detection image generated by the third inverse
mixing M−1

1 . (Reproduced from A. Tefas and I. Pitas, “Image authentication using chaotic mixing
systems,” 2000 IEEE International Symposium on Circuits and Systems, Vol. 1, pages 216–219, Geneva
Switzerland, © 2000 IEEE.)

image fw(x), give the watermark w(x)—can be devised:

G
(
fw(x), N (x)

) = w(x). (8.57)

Obviously, several embedding functions along with the corresponding detec-
tion function can be designed, thus resulting in different watermarking schemes.
One such function is based on a superposition of real quantities on the intensities
of the pixels which are to be altered by the watermark:

g1
(
f (x), N (x)

) = N (x)⊗ α1 f (x),

g2
(
f (x), N (x)

) = N (x)⊗ α2 f (x),
(8.58)

where α1, α2 are suitably chosen constants. The operator ⊗ is a generalized super-
position operator which includes appropriate data truncation and quantization,
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if needed. For example, the values that can be used for the parameters of the sys-
tem are a1 = −a2 = 0.03. For N (x), a location estimation operator can be used.
The sign of α1, α2 is used in the detection function (see next section) and their
magnitude determines the watermark embedding factor.

8.3.3. Watermark detection

The first step of the detection procedure is the generation of the watermark w(x)
according to the procedure described in Section 8.3.1. The detection function re-
sulting from (8.58) is defined by

G
(
fw(x), N (x)

) =
⎧
⎨

⎩
1 if fw(x)−N (x) > 0,

2 if fw(x)−N (x) < 0.
(8.59)

The detection function (8.59) is valid if α1 > 0 and α2 < 0 in (8.58). By employing
the detection function in the watermarked image, a bivalued detection image d(x)
is produced:

d(x) = G
(
fw(x), N (x)

)
. (8.60)

By comparing the watermark w(x) and the detection image d(x), the false
detection image is formed:

ew(x) =
⎧
⎨

⎩
1 if w(x)�= 0, w(x)�= d(x),

0 otherwise.
(8.61)

The false detection image has value 1 if a watermarked pixel is falsely detected and
0 otherwise. The detection ratio is given by the ratio of the correctly detected pixels
to the sum of the watermarked pixels in the image:

Dw = 1− card
{
ew(x)

}

card
{
w(x)

} . (8.62)

The embedding functions are designed in such way so that the probability
of a pixel to be detected as signed with g1 or g2 for an unwatermarked image is
p = 0.5. Thus, the detection ratio in an unwatermarked image forms a binomial
distribution. In order to reach a decision on whether the image under investigation
is watermarked or not, the watermark detection ratio of the image is compared
against a predefined threshold T .
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8.4. Other applications of chaotic systems in digital watermarking

Watermarking techniques based on chaotic systems appeared in the literature al-
ready in the first years of watermarking research [32]. An overview of early chaotic
watermarking techniques can be found in [22]. In [27] the authors proposed an in-
formed embedding blind audio watermarking scheme that incorporates differen-
tial chaos shift keying (DCSK) for watermark embedding. According to the DCSK
principle which is used in chaotic wideband communication systems [15], every
watermark bit is represented by two chaotic functions that are successive in time.
The first function acts as a reference while the second carries the bit information.
Bit 1 is represented by a reference chaotic signal followed by a copy of this signal,
whereas bit 0 is represented by the reference chaotic signal followed by an inverted
copy of the same signal. Watermark detection is accomplished by a differential
coherent detector that delays the received signal by half the bit duration and eval-
uates the correlation (over half the bit duration) between the received signal and
its delayed copy. A bit 0 (bit 1) is detected if the correlation is found to be negative
(positive) and its absolute value is approximately equal to the signal energy over
half the bit period. A logistic map is used in [7] in order to select in a random way
the positions of the 8 × 8 blocks of the image that will form a subimage (equal in
size to the 1/4th of the original image) to be used subsequently during embedding.
A logistic map is also used (along with appropriate thresholding) to construct the
binary watermark that is embedded in an additive way in the DWT coefficients of
the subimage. The system employs a correlation-based detector. In [34] the au-
thors use a binary signal generated by thresholding a chaotic map (namely, the
ICMIC map) in order to encrypt (scramble) a binary image before embedding it
in a host image. Encryption is performed by XORing the binary signal with the
binary image. In addition, another binary signal generated from a chaotic map
is used in order to split host image pixels into two sets that are used in the pro-
posed watermark embedding and detection scheme that very much resembles the
algorithm proposed in [21]. A chaotic dynamical system is used in [20] as part of
a steganographic scheme that uses images as the host medium for the transmis-
sion of secret messages. The so-called chaotic asymmetric steganography scheme
utilizes a 2D chaotic map (toral automorphism) to diffuse (scramble) a message
and decide on the positions of the host image where the encrypted message bits
are to be embedded. Embedding is done by changing the pixel intensity values in
the neighborhood of a selected pixel so that a certain condition is imposed. The
system is an asymmetric one, involving both a public and a private key.

8.5. Summary

Two applications of chaotic systems in digital watermarking were presented in this
chapter. The first deals with the use of sequences generated by chaotic systems as
watermark signals in schemes employing correlation-based detection. Two differ-
ent alternatives were presented and analyzed both theoretically and experimen-
tally: additive watermark embedding and multiplicative embedding in the low
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frequencies of the DFT domain in order to achieve robustness to lowpass ma-
nipulations. Since the system performance depends on the spectral properties of
the watermark signal, the controllable spectral/correlation properties of Markov
chaotic watermarks was proven beneficial in this context. Highpass chaotic wa-
termarks proved to perform better than white pseudorandom ones. Moreover,
Markov maps having appropriate second- and third-order correlation statistics,
like the skew tent map, were found to perform better than sequences with the
same spectral properties generated by either Bernoulli or pseudorandom number
generators.

The second application considered chaotic mixing as a means of encrypting
an image logo prior to its embedding on a host image. two-dimensional chaotic
maps were shown to provide a computationally efficient and secure way of per-
forming this task.
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9
Modeling of evolving textures using
granulometries

A. J. Gray, S. Marshall, and J. McKenzie

9.1. Introduction

This chapter describes a statistical approach to classification of dynamic texture
images, called parallel evolution functions (PEFs). Traditional classification meth-
ods predict texture class membership using comparisons with a finite set of prede-
fined texture classes and identify the closest class. However, where texture images
arise from a dynamic texture evolving over time, estimation of a time state in a
continuous evolutionary process is required instead. The PEF approach does this
using regression modeling techniques to predict time state. It is a flexible approach
which may be based on any suitable image features. Many textures are well suited
to a morphological analysis and the PEF approach uses image texture features de-
rived from a granulometric analysis of the image.

The method is illustrated using both simulated images of Boolean processes
and real images of corrosion. The PEF approach has particular advantages for
training sets containing limited numbers of observations, which is the case in
many real-world industrial inspection scenarios and for which other methods can
fail or perform badly.

9.2. Textures and texture analysis

It is natural to describe textures qualitatively, in terms of measures such as coarse-
ness, smoothness, granulation, or randomness. However, texture analysis is con-
cerned with the extraction and use of quantitative descriptors of texture.

There are two main categories of textural feature [36], namely statistical and
structural (and some which overlap both categories). Statistical textures include
grass, canvas, cork, sand, marble, and corrosion. In statistical textures the loca-
tion of the texture primitive(s) (i.e., meaningful regions) is random and irregular
(Figure 9.1). Structural textures consist of repetitions of a basic texture element(s)
(texels) or primitive(s). The texels are repeated regularly or with some degree of
freedom (Figure 9.2).
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(a) (b)

(c) (d)

Figure 9.1. Some examples of statistical textures: (a)–(c) from Brodatz [6]; (d) is an image of corro-
sion.

(a) (b)

Figure 9.2. Some examples of structural textures from Brodatz [6].

There are three main areas of texture analysis, namely, classification of an un-
known texture region to one of a set of texture classes, modeling and describing a
given texture region, and segmentation (of distinct textures within an image). Tex-
ture classification has been used in many different applications. Some examples are
medical image processing, for detecting cancerous cells [51]; automated inspec-
tion of machinery, for detection of corrosion [50] and segmentation of landscape
features from satellite images [7, 87]. An ideal robust texture classifier should be
invariant to changes in rotation, lighting, and translation, and be able to detect
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both very fine and fairly large textures, as well as irregular textures, such as many
natural textures, including corrosion (of which rust is a common example).

9.2.1. Approaches to texture analysis

We briefly review approaches to the analysis of texture images and the advantages
of a morphological approach [59, 80]. There are three main approaches to texture
analysis, namely, statistical, structural, and model-based. Structural methods ana-
lyze the texture primitives present in an image and characterize regular textures
in terms of arrangements of these texture primitives. The texture primitives can
be used as image features for classification purposes. We do not consider struc-
tural methods in more detail here, as our main application of interest is corrosion
images, which are statistical textures.

9.2.1.1. Statistical methods

Statistical methods represent the texture by feature variables obtained through
measurement. Some of the most common statistical texture analysis techniques
[82, 83] are mathematical morphology [19, 78, 79] (Section 9.2.3); spatial gray-
level co-occurrence or dependence [37], [36, Chapter 9]; gray-level run-length dis-
tributions [31]; digital transforms [91]; and the autocorrelation function [18, 89].

Spatial gray-level co-occurrence (SGLC) matrices [34, 36] characterize texture
by the relative frequency of co-occurrence of gray-levels of pairs of pixels separated
by a given distance and orientation. These are often averaged or summed over dif-
ferent angles. An alternative approach to remove dependence on angle is to com-
pute neighboring gray-level dependence matrices [41]. Using regions with certain
properties as the primitives instead of pixels has also been suggested. Either the
matrices themselves, or more commonly, features computed from them are used
for classification.

SGLCs have been very widely used and provide a robust, powerful, and general
method for texture analysis, segmentation, and classification [15, 31, 37, 87, 94].
For a wide class of images, SGLCs capture much of the texture data, such as de-
gree of coarseness and directionality. Vickers and Modestino [94] achieved 95%
accurate classification of various texture types. However, co-occurrence matrices
do not contain any shape or size information about texture grains. Some texture
features derived from the SGLC [37], including angular second-order moment, en-
tropy and correlation measures, do have the advantage of invariance to monotonic
gray-level transformation. Gray-level difference vectors [65, 91] are used similarly
to SGLC matrices, in that they compute relative frequency of absolute difference
in gray-level between pairs of pixels at a given distance for a given orientation,
and similar summary measures are used as texture features. Gray-level run-length
distributions (GLRDs) represent frequency of runs of consecutive pixels with a
given gray-level in a specified direction [91]. Coarse textures will have a high per-
centage of longer runs, while fine textures will have more short runs. Galloway
[31] achieved 100% classification accuracy using GLRDs for aerial terrain images.
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Tang [100] found that GLRDs (98–100% accurate) were slightly better than SGLCs
on Brodatz [6] and VisTex images (MIT Media Library) [95].

An alternative approach is to view texture in the frequency domain. The
Fourier spectrum [91] is found from the discrete Fourier transform of the image.
Texture coarseness and directionality are indicated by peaks in 1D summations
of the spectrum or the power spectrum, expressed in polar co-ordinates [4]. Very
large images are required to obtain stable values, and local properties cannot be
represented, therefore this is unsuitable for texture segmentation or detection of
small local areas of texture. Wavelets (Section 9.2.1.2), in contrast, represent both
spatial and frequency information. Also, the Fourier transform is not invariant to
monotonic gray-level transformations, in common with most spatial frequency
approaches [39, 96]. Conners and Harlow [15] found the SGLC to perform better
than digital transforms. The autocorrelation function (ACF) is the Fourier trans-
form of the power spectrum (spectral density function) [36]. It compares an image
with a translated version of itself, thus detecting periodicities in the original image
as peaks in the ACF [89]. The ACF is robust to noise and has been widely used
in feature recognition. For example, Kurita and Otsu [49] found that it classified
Brodatz textures with over 90% accuracy.

9.2.1.2. Texture models

Textures can be synthesized from a texture model [43, 52, 99], or the parameters
of a texture model can be used to characterize an observed texture and enable
segmentation [74] or classification. Modeling approaches include random fields
[46, 102], especially the Markov random field (MRF) [46], and the autoregression
(AR) model [9], as well as wavelets [39, 102], and filter-based representations [66,
70, 71], including Gabor filters [42, 44].

MRFs and AR models both generalize the time-series autoregressive moving
average models [102] to 2D. Image models are verified as suitable to represent the
textures of interest using the training set of texture classes. The model parame-
ter values are chosen to give the best model fit to each observed texture. Texture
classification then compares model parameters for an observed image with those
for a given texture class. The AR model [91] specifies pixel gray-level as a linear
combination of the gray-levels in a neighborhood of specified dimensions. The
coefficients of this linear combination characterize the texture. Performance de-
pends on neighborhood size, which can be chosen to minimize prediction error.

Random field models represent the texture images as realizations of a random
field with a probability distribution concentrated over the most likely images. The
joint probability distribution for the image is specified through the conditional
probabilities of pixel gray-level (or texture type) for a given pixel given the rest of
the image [18]. These are assumed to depend only on gray-levels (texture types) of
neighboring pixels (the Markov property). A suitable form must be specified for
the neighborhood and nature of the probabilities. Commonly the Gibbs’ random
field model is used, in which the joint probability has an exponential form, or
the Gauss-Markov random field [12, 48]. However, parameter estimation to fit
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the probabilities to the images can be difficult. Such models also typically include
only nearest neighbor interactions and do not realistically capture higher-order
structural information in the images. Compared to other techniques, the MRF
can achieve very high classification accuracy (100% for many textures) but for a
few textures its performance can be very poor [1].

Wavelet transforms and Gabor filters both provide multiresolution spatial fre-
quency decompositions of an image. Wavelets [55, 56, 63, 99] are a set of orthog-
onal basis functions which provide a complete representation of the image at dif-
ferent scales. The coefficients of the basis functions provide the multiresolution
texture features. If the number of coefficients is very big, the dimension of the fea-
ture vector is decreased. There are many choices of basis function. The Fourier
series expansion is one example, using sine and cosine curves. Wavelets are popu-
lar but do not always perform well for texture analysis [68, 93, 100]. Results in [93]
suggest that the discrete wavelet approach (99% accurate overall) should perform
better than most traditional single resolution approaches such as SGLC.

Gabor filters [30, 38, 42] are also widely used. The Gabor functions are used
in a similar way to wavelets, as basis sets, though their non-orthogonality makes
computation of the coefficients non-trivial. The image is represented as a linear su-
perposition of Gaussian modulated complex sinusoids (whereas the Fourier rep-
resentation [75] uses only sinusoids). Various studies have compared the Gabor
filter with other texture classifiers and segmentation schemes, mainly MRF [38]
variations and wavelet methods [67]. Haley and Manjunath [38] found that the
Gabor filter outperformed MRF methods, while Manjunath and Ma [57] found
that the Gabor filter and multiresolution simultaneous AR models outperformed
wavelets. However it did not perform well in a comparison of filtering methods by
Randen and Husoy [71]. Multichannel filters based on the Gabor filter, but with
much lower computational cost, can perform almost as well [70]. Gabor filtering
has various desirable properties over other multiresolution methods [58, 102] and
the advantage of strong parallels with the low-level visual processing of humans
and other mammals.

Finally, texture analysis of color images [27] is a higher dimensional problem
than for gray-level textures. Transforming an image from RGB space to a different
color space, such as LUV space [81], can be useful for producing a more percep-
tually consistent image segmentation [61] when combined with morphological
operators. Köppen et al. [47] proposed a generalization of gray-scale morphology
to color images. Monadjemi et al. [62] proposed Walsh transforms for color tex-
ture classification, while Chindaro et al. [12] used color space fusion for classifier
combination.

9.2.2. Evolving textures

For evolving textures, such as what occurs in a corrosion process where a few small
“spots” gradually increase in size and number until they cover the surface of the
material (see Figure 9.8), or in diseased tissues imaged over time, the classification
problem is one of relating a given sample of texture to a specific time within a
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texture evolution process rather than to one of a series of unconnected texture
classes.

Most conventional texture classifiers compare characteristics of the texture
with those of a known class and place it to the nearest class, according to some
measure of closeness, for example, the maximum likelihood (ML) or Euclidean
distance criteria. For example, Liu et al. [51] use a quadratic discriminant function;
Kyvelidis et al. [50] use fuzzy logic to classify defects (the results are used on a series
of corrosion images to examine the growth process); Garcı́a-Sevilla and Petrou
[32] use the nearest-neighbor rule with various distance measures; Clausi [13] uses
a 2-class Fisher linear discriminant rule to project an n-dimensional class feature
set to a one-dimensional vector providing an optimal separation of 2 classes, and
a series of ML classifications is then used to assign an observation to the class with
the highest number of hits; and Rajesh et al. [69] use unsupervised classification
based on the ISODATA algorithm [28], which minimizes a least-squares objective
function.

The PEF method differs in that, instead of using a series of comparisons with
predefined classes, it computes a set of parameters directly related to the class
or state of evolution on a continuous scale, from the statistical texture charac-
teristics. The removal of the direct comparison stage enables the classification of
images that are not from any of the training classes, but are from classes inter-
mediate to these, as long as the growth pattern is sufficiently well represented
by the training examples. More importantly, the use of all instances of the tex-
ture over time to train the classifier means that for smaller training sets there is
more information available for training. Chantler and Stoner [8] have shown that
the use of combined sequences of data measurements can greatly decrease the er-
ror rate of feature classification over methods using each measurement in isola-
tion.

9.2.3. Advantages of morphological analysis

Series of evolving texture images often consist of images which initially contain
very little detail, then the texture builds up through time by the placement of more
and/or larger objects in the image. This is the case with images of corroding metal,
for example, considered in Section 9.5, in which the metal begins as a smooth
surface, then becomes damaged and a small seed or grain of corrosion appears.
Further grains may appear at other positions in the image and these grains increase
and enlarge over time to cover the image plane. Alternatively an evolving texture
may coarsen over time, as in images of soil becoming wetter. In either case such
images are well suited to a morphological analysis, which extracts size and shape
information from texture elements present in the image at a given time.

Mathematical morphology [59, 80] is a methodology for shape-based non-
linear image filtering using set operations. It has a very broad spectrum of appli-
cations and can be applied to localized textures, pixel by pixel [25, 26], partic-
ularly where a texture is composed of well-defined grains or where variation in
the grains is important. This approach allows for good discrimination between
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the texture of interest and any background clutter which does not share similar
shape properties. In particular, although the granulometry (Section 9.3) is a sta-
tistical method, it can be related to the 3D physical properties of a material and its
surface texture. While covariance-based methods, such as autoregression, differ-
ence statistics, Fourier transforms and SGLC, only describe the texture process up
to second-order characteristics, morphological methods can capture higher-order
properties of the spatial random processes [3] and no other approach directly uses
shape information in the image. Morphological tools can also be directly trans-
lated to Boolean algebra, and therefore are easily implemented in hardware for
efficient integration into digital systems for faster processing [2].

9.3. Granulometries

Granulometries are well-known morphological tools [19, 78] which consist of an
iterative sequence of morphological operations. The simplest granulometry con-
sists of a series of structural openings [19, 59], which we use here.

A morphological opening, SoB, of an image S by a structuring element (SE)
B, is the image consisting of the union of every translation x of B that is totally
contained within the image set in S (or which fits beneath the image surface in the
gray-level case), giving a coarse representation of the original image:

SoB = ∪{B + x : B + x ⊂ S
}
. (9.1)

For gray-scale images, opening with a 2D SE is faster than using a 3D SE,
however the latter can also extract information on the gradient and contours of
the surface, as well as surface-shape information.

An opening-granulometry uses a series of SEs of increasing size r, that re-
move all image particles within which the SE cannot fit. Grains of smaller size are
removed from the image by small-scale SEs and larger grains are removed sequen-
tially as the SE is increased in size until no image content remains. The volume
Ω(r) of the opened image is recorded at each step, that is the sum of all pixel in-
tensity values in the image (or a sum of remaining pixels in the binary case). These
volumes are then normalized using the initial volume Ω(0), to define a cumulative
probability distribution function, the size distribution,

φ(r) = 1− Ω(r)
Ω(0)

, r = 0, . . . ,R, (9.2)

which increases monotonically from 0 to 1 as r increases. This is the proportion
of the volume removed up to and including step r. The differences between the
normalized values define the pattern spectrum of the image (Figure 9.3):

Φ(r) = φ(r)− φ(r − 1), r = 1, . . . ,R, (9.3)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


246 Modeling of evolving textures using granulometries

15131197531
0

0.2

0.4

0.6

0.8

1

(a)

15131197531
0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 9.3. A size distribution (a) and its corresponding pattern spectrum (b).

that is, the proportion removed at stage r, which approximates the derivative of
φ(r) and is a probability mass function.

The pattern spectrum profile captures the size and shape information from
the foreground texture detail at differing scales. The more “peaked” the profile, the
more closely the shape of the SE fits the texture structure, as sharp drops indicate a
large number of grains of a given size and similar shape to the SE. Smooth graphs
indicate a more even spread of sizes of grains, or grains which are not similar in
shape to that of the SE. Figures 9.4 and 9.5 show examples for a simple gray-scale
case and a real texture image. In Figure 9.4, the image contains 4 squares of dif-
ferent sizes and an ellipse, and the SE is square. The pattern spectrum contains
several separate spikes, one for each of the 4 squares (which drop out one after
the other as complete objects, as they are the same shape as the SE), and several
contributed to by the ellipse (which differs in shape from the SE, and so is gradu-
ally eroded to become more rectangular in shape before disappearing completely).
Figure 9.5 shows a 3D (gray-scale) image and the SE used was a 2D square. There
is no clear separation of the grains by the background, and the use of an SE with
dissimilar structural shape to that of the grains in the image results in a pattern
spectrum which consists of a slowly decreasing curve, rather than a series of spikes
corresponding to complete objects disappearing.

As the pattern spectrum is a probability mass function, its statistical moments
can be calculated and used as texture feature descriptors [24, 53, 59]. These are
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Figure 9.4. (a) Image consisting of differently shaped grains, and (b) its pattern spectrum obtained
using a square SE; the horizontal axis represents size r and the vertical axis s represents the proportion
of image volume removed.

referred to as the granulometric moments [19]. The ith order moment is

Mi = E
(
ri
) =

∫

r
rΦ(r)dr ≈

∑
riΦ(r), (9.4)

in which r is a measure of size of the SE.
More general granulometries that do not necessarily use an opening can be

defined [21]. In each case there is a parameterized set of operators {ψr} and the
volume of the image operated upon by {ψr} is computed to form the size distri-
bution. In our application {ψr} is an opening by a single SE rB, where B is a fixed
primitive (the generator of the granulometry) and r is a scaling factor. Another fre-
quently used granulometry takes {ψr} as a union of openings from different SEs,
rB1, rB2, . . . , rBm [5].

Use of the Euclidean granulometry [23] ensures that the granulometry acts
strictly as a sieve, in which grains or image areas are removed depending only on
their size and shape relative to the SE(s). The Euclidean granulometry is a family
of operations {ψr(S) = SorB} which is anti-extensive (i.e., ψr(S) ⊆ S); increasing
(A ⊂ B �⇒ ψr(A) ⊂ ψr(B), i.e., the sequence of processed images has the same
order as the original images); fulfilling the mesh property (ψrψq = ψqψr = ψmax(r,q),
r, q > 0, i.e., use of several SEs is equivalent to using only the largest); scale invari-
ant (ψr(S) = rψ1(S/r), i.e., scaling S by 1/r, sieving by ψ1, then rescaling by r is the
same as sieving S by ψr); and translation invariant (ψr(Sx) = (ψr(S))x, where Sx is
the image S translated by x) [20]. These five properties limit the type of operators
and SEs that can be used [20, 23, 79]. In particular, the SE used for opening must
be convex.

Note that opening of the image foreground (the objects) and the background
gives complementary information. Opening the foreground provides information
on size and shape, while opening the background provides information on spatial
distribution of the objects in the image. Use of the pattern spectrum moments
from both foreground and background is therefore recommended.

It has been shown [76, 85] that the granulometric moments for an image
containing disjoint grains are asymptotically normally distributed with increasing
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Figure 9.5. (a) A texture image of dried paint [6], and (b) its pattern spectrum from a square SE.
(Reproduced from Proceedings of VIE 2005, International Conference on Visual Information Engi-
neering, 4–6 April 2005, Glasgow, UK, ISBN 0-86341-507-5, A. J. Gray, J. Mckenzie, and S. Marshall,
“Texture classification of grey scale corrosion images,” pages 219–225, © 2005, with permission from
the Publishing Department of the Institution of Electrical Engineers, London, UK.)

numbers of grains. For a limited amount of grain overlap, the distribution can be
assumed to be approximately asymptotically normal. This asymptotic normality is
one reason why the granulometry has proven to work well for texture classification
in conjunction with a Gaussian ML classifier [76, 77]. We use this as a benchmark
for the PEF approach.

The theoretical properties of granulometries and their properties in local tex-
ture classification are well researched. They have achieved classification accuracy
in the high 90% range using granulometric features in a Gaussian ML classifier
[11, 25] on Brodatz textures [6], even in the presence of noise and visually similar
textures. Other morphological tools have also been used, with a fuzzy hit-or-miss
texture transform achieving 96.9% accuracy for Brodatz textures in [101]. The
granulometric approach has proved successful in varied applications, including
blood cell analysis and chromosome overlap detection [21]; detecting changes in
trabecular bone with an ML classifier [10]; analysis of electrophotographic (toner
particle) images [24]; segmentation of digital mammograms [3], and counting
white blood cells [90].

Ayala and Domingo [1] proposed new descriptors for binary and gray-scale
images based on new spatial-size distributions, that generalize the usual granu-
lometric size distribution. These combine a granulometric analysis of the image
with a comparison between the geometric covariograms for binary images, or, for
gray-scale images, the ACF (autocorrelation function) of the original image and
its granulometric transformation. The new descriptor was better where a finer de-
scription of the image was required. The ACF on its own did not perform as well
as using granulometry. Ayala and Domingo [1] compared their new method us-
ing a Bayesian classifier with some of the most common existing methods, in-
cluding an opening-granulometry performed only on the foreground (thereby
losing shape distribution information, which the new method included). There
was no undisputed best classifier, however overall they concluded that the granu-
lometry with added spatial data was at least as good as any of the other methods
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(MRFs, SGLCs, fractal dimensions [16, 45, 92] and Gabor filters). Performance
increased dramatically when spatial distribution data was included with the fore-
ground granulometric moments. Even a foreground granulometry performed at
least as well overall as a simple SGLC, for example.

Sivakumar and Goutsias [84] developed morphologically constrained Gibbs’
random fields and applied them to texture synthesis and analysis. It was shown that
under certain conditions the ML estimators of the morphologically constrained
GRF parameters could be approximated using the granulometric pattern spec-
trum, providing a much easier and faster implementation of GRFs. A computa-
tionally simple morphological Bayes’ classifier then achieved 98% correct classifi-
cation on Brodatz textures.

9.4. Parallel evolution functions

The parallel evolution function (PEF) approach [53] to time classification of evolv-
ing textures is now described. It may be used with any calculable descriptors that
characterize the image at different times. Here it makes use of the granulometric
pattern spectrum moments as image features. These are calculated, as described
above, from a granulometric opening of the texture image.

The PEF approach is a statistical method which places an image from an
evolving process directly to a position on the evolution time scale of the process,
rather than comparing the observed features with all available time classes and
allocating to the closest class. It relates the evolution parameters of the model as-
sumed to generate the texture images to the observable granulometric moments
over a series of time steps, using multiple linear regression (MLR) of the moments,
as the dependent variable, on the evolution parameters, as the explanatory vari-
ables. (Note that the moments are random functions of the fixed parameters of the
evolution process). Using a training set of simulated images for which the underly-
ing evolution parameters are known, a multiple regression model is fitted for each
chosen moment, giving an “evolution function” relating the (mean over the avail-
able observations at each time step of the) moments of the evolving textures to the
parameters controlling the evolution. The result is a set of these evolution func-
tions; one for each chosen moment, hence the term “parallel.” Once the PEFs are
fitted, for any new image, for which the time state is unknown, the granulometric
moments of the image are calculated. Each of the PEFs could be used singly to pre-
dict the evolution parameters and then the time of evolution, however each of the
PEFs involves the same parameters. Therefore the PEFs are combined as described
below.

At each of n + 1 times t = 0, . . . ,n, there are l images, giving l × (n + 1) mo-
ments of a given order i, i = 1, . . . ,m. Let Mi(t) denote the training sample mean
(averaged over the l images) of the ith moment at time t for times t = 0, 1, . . . ,n,
giving an (n + 1)-vector of moments of order i, Mi = (Mi(0),Mi(1), . . . ,Mi(n))T .
Pj is the (n+1)-vector Pj = (Pj(0),Pj(1), . . . ,Pj(n))T , where Pj(t) is the jth evolu-
tion parameter, j = 0, . . . , J , at time t (used as an explanatory regressor variable).
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The least-squares MLR model is given by

Mi =
J∑

j=0

bi jPj + ri, i = 1, . . . ,m, (9.5)

that is,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Mi(0)
Mi(1)

...
Mi(n)

⎞

⎟
⎟
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⎠
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⎛
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⎝

P0(0) P1(0) · · · PJ(0)
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...
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⎞
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...
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⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (9.6)

where the (n+ 1)-vector P0 = (1, 1, . . . , 1)T , and ri is an (n+ 1)× 1 column vector
of random errors or disturbance terms representing the deviations of the ith order
moments in the vector Mi from the expected moments given by

∑J
j=0 bi jPj. The

coefficient vector bi = (bi0, bi1, . . . , biJ)T is estimated by minimizing the error sum
of squares [60]:

n∑

t=0

[

Mi(t)−
J∑

j=0

bi jPj(t)

]2

, (9.7)

giving

b̂i =
(

PTP
)−1

PTMi. (9.8)

We have such a regression model Mi = Pbi + ri for each moment used (i =
1, . . . ,m). The goal is to estimate the evolution parameters from the moments,
and having acquired these parameter estimates, to use them to derive the time sta-
tus of the image. The same evolution parameters are involved in each regression
equation, which we use as follows. Let M, B, and P be defined as

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

M1(0) M2(0) · · · Mm(0)
M1(1) M2(1) · · · Mm(1)

...
...

. . .
...

M1(n) M2(n) · · · Mm(n)

⎞

⎟
⎟
⎟
⎟
⎟
⎠
= (M1 |M2 | · · · |Mm

)
,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b10 b20 · · · bm0

b11 b21 · · · bm1

...
...

. . .
...

b1J b2J · · · bmJ

⎞

⎟
⎟
⎟
⎟
⎟
⎠
= (b1 | b2 | · · · | bm

)
,
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Figure 9.6. The training and classification process for the PEF approach, using parameters P1–P3 and
moments M1–M3; solid and dotted lines indicate training and classification steps, respectively.

P =

⎛
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⎜
⎜
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⎝

P0(0) P1(0) · · · PJ(0)
P0(1) P1(1) · · · PJ(1)

...
...

. . .
...

P0(n) P1(n) · · · PJ(n)

⎞

⎟
⎟
⎟
⎟
⎠
= (P0 | P1 | · · · | PJ

)
.

(9.9)

Then the MLR model can be summarized by M = PB + R, where R = (r1 |
r2 | · · · | rm). Then M̂ = PB̂ where B̂ = (b̂1 | b̂2 | · · · | b̂m) contains all
the least-squares estimates of the coefficients from the regressions for each of the
moments (i = 1, . . . ,m) separately.

Given a new image, the evolution parameters P are then estimated from the
observed moments as P̂ = MB̂+ where B̂+ is the pseudo-inverse of B̂ and where
B̂+ = B̂−1 if B is non-singular [18]. The assumed growth model equations relating
evolution parameters to time are used to convert estimated evolution parameters
to estimated evolution time (Section 9.6.1). The process is illustrated in Figure 9.6.

9.4.1. Model fitting issues

Use of ordinary least-squares (OLS) regression, as described, assumes that in each
of them regression models, the errors ri(0), . . . , ri(n) are uncorrelated and have the
same variance τ2

i , i = 1, . . . ,m, and the optimal estimators of the regression coeffi-
cients are given as in (9.8). If these assumptions are invalid, these estimated coef-
ficients will be suboptimal. Weighted least-squares regression allows for differing
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error variances within a given regression model, while generalized least-squares
(GLS) regression allows for correlated errors also, as are likely to be present in data
collected through time. GLS assumes that cov(ri) = τ2

i Wi, i = 1, . . . ,m, where
Wi is an arbitrary positive definite (n + 1) × (n + 1) variance-covariance matrix,
rather than cov(ri) = τ2

i In+1, a constant multiple of the (n + 1) × (n + 1) identity
matrix, and the minimum variance linear unbiased estimators of the regression
coefficients are then [72, 98]

b̂i =
(

PTWi
−1P

)−1
PTWi

−1Mi. (9.10)

However, estimating the covariance matrix means that the estimated coefficients b̂i

no longer have minimum variance and may have greater variance than the OLS es-
timates. Reliable estimation of individual variances and covariances requires large
amounts of data and unreliable estimation is likely to lead to estimates with poorer
model fit than with OLS. For both the simulated and real images used below, the
sample variances of the moments were in general not constant over time, however
we use OLS regression modeling, owing to limited availability of data. This may
adversely affect model fit.

It will be seen (Section 9.6.1) that in our model all evolution parameters in-
crease with time, and hence there are likely to be collinear relationships between
the explanatory variables [72]. The likelihood of the fitting of the regression co-
efficients becoming unstable (i.e., small changes in the data or explanatory vari-
ables leading to large changes in the estimated coefficients) due to collinearity was
tested, using eigenanalysis [72] of the covariance matrix of the explanatory vari-
ables as well as altering the order of the chosen explanatory variables. Near-zero
eigenvalues indicate linear dependencies between the explanatory variables. For
both the simulated and real data, collinearity was found to be present, especially
for the background data, however this did not appear to cause model instability.
Nevertheless, centering the explanatory variables, or using principal components
regression [72] may be helpful.

Assessing model fit using statistical tests requires that the moments (or resid-
uals) in the regression model are normally distributed [72, 98]. For the simulated
images, normal probability plots and histograms indicated that the distributions
of the residuals were reasonably symmetric but heavy tailed. The plots for the back-
ground moments of the real images were closest to a normal distribution.

9.5. Application to corrosion images

Industrial inspection is a well-established field, essential to the safe and econom-
ical running of any business involved in manufacturing or requiring to maintain
equipment. Component damage or defects often consists of cracks, discoloration,
or variations in size or texture [24, 50, 81, 88]. Mechanical parts, such as aircraft
engine components [73], showing signs of damage may be routinely replaced at
regular intervals, whereas optimal replacement times may be different. Having the
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Figure 9.7. Turbine blades showing different degrees of corrosion: some damage visible on C and
severe damage on D.

ability to relate degree of damage to weakening of a component is therefore im-
portant.

The motivation is to develop a method for automatic detection and classifica-
tion of corrosion of metal parts according to its seriousness in terms of component
weakening or loss of functionality. Figure 9.7 shows samples of turbine blades with
varying degrees of corrosion. It would clearly be desirable to remove blades as cor-
roded as that in D, before they reached this degree of damage.

Figure 9.8 shows 4 images of a mild steel plate, sprayed regularly with a dilute
saline solution over a period of 9 days, as it corrodes over time. The resulting series
of 10 images (at times t = 0–9 days) shows the evolution, from no corrosion to
almost complete oxidation of the surface of the plate. The plate changed from
gray to brown during the experiment, however there was insufficient variation
in color for color itself to be useful for prediction of time state. The 10 images
of 1400 × 1400 resolution were converted to gray-scale (as shown) for gray-scale
granulometry to be used. The blob-like textures observed in these images are well
suited to a morphological analysis, as provided by granulometry.

Corrosion appears as an irregular texture, which evolves according to an un-
derlying chemical process controlled by many factors, such as environmental hu-
midity and acidity, initial surface roughness, and type of material. The detection
of corrosion is seldom easy, as any image of a component will contain shading and
shapes that are not the result of corrosion but which may look similar to the ef-
fects of corrosion. The PEF method assumes that the evolution of the underlying
chemical process results in a parallel evolution of the visual texture, and approx-
imates this relationship in order to classify an observed texture to a precise point
on the evolution scale. The texture process is modeled as a time-dependent sto-
chastic spatial point pattern described by random variables whose value depends
stochastically on parameters which are functions of time. These underlying pa-
rameters can be used to quantify component weakening, through mechanical test-
ing or comparison with components that have been assessed by a human expert.
However, these parameters describing the evolutionary state of corrosion cannot
be observed directly from new corrosion images. The pattern spectrum moments
of the corrosion image are therefore used as a means of estimating the underlying
hidden parameters. These estimates can then be used as a measure of the state of
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(a) t = 0 (b) t = 4

(c) t = 7 (d) t = 9

Figure 9.8. Gray-scale corrosion images at times t = 0, 4, 7, and 9 days.

evolution or severity of corrosion, by finding the equivalent length of time taken,
under set conditions, for the corrosion to form and therefore the degree of weak-
ening caused (if this is known for the training data).

9.6. Modeling the texture

9.6.1. Image simulation

The methodology is illustrated first on binary, then gray-scale, simulated images.
Simulation permits fitting of the regression models relating the underlying model
parameters to the observable granulometric moments, as the values of the param-
eters are known for a given evolution time of the texture. The choice of model
and parameters controlling the evolution was based on observations of corrosion
forming under natural conditions. This appears as a few small spots, which grow
slowly at first, then size, and then also the number of spots increase rapidly, until
the entire surface is covered. Therefore the model assumes corrosion to be a spatial
point pattern growing from randomly distributed seed points [64].

A Boolean point process model [17, 40, 78], a random process in which ran-
dom shapes (“grains”) are positioned according to an independent point process
[35], is used to represent the image textures, although any suitable model can be
used. Grains are scaled to random size and placed randomly (according to a Uni-
form distribution) in the image plane with grains simulated according to a Poisson
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Figure 9.9. Assumed evolution path of the corrosion model parameters using μ(t) = 0.03t2 + 0.133t+
2.61, σ(t) = 0.0416t + 2.349, and λ(t) = 4t + 16. Note that some small grains are present at time 0.

point process with grain intensity λ(t) (number of events per unit area) control-
ling the number of grains in the image. The Poisson process assumes that the grain
positions are disjoint but grains may overlap. The values of the parameters of the
model (the intensity and the grain size parameters), the “evolution parameters,”
are functions of the evolution time t.

The parameters were chosen empirically to give a series of realistic-looking
textures, beginning with no coverage of the image background, increasing rapidly
to almost complete coverage (at time t = 20). Texture growth is achieved by in-
creasing grain intensity λ(t) and mean grain size μ(t) with time. The variance of
the grain dimensions also increases with time, to allow for new seed points form-
ing once larger grains are already formed. An increase in the rate of corrosion with
time can be explained as being due to the increased surface area exposed by sur-
face roughening [97]. Grain size at time t is taken as a folded Normal random
variable (i.e., absolute grain size is used), with mean μ(t) and standard deviation
(s.d.) σ(t). The grain intensity (no. of grains) λ(t) and size standard deviation σ(t)
are assumed to increase linearly, while mean grain size μ(t) increases quadratically
with time, as illustrated in Figure 9.9. This results in grains that both grow and
overlap to a greater extent as time increases.

For a new image, once the parameter values are estimated from the moments,
each of the equations relating the parameters to time is inverted to predict time
t for that image and these various predictions are averaged. Alternatively, a single
equation may be chosen on the basis of minimizing classification error for the
training images, giving a single predicted time.

Figures 9.10 and 9.11 show example textures using binary octagonal grains
and square-based gray-scale pyramidal grains (clipped to a maximum gray-level
of 255). These simulated images were generated using new seed points in every
instance and not grown from one set over time. Both models use parameter evo-
lution as in Figure 9.9. For the octagons (approximation to a disc) the grain size
is the radius. For the pyramids, the mean base length is taken as 2μ(t) + 1, for
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(a) t = 0 (b) t = 11 (c) t = 20

Figure 9.10. Binary octagonal textures at times t = 0, t = 11, and t = 20. (Reproduced from Inter-
national Journal of Pattern Recognition and Artifical Intelligence, Vol. 17(2), J. Mckenzie, S. Marshall,
A. J. Gray, and E. R. Dougherty, “Morphological texture analysis using the texture evolution function,”
pages 167–185, © 2003, with permission from World Scientific Publishing Co. Pte. Ltd, Singapore.)

(a) t = 0 (b) t = 11 (c) t = 20

Figure 9.11. Gray-scale pyramid images at times t = 0, t = 11, and t = 20. (Reproduced from Inter-
national Journal of Pattern Recognition and Artifical Intelligence, Vol. 17(2), J. Mckenzie, S. Marshall,
A. J. Gray, and E. R. Dougherty, “Morphological texture analysis using the texture evolution function,”
pages 167–185, © 2003, with permission from World Scientific Publishing Co. Pte. Ltd, Singapore.)

comparability with the octagons, and the mean step size is also set to μ(t), so that
gradient and overall gray-level increase with time.

9.6.2. PEF modeling

We use the first three moments of the pattern spectrum, Mi(t), i = 1, 2, 3, at each
time t (see Section 9.3), so there are three regression equations. We chose an MLR
model depending on a subset of the first five powers of the Boolean model pa-
rameters, μ, σ , λ,μ2, σ2, λ2, . . . ,μ5, σ5, λ5, which results in a set of 15 candidate ex-
planatory regressor variables p1, p2, . . . , p15 (and 16 coefficients if an intercept is
included). This was done to increase the chances of good model fit. The “best”
three MLR regressor variables of these 15 candidates for each regression were
chosen as those giving the lowest classification error on the training images. This
is very time consuming, and a stepwise variable selection procedure may be more
useful in practice [72]. Note that these were not necessarily those variables giv-
ing best fit of the regression models. It was generally found that the best results
were obtained by restricting the number of regressor variables and using separate
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regressions for the foreground and background moments. Three variables were
used here so that B is a square matrix when modeling 3 moments, but more could
be used.

The evolution time is estimated as the (nearest integer to the) mean of the
estimated times from the foreground and background regressions.

9.6.3. Benchmark methods

The most commonly used classifier is the Gaussian maximum likelihood (ML)
classifier [29], however (both for this and the optimal Bayes’ classifier assum-
ing multivariate normality of the feature variables), the number of observations
needs to be larger than the number of variables used, for the covariance matrix of
the variables to be non-singular [33]. This severely limits the usefulness of these
methods in this context, given the very small number of observations often likely
to be available in practice. The ML classifier was therefore used with the pooled
covariance matrix from all time classes (the MLP method). In some cases MLP
performed worse than ML using individual covariance matrices and in other cases
it was better, but it always produces a result for 2 or more training observations. In
our application, ML fails completely for fewer than 7 training observations, as it
was used with 6 feature variables (i.e., the three pattern spectrum moments from
each of the foreground and background images).

We use the ML and MLP classifiers and the minimum distance (MD) classifier
[84] (which can be used regardless of sample size), as benchmark comparisons for
the PEF. Unlike ML, MLP, and PEF, which use the pattern spectrum moments as
feature variables, the MD method is applied to the discrete pattern spectrum itself
(and all pattern spectra are filled out with zeroes to the size of the largest pattern
spectrum observed, to make this possible). MD chooses class k such that

k = argmin
t

{ R∑

r=0

[
Φobs(r)−Φt(r)

]2
}

, (9.11)

where r indexes the scale of the SE used in opening and R is the largest such scale,
and Φobs(r) and Φt(r) are the values of the pattern spectrum at scale r for the
observed image and the tth class, respectively. In practice we have a sum of squared
distances, as in (9.11), for both the foreground and background pattern spectra
and we classify using the total of these sums. See [84] for optimal properties of the
MD classifier.

9.6.4. Results for simulated images

The results below use an octagonal SE for the opening of the binary octagonal
grain images, and a pyramidal SE calculated using the fast algorithm of [86] for
the gray-scale pyramid images. The gradient of the slope of the pyramid SE was
decreased from very steep steps of 31 to steps of 2 (almost flat), with height being
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Table 9.1. Type 0, type 1, type 2, and type 3 errors for binary octagonal textures and gray-scale pyra-
mid textures, using 30 and 5 training images.

Training set size 30 images 5 images

Error type 0 1 2 3 0 1 2 3

Images Binary octagons

Method Error (%)

MLP 39 5.9 1.3 0.3 45.6 8.7 1.9 0.5

ML 38.7 3.5 0.6 0.2 — — — —

MD 49 11 1.9 0.2 57 16 5.4 1.1

PEF 49 5.4 0.6 0 47.6 5.6 0.6 0

Images Gray-scale pyramids

Method Error (%)

MLP 42.3 16.9 7.8 2.6 46.1 17.1 8.6 3.6

ML 50.1 5.3 0.4 0.0 — — — —

MD 61.0 23.0 9.4 4.4 66.3 26.5 11.4 5.3

PEF 60.4 11.4 2.1 0.4 60.0 11.4 2.3 0.4

kept at approximately 255 by increasing base size as the gradient decreases. In this
case, in calculation of the moments in (9.4), r represents the gradient.

Performance is assesssed through several error measures, referred to as type 0,
type 1, type 2, and type 3 errors. Type i error is defined as

1
n

n∑

j=1

Ii
(
C
j
est − Cj

obs

)
, i = 0, . . . , 3, (9.12)

where j indexes the n images to be classified, C
j
est and C

j
obs are, respectively, the

estimated and actual class/state of image j, and Ii(x) = 1 if |x| > i, else Ii(x) = 0.
Hence type i error records the proportion of images not classified to within i units
of their actual time state. These error measures reflect the nature of the corro-
sion application. For applications where safety or damage limitation is critical, the
maximum allowable chance of a component or system failing is set deliberately
low to allow for uncertainty in safety status and ensure safe operation. It is more
important always to predict the safety/damage status close to the correct class, than
to be exactly correct most of the time but have the occasional large error. Where
some overlap between classes is also possible, such as in the simulated images, for
which the evolution parameters controlling the grain size and density are random
variables, classification may not be exactly correct, but still effective for assessing
evolution state. In assessing corrosion, deciding whether corrosion is too advanced
will depend on being “close” to the time classes representing advanced corrosion
in the training data. Again, allowing some tolerance before recording an error is
sensible.

Table 9.1 and Figure 9.12 show results for the binary octagons, for training
sets of size 30 and 5 images at each of times t = 0, . . . , 20. The smaller number of
training images was chosen as in many real-world quality control situations very
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Figure 9.12. Percentage error versus error type (tolerance) for binary octagons.

limited training samples are available. The available data is often limited by diffi-
culties in process monitoring, tracking of parts, record keeping, and various other
factors. In both cases, an independent test set of 30 images was used at each time
step to find the error rates, so that n = 630 in (9.12). The smaller sample size is too
small for the unpooled ML method to be feasible. For the gray-scale pyramids, the
errors have been averaged over 10 sets of training observations of a given size, for
greater stability with smaller training set sizes. Table 9.1 and Figure 9.13 give the
results.

No method achieves a low type 0 error, and classifying exactly correctly is
clearly difficult. For both octagons and pyramids, PEF is better than MD for all er-
ror types, especially for the smaller training set, and better than MLP for all except
type 0 error. PEF is barely affected by a reduction in training set size, whereas MD
and MLP both perform better for the larger training set.

For the octagons, and 30 training observations, ML is better than PEF for
type 0 and 1 errors, but ML is unavailable for the smaller training set sizes, and
PEF and ML are very similar for error types 2 and 3. For the pyramids, ML is
always better than PEF for the larger training sample, but again cannot be used for
smaller samples.

Figures 9.14 and 9.15 show type 0 and type 2 errors as a function of training
set size. For type 0 error, for the octagons PEF is best for very small numbers of
observations, beyond which MLP is best, whereas PEF is poorer than the other
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Figure 9.13. Percentage error versus error type (tolerance) for gray-scale pyramids.

methods for the pyramids. Where some is allowed, PEF is clearly the best and
most consistent choice regardless of sample size.

Further results, for triangular grains and mixed grain types, are given in [53,
54]. Robustness of the PEF, when trained on one set of textures and applied to
textures in which only the grain shape differed but the generative model followed
the same evolution process, was also investigated in [53, 54]. Achieving acceptable
results depends on the relationships of the moments with time being similar for
the two processes.

9.6.5. Results for corrosion images

The granulometric opening of the corrosion images here uses gray-scale pyramid
structuring elements of increasing base size as 3D probing functions, applied as in
Section 9.6.4.

For the simulated training images generated from a model, the evolution pa-
rameters used in the PEF approach are known. The model for the simulated images
is used as an estimate of the model linking the parameters to time for the corrosion
images. It is not necessary that the parameters relate to precise physical structures
in the real images. They are instead “virtual” parameters which are used to encode
time.
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Figure 9.14. Percentage error versus training set size for binary octagons.

The ten 1400× 1400 corrosion images (Figure 9.8) were each cut into 49 sub-
images of size 200× 200. The first 7 such images (from the top row) for each time
were used as the training data, reflecting the small training set sizes typically avail-
able in practice for such applications, and another 7 images from the right-hand
side of the plate were considered as independent test data. The limited number,
and the position, of the selected images owes to the reflection of the camera on the
polished surface (seen in Figure 9.8) being harder to remove than the gradual light
variations. However, there is substantial variation within the corrosion images at
a given time t, and obtaining sufficiently similar training and test images was diffi-
cult. Figure 9.16 ilustrates this variation, showing a 200×200 training image taken
from the top left of the original image at day 5, and a test image taken from the
bottom right. In this application, clearly larger training images are desirable to en-
compass the variation found in these stochastic textures at a given point in time.
The results shown are therefore for the dependent data.

Figures 9.17 and 9.18 show percentage errors for 1 to 7 training images. Given
the small training set sizes, the ML method is not used and MLP is inapplicable
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Figure 9.15. Percentage error versus training set size for gray-scale pyramids.

for only 1 training image. The error rates shown are averages. The training obser-
vations were chosen randomly from the available set of training images, and up
to 10 such choices were made, depending on the training set size. Averaging the
resulting error rates smooths out fluctuations caused by the particular choice of
small training set. Results are shown for the combined PEF method, as previously,
as well as for PEF applied to the image foreground (FRONT) and background
(BACK) separately. The results are compared with those of MD and MLP.

For type 0 and type 1 errors, MD is best for 1 or 2 observations. For type 0 er-
ror, MLP is clearly best for more than 2 observations and PEF, FRONT, and BACK
methods are poorer. For type 1 errors, MLP and PEF are equally good choices
for more than 2 observations. For type 2 and type 3 errors, MD is best only for
1 observation, and beyond that PEF and FRONT are generally best. BACK does
not perform as well, and of the combined PEF, FRONT, and BACK, the combined
PEF is the most consistent of the three methods. These results are not quite as good
as for the simulated images, however PEF is still the best method overall when a
small tolerance is allowed, where there is more than 1 training observation. MD
and MLP are more accurate with no tolerance.
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(a) (b)

Figure 9.16. Reproduced from Training image (a) and independent image (b) from day 5. (Proceed-
ings of VIE 2005, International Conference on Visual Information Engineering, 4–6 April 2005, Glas-
gow, UK, ISBN 0-86341-507-5, A. J. Gray, J. Mckenzie, and S. Marshall, “Texture classification of grey
scale corrosion images,” pages 219–225, © 2005, with permission from the Publishing Department of
the Institution of Electrical Engineers, London, UK.)

PEF is more sensitive to changes in texture than MLP and MD, which is gener-
ally an advantage, although it does require that the moments and evolution func-
tions are similar for the training data and the process generating the textures to be
classified. The poorer performance of PEF for the real data with only 1 or 2 train-
ing observations is a result of the larger variation in the moments within a given
time state requiring more data to fit the regression model reliably.

9.7. Summary

Morphological methods have the advantage, over other approaches to texture anal-
ysis, of directly evaluating shape and size information in the texture image. Granu-
lometric analysis applies morphological operators in sequence at a series of differ-
ent scales. The resulting granulometric pattern spectrum and its statistical sum-
maries characterize the proportions of the image containing objects/texture ele-
ments of different sizes and shapes. Evolving shape-based textures, arising from a
process in which size and/or shape of texture elements present changes with time,
are therefore intrinsically well suited to a granulometric approach to texture anal-
ysis.

Furthermore, most texture classification techniques allocate images to one of
a discrete set of unrelated static textures, rather than placing an image directly to a
point on an underlying continuous scale on the basis of a set of evolving textures
related by time.

The PEF method uses both granulometry and the dynamic nature of the
textures to relate the values of the hidden parameters of an underlying genera-
tive image model to the observable pattern spectrum moments, using a statistical
model. It then uses this model to estimate directly the evolution status of a new
image.

The results shown clearly indicate that using the relationship between the mo-
ments and evolution parameters, rather than granulometric information alone,
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Figure 9.17. Percentage error versus number of training observations for corrosion images. (Repro-
duced from Proceedings of VIE 2005, International Conference on Visual Information Engineering,
4–6 April 2005, Glasgow, UK, ISBN 0-86341-507-5, A. J. Gray, J. Mckenzie, and S. Marshall, “Texture
classification of grey scale corrosion images,” pages 219–225, © 2005, with permission from Publishing
Department of the Institution of Electrical Engineers, London, UK.)

improves classification accuracy for small to moderate training samples, and gives
consistent performance for larger training samples.

The PEF method has been shown to perform better than other classifiers for
small training sets when the observed data is visually similar to the training data
or is controlled by a similar random growth process. This is especially the case
when the main priority is for the predicted class to be close to the correct class,
if not exactly correct all of the time. PEF performs well when only a few training
observations are available, due to its use of information from all time states, and,
unlike the maximum likelihood (ML) method, it does not require a minimum
number of observations. Compared to both the minimum distance (MD) [84]
and pooled maximum likelihood (MLP) [29] classifiers, it performs well, hardly
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Figure 9.18. Percentage error versus number of training observations for corrosion images. (Figure
9.18(a) is reproduced from Proceedings of VIE 2005, International Conference on Visual Information
Engineering, 4–6 April 2005, Glasgow, UK, ISBN 0-86341-507-5, A. J. Gray, J. Mckenzie, and S. Mar-
shall, “Texture classification of grey scale corrosion images,” pages 219–225, © 2005, with permission
from the Publishing Department of the Institution of Electrical Engineers, London, UK.)

ever deviating far from the correct class. This is a great advantage in quality control
applications.

As it predicts directly to a time state on a continuous scale, PEF also has the ad-
vantage of being able to predict intermediate time states between those represented
in the training set. Since it involves multiple linear regression, reliable prediction of
time state does require that the training data covers the period of time or severity
of interest, to avoid extrapolation [98].

While granulometries are nonlinear, the PEF modeling linearly relates the
granulometric moments to the evolution parameters. This facilitates inversion in
order to estimate the evolution parameters for a new image. It is assumed that any
departures from this model or from the required conditions for a multiple linear
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regression will not seriously impact on the accuracy of prediction. However, more
generally, nonlinear regression models [72] or time series methods [14] could be
used for modeling. Time series models are likely to make back-prediction, as used
in the PEF approach, difficult, but are worth considering as the best form of model
may depend on the application.

Possible improvements to PEF include using a different point process, that is,
more varied and irregular shapes of grain to build the evolution model, and/or
different grain density distributions, and different growth functions for the mean
grain size and its variance. Regarding the point process, it is likely that new sites of
corrosion will depend on the existing corrosion rather than being randomly dis-
tributed. A suitable model should result in model parameters being more closely
related to the granulometric moments of the real data and therefore more accurate
prediction of time state. Optimizing choice of SE(s) [22] or use of multiple SEs in
a more complex granulometry [5] are also worth considering.
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10
Multichannel weighted
medians

Yinbo Li and Gonzalo R. Arce

Weighted medians over multichannel signals are not uniquely defined. Due to
their simplicity, Astola et al.’s vector median (VM) has received considerable at-
tention particularly in image processing applications. In this chapter, we show that
the VM and its direct extension, the weighted VM, are limited as they do not fully
utilize the cross-channel correlation. In fact, VM treats all subchannel components
independently of each other. By revisiting the principles of maximum-likelihood
estimation of location in a multivariate signal space, we describe a set of new and
simple multichannel weighted median filters which can capture cross-channel in-
formation effectively both in real domain and complex domain. Their optimal
filter derivations are also presented, followed by a series of simulations from color
image denoising to array signal processing, where the efficiency of these filtering
structures is illustrated.

10.1. Introduction

Multichannel signal processing [1, 22] has undergone rapid developments in the
past decade, primarily due to its importance to multispectrum imaging, array pro-
cessing, multimedia, and medical signal processing [19]. Noise in color imaging is
often impulsive, and since edges and details are of paramount importance, it is nat-
ural to extend weighted medians and order statistic filters [2, 31] from the scalar
domain into the multichannel space. The extension of the weighted median (WM)
for use with multidimensional (multichannel) signals is however not straightfor-
ward. Sorting multicomponent (vector) values and selecting the middle value is
not well defined as in the scalar case, see Barnett (1976) [4]. In consequence, the
weighted median filtering operation of a multidimensional signal can be achieved
in a number of ways among which the most well known are marginal medians
of orthogonal coordinates by Hayford (1902) [10], L1-norm median, by Gini and
Galvani (1929) [5] and Haldane (1948) [9] that minimizes the sum of distances to
all samples, the halfplane median by Tukey (1975) [29] that minimizes the max-
imum number of samples on a halfplane, convex hull median by Barnett (1976)
[4] and Shamos (1976) [26] that results from the continuous “peeling” off pairs of
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extreme samples, the simplex median by Oja (1983) [20] that minimizes the sum
of the volumes of all simplices formed by the output and some subsets of the data,
the simplicial median of Liu (1990) [16] that maximizes the number of simplices
that contain it, and the hyperplane median by Rousseeuw and Hubert (1999) [23]
that maximizes the hyperplane depth. For historical reviews on multivariate medi-
ans, see Small (1990) [27] and Aloupis et al. (2001) [3]. Other approaches can be
found in [8, 13, 21], and [28].

A problem with many definitions of multivariate medians is that they have
more conceptual meaning than practical use because of their high computational
complexities. The algorithms used to compute the L1 median often involve gradi-
ent techniques or iterations that can only provide numerical solutions as shown by
Groß and Strempel (1998) [7], and even the fastest algorithm up-to-date for the
Oja median is about O(N3 logN) in time, see Aloupis et al. (2001) [3]. Moreover,
they usually have difficulties with their extension to structures admitting weights
and the optimal design of these weights.

Unlike the above-mentioned approaches, the so-called vector median (VM),
proposed by Astola et al. [1] in 1990, has since then received considerable atten-
tion in signal processing research. Relaxed on its mathematical rigorousness but
focused on its practical use, the basic idea of VM is to confine the filter output
to be one of the N vector-valued input samples which minimizes the sum of L1

distances from this output to all other samples in the observation window. Denote

{�Xi} as the sample set. Astola’s VM is defined as

�Y = arg min
�X∈{�Xi}

N∑

i=1

∥∥�X − �Xi
∥∥
p, (10.1)

where ‖·‖p denotes Lp norm, where ‖�X‖p = (
∑ |Xi|p)1/p. An otherwise full mul-

tivariate space search is thus replaced by at most N calculations of the cost func-
tion. The computational complexity is thus greatly reduced. The vector median is
a selection type of robust filter, a property also possessed by univariate median fil-
ters. In order to expand the capabilities of the vector median, the weighted vector
median (WVM) was introduced as a direct extension [30],

�Y = arg min
�X∈{�Xi}

N∑

i=1

Wi

∥
∥�X − �Xi

∥
∥
p, (10.2)

where a weighted cost function is defined as such that the L1 distances are first
weighted by nonnegative scalars before they are summed together.

Although the WVM finds its immediate applications in color imaging, and
has several optimization algorithms in existence [17, 18, 25], the principles of pa-
rameter estimation reveal that the very structure of weighted vector medians are
limited and as such they are not suitable for a broad class of problems in mul-
tichannel signal processing. In fact, Astola’s vector median is derived from the
maximum likelihood (ML) estimation of location for independent and identi-
cally distributed (i.i.d.) vector-valued samples obeying a Laplacian distribution.
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The weighted vector median, in turn, emerges from the location estimate of in-
dependent (but not identically distributed) vector-valued samples, where only the
scale of each input vector sample varies. The multichannel components of each
sample are, however, still considered mutually independent in both cases. Even
though their selection-type filter outputs preserve the cross correlation in the data,
weighted vector medians are still limited since the cross-channel correlation struc-
ture, inherently present in most multichannel applications, are not fully exploited.
Weights in weighted VM filtering are applied treating each individual vector sam-
ple in the processing window differently, hence they utilize the spatial correlation.
Such cross-channel weighting is not used so as to treat channel components dif-
ferently within each vector sample, thus, the weighted VM cannot fully exploit
the cross correlation between channels. In this sense, the weighted vector median
in [30] is cross-channel blind, and the vector median in [1] is both spatially and
cross-channel blind.

10.2. Multichannel weighted median filtering structures

The notation used hereafter is clarified first. Let M represent the dimension of the
multivariate data, N the filter length. Throughout the paper, the vectors in the
time (or spatial) domain with length N are denoted using boldface letters like X,
vectors in the spectral domain with length M are represented in regular font but

with an arrow on top like �Xi, matrices in spectral domain will be represented using
blackboard bold font like W. Vector multiplications can only happen between two
vectors that are in the same domain. The transpose superscript T is used in both
domains.

10.2.1. Multichannel weighted median filter I

As in the scalar case, the multivariate filtering structure is derived from the max-
imum likelihood estimation of location, this time in a multivariate signal space.
Consider a set of independent but not identically distributed vector-valued sam-
ples, each obeying a joint Gaussian distribution with the same location parameter
�β,

f
(�Xi
) = 1

(2π)M/2
∣
∣Ci

∣
∣1/2 e

−(1/2)(�Xi−�β)TC
−1
i (�Xi−�β), (10.3)

where �Xi and �β are all M-variate column vectors, and C
−1
i is the inverse of the

M ×M covariance matrix of the sample �Xi. The maximum likelihood estimation

of location �β can be derived as

�β =
⎛

⎝
N∑

i=1

Ci

⎞

⎠

⎛

⎝
N∑

i=1

C
−1
i
�Xi

⎞

⎠ . (10.4)
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A general multivariate filtering structure results from (10.4) as

�Y =
N∑

i=1

W
T
i
�Xi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N∑

i=1

M∑

j=1

W
j1
i X

j
i

...
N∑

i=1

M∑

j=1

W
jM
i X

j
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10.5)

where W
T
i = (

∑N
i=1 Ci)C−1

i . The operation in (10.5) is referred to as the complete
multichannel linear filter (CML). Obviously, the sample set within each channel

is the same {X j
i |Ni=1|Mj=1}, but the corresponding weights {W jl

i |Ni=1|Mj=1} are all dif-
ferent for different channel l = 1, . . . ,M. Hence the optimal CML filter can be
considered as M independent univariate linear filters each with NM samples and
weights. The total number of the weights is NM2. Its corresponding median ver-
sion, a.k.a the complete multichannel weighted median filter (CMWM), can thus
be expressed as

�Y =

⎡

⎢
⎢
⎢
⎢
⎣

MEDIAN
(∣∣W

j1
i

∣∣� sgn
(
W

j1
i

)
X
j
i

∣∣M
j=1

∣∣N
i=1

)

...

MEDIAN
(∣
∣W

jM
i

∣
∣� sgn

(
W

jM
i

)
X
j
i

∣
∣M
j=1

∣
∣N
i=1

)

⎤

⎥
⎥
⎥
⎥
⎦
. (10.6)

The weighted median in each channel is a real-valued operation with signs of the
weights coupled into the corresponding samples. See [2] for its definition and
computation.

An example of an optimal filter design algorithm for (10.5) is shown by
Robinson (1983) [24]. The optimization of (10.6) can be implemented by M in-
dependent weighted median filters each as outlined in [2]. Unfortunately, these
structures are often impractical due to the overwhelming size of the weight set.
For instance, even using a 3× 3 window to filter a 3-channel color image requires
the optimization of 81 weights. Alternate filter structures requiring lesser weights
yet preserving its capability of capturing cross-channel information are needed for
both linear and median cases. The approach described next provides one solution
to this problem [14].

In most multichannel applications, signals from subchannels are correlated.
Very often the cross-channel correlation in these cases has some inherent structure.
The simplest structure would be that the covariance matrix is a constant matrix
throughout the entire signal. This is true when the multivariate samples are inde-
pendent and identically distributed. A slightly more complicated structure would
be that the inverse covariance matrices at different time indices C

−1
i though may

not hold constant but are all proportional to each other, and differ only by scale
factors. Mathematically this is expressed as

C
−1
i = qiC

−1. (10.7)
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This can be seen as each multivariate sample is drawn from the same multivariate
distribution but with a different variance parameter. The corresponding MLE is
then

�β =
⎛

⎝
N∑

i=1

qiC
−1

⎞

⎠

−1⎛

⎝
N∑

i=1

qiC
−1 �Xi

⎞

⎠ , (10.8)

where (
∑N

i=1 qiC
−1)−1 is a normalization constant and

∑N
i=1 qiC

−1 �Xi provides the
filtering structure. Removing the normalization constant, the filtering structure
can be formulated as

�Y =
N∑

i=1

ViW
T �Xi (10.9)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N∑

i=1

Vi

⎛

⎝
M∑

j=1

W j1X
j
i

⎞

⎠

...
N∑

i=1

Vi

⎛

⎝
M∑

j=1

W jMX
j
i

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10.10)

where Vi is the time-dependent weight applied to the ith vector sample in the ob-
servation window and W jk is the cross-channel weight exploiting the correlation
between the jth and kth components of a sample. The idea behind this structure
with two sets of weights is clear: the cross-channel weight matrix W reflects the in-
herent correlation between subchannels, whilst the set of time-dependent weights
Vi is responsible for capturing the time correlation between the neighboring sam-
ples. In the remainder of this chapter, we will refer to this linear structure as the
multichannel linear (ML) filter I. The filter thus consists of M2 +N weights. In the
example of a RGB image with a 3 × 3 window, the number of weights would be
reduced from 81 to 18.

Even though it is mathematically intractable to derive a similar result as in
(10.10) from a multivariate Laplace distribution,1 it is still possible to define a non-
linear multichannel filter by direct analogy by replacing the summations in (10.10)
with median operators. This filter is referred to as the multichannel weighted me-
dian (MWM) filter I and is defined as follows [14]:

�Y =

⎡

⎢
⎢
⎢
⎢
⎣

MEDIAN
(∣
∣Vi

∣
∣� sgn

(
Vi
)
Q1
i

∣
∣N
i=1

)

...

MEDIAN
(∣
∣Vi

∣
∣� sgn

(
Vi
)
QM
i

∣
∣N
i=1

)

⎤

⎥
⎥
⎥
⎥
⎦

, (10.11)

where Ql
i =MEDIAN(|W jl| � sgn(W jl)X

j
i |Mj=1) for l = 1, . . . ,M.

1The multivariate Laplace distribution is expressed by the Bessel function [12], it is thus in-
tractable to derive a simple closed form solution for the ML estimate.
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10.2.2. Multichannel weighted median filter II

There are some applications where the initial assumption stated in (10.7) may not
be appropriate. In these cases, the inherent cross-channel correlation structure is
more complicated, and the constraint on Ci is too strong. Notice that, in the ML
filter I structure, the time-dependent weight Vi is equally applied to all subchan-

nels of the sample �Xi. This inspires us to replace (10.7) by

C
−1
i = diag

(
�qi
)
C
−1 =

⎡

⎢
⎢
⎣

q1
i C

11 · · · q1
i C

1M

...
. . .

...
qMi C

M1 · · · qMi C
MM

⎤

⎥
⎥
⎦ , (10.12)

where �qi = [q1
i · · · qMi ]T , diag(�qi) is a matrix with �qi elements on its diag-

onal and zeros elsewhere. In this case, the cross-channel correlation is no longer

considered stationary, and the q
j
i represent the correlation between components

of different samples in the observation window. The ML filter II is thus defined as

�Y =
N∑

i=1

diag
(�Vi

)
W

T �Xi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N∑

i=1

V 1
i

⎛

⎝
M∑

j=1

W j1X
j
i

⎞

⎠

...
N∑

i=1

VM
i

⎛

⎝
M∑

j=1

W jMX
j
i

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10.13)

where �Vi is an M-variate weight vector, Vl
i is the weight reflecting the influence

of the lth component of the ith sample in the lth component of the output. The
weights Wij have the same meaning as in the MWM filter I.

Applying the same analogy used in the previous case, a more general multi-
channel weighted median filter (MWMII) structure can be defined as

�Y =

⎡

⎢
⎢
⎢
⎢
⎣

MEDIAN
(∣∣V 1

i

∣∣� sgn
(
V 1
i

)
Q1
i

∣∣N
i=1

)

...

MEDIAN
(∣
∣VM

i

∣
∣� sgn

(
VM
i

)
QM
i

∣
∣N
i=1

)

⎤

⎥
⎥
⎥
⎥
⎦

, (10.14)

where Ql
i is the same as in (10.11). The number of weights increases compared

to the MWM filter I, but is still significantly smaller compared to the number of
weights required by the complete version of the filter in (10.5). For the color image
filtering example, the number of weights will be M × (N +M) = 36.

In the following section, optimal adaptive algorithms for the structures in
(10.11) and (10.14) are described.
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Table 10.1. Optimal filtering structures for multichannel signals.

Case C
−1
i Optimal linear filtering structure Median equivalence No. of weights

1 σ2I �Y =∑i W �Xi VM (10.1) 1

2 σ2
i I �Y =∑i Wi �Xi WVM (10.2) N

3 σ2 diag(γ1, . . . , γM) �Y =∑i diag(W1, . . . ,WM)�Xi — M

4 σ2
i diag(γ1, . . . , γM) �Y =∑i Vi diag(W1, . . . ,WM)�Xi — N +M

5 C−1 �Y =∑i W
T �Xi — M2

6 qiC−1 �Y =∑i ViW
T �Xi MWMI (10.11) N +M2

7 diag(q1
i , . . . , qMi )C−1 �Y =∑i diag(V1

i , . . . ,VM
i )WT �Xi MWMII (10.14) NM +M2

8 C
−1
i

�Y =∑i W
T
i
�Xi CMWM (10.6) NM2

10.2.3. Optimal filtering structures for multichannel signals

A general strategy for finding the optimal filtering structure for a particular multi-
channel signal can be deducted from previous discussions. The key to the problem
holds in characterization of the covariance matrices Ci (or its inverse). In general,
the less structured the covariance matrix is, the more parameters are needed to
describe it, and the more filter weightings are required. “Optimal” in this sense
means that the number of weights the filter has should be exactly the same as the
number of parameters the covariance matrix has, and the filter and the covariance
matrix should be matched in structure. A summary of various structures of the
covariance matrix and corresponding optimal filtering structures is presented in
Table 10.1.

10.3. Filter optimization

Assume that the observed process �X(n) is statistically related to a desired process
�D(n) of interest, typically considered a transformed or corrupted version of �D(n).
The filter input vector at time n is

X(n) =
[
�X1(n) �X2(n) · · · �XN (n)

]T
, (10.15)

where �Xi(n) = [X1
i (n) X2

i (n) · · · XM
i (n)]T . The desired signal is �D(n) =

[D1(n) D2(n) · · · DM(n)]T . Denote �e = �D − �̂D as the multivariate error

signal, el = Dl − D̂l its lth element. Also, the cross-channel weight matrix is

W =

⎡

⎢
⎢
⎣

W11 · · · W1M

...
. . .

...
WM1 · · · WMM

⎤

⎥
⎥
⎦ . (10.16)
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Optimization for the ML filter I and II is fairly simple, and can be found in
[14].

10.3.1. Optimization for the MWM filter I

DenoteQl
i =MEDIAN(|W jl|�sgn(W jl)X

j
i |Mj=1) for l = 1, . . . ,M, then the output

of the MWM can be defined as

�̂D =
[
D̂1 D̂2 · · · D̂M

]T
, (10.17)

where

D̂l =MEDIAN
(∣
∣Vi

∣
∣� sgn

(
Vi
)
Ql
i

∣
∣N
i=1

)
, l = 1, . . . ,M. (10.18)

Applying the real-valued threshold decomposition technique as shown in [2],
we can rewrite (10.18) to be analyzable as follows:

D̂l = 1
2

∫

MEDIAN
(∣
∣Vi

∣
∣� sgn

(
sgn

(
Vi
)
Ql
i − pl

)∣∣N
i=1

)
dpl

= 1
2

∫

sgn
(

VT
a Gpl

)
dpl,

(10.19)

where

Va =
[∣
∣V1

∣
∣

∣
∣V2

∣
∣ · · · ∣

∣VN

∣
∣
]T

,

Gpl =
[

sgn
(

sgn
(
V1
)
Ql

1 − pl
) · · · sgn

(
sgn

(
VN
)
Ql
N − pl

)]T
.

(10.20)

Similarly, by defining

�Wl
a =

[∣
∣W1l

∣
∣

∣
∣W2l

∣
∣ · · · ∣

∣WMl
∣
∣
]T

,

�Sq
l
i
i =

[
sgn

(
sgn

(
W1l

)
X1
i − qli

) · · · sgn
(

sgn
(
WMl

)
XM
i − qli

)]T
,

(10.21)

the inner weighted medians will have the following thresholded representation:

Ql
i =

1
2

∫

MEDIAN
(∣
∣W jl

∣
∣� sgn

(
sgn

(
W jl

)
X
j
i − qli

)∣∣M
j=1

)
dqli

= 1
2

∫

sgn
(( �Wl

a

)T�Sq
l
i
i

)
dqli.

(10.22)
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Under the least mean absolute (LMA) error criterion, the cost function to mini-
mize is

J1(V, W) = E
{∥∥�D − �̂D∥∥1

}
(10.23)

= E

{ M∑

l=1

∣
∣Dl − D̂l

∣
∣
}

. (10.24)

Substitute (10.19) in (10.24) to obtain

J1(V, W) = E

⎧
⎨

⎩
1
2

M∑

l=1

∣
∣
∣
∣

∫

sgn
(
Dl − pl

)− sgn
(

VT
a Gpl

)
dpl

∣
∣
∣
∣

⎫
⎬

⎭ . (10.25)

Since the integrals in (10.25) act on strictly positive or strictly negative func-
tions, the absolute value operators and the integral operators can thus be inter-
changed, leading to

J1(V, W) = E

⎧
⎨

⎩
1
2

M∑

l=1

∫ ∣
∣ sgn

(
Dl − pl

)− sgn
(

VT
a Gpl

)∣∣dpl

⎫
⎬

⎭ . (10.26)

Due to the linearity of the expectation, the summation, and the integration oper-
ations, (10.26) can then be rewritten as

J1(V, W) = 1
2

M∑

l=1

∫

E
{∣∣ sgn

(
Dl − pl

)− sgn
(

VT
a Gpl

)∣∣}dpl. (10.27)

Furthermore, since the absolute value operators inside the expectations in (10.27)
can only take values in the set {0, 2}, they can be replaced by a properly scaled
square operator resulting in

J1(V, W) = 1
4

M∑

l=1

∫

E
{(

sgn
(
Dl − pl

)− sgn
(

VT
a Gpl

))2
}
dpl. (10.28)

Taking the derivative of the above equation with respect to V results in

∂

∂V
J1(V, W) = −1

2

M∑

l=1

∫

E
{
ep

l ∂

∂V
sgn

(
VT
a Gpl

)}
dpl, (10.29)

where ep
l = sgn(Dl − pl)− sgn(VT

a Gpl ). For mathematical convenience, the non-
differentiable sign function is approximated by the hyperbolic tangent function
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sgn(x) ≈ tanh(x) = (ex − e−x)/(ex + e−x). Since its derivative (d/dx) tanh(x) =
sech2(x) = 4/(ex + e−x)2, it follows that

∂

∂V
sgn

(
VT
a Gpl

) ≈ sech2 (VT
a Gpl

)

⎡

⎢
⎢
⎢
⎣

sgn
(
V1
)
G
pl

1
...

sgn
(
VN
)
G
pl

N

⎤

⎥
⎥
⎥
⎦

, (10.30)

where G
pl

i = sgn(sgn(Vi)Ql
i − pl) for i = 1, . . . ,N . Substituting (10.30) in (10.29)

leads to the updates for the Vi:

Vi(n + 1) = Vi(n) + 2μv

{
− ∂

∂Vi
J1(V, W)

}

= Vi(n) + μv

⎛

⎝
M∑

l=1

∫

E
{
ep

l
sech2 (VT

a Gpl
)

sgn
(
Vi
)
G
pl

i

}
dpl

⎞

⎠ ,
(10.31)

where μv is the step-size parameter for V updates.
Using the instantaneous estimate for the gradient, and applying an approxi-

mation similar to the one in [2], we obtain the adaptive algorithm for the time-
dependent weight vector V of the MWM filter as follows:

Vi(n + 1) = Vi(n) + μv sgn
(
Vi(n)

){
�eT(n)�GD̂

i (n)
}

, (10.32)

where �GD̂
i = [GD̂1

i · · · GD̂M

i ]T and GD̂l

i = sgn(sgn(Vi)Ql
i − D̂l) for l = 1, . . . ,M.

To derive the updates for W, it is easy to verify that

∂

∂Wst
J1(V, W) ≈ −1

2

M∑

l=1

∫

E
{
ep

l
sech2 (VT

a Gpl
)

VT
a

(
∂

∂Wst
Gpl

)}
dpl, (10.33)

∂

∂Wst
Gpl ≈

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sech2 ( sgn
(
V1
)
Ql

1 − pl
)

sgn
(
V1
) ∂

∂Wst
Ql

1

...

sech2 ( sgn
(
VN
)
Ql
N − pl

)
sgn

(
VN
) ∂

∂Wst
Ql
N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (10.34)

∂

∂Wst
Ql
i ≈ −

1
2

∫

sech2
(( �Wl

a

)T�Sq
l
i
i

) ∂

∂Wst

(( �Wl
a

)T�Sq
l
i
i

)
dqli

≈
⎧
⎨

⎩
sgn

(
Wst

)
sgn

(
sgn

(
Wst

)
Xs
i − qti

)
, l = t,

0 otherwise.

(10.35)
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Initialization
V = 1; W = I

For Loop
For i = 1, . . . ,N and l = 1, . . . ,M

Ql
i =MEDIAN

(∣∣W jl
∣∣� sgn

(
W jl

)
X
j
i

∣∣M
j=1

)

�̂D(n) =

⎡

⎢
⎢
⎢
⎢
⎣

MEDIAN
(∣∣Vi

∣∣� sgn
(
Vi
)
Q1
i

∣∣N
i=1

)

...

MEDIAN
(∣∣Vi

∣∣� sgn
(
Vi
)
QM
i

∣∣N
i=1

)

⎤

⎥
⎥
⎥
⎥
⎦

�e(n) = �D(n)− �̂D(n)

For i = 1, . . . ,N

Vi(n + 1) = Vi(n) + μv sgn
(
Vi(n)

){
�eT (n)�GD̂i (n)

}

where �GD̂i =
[

sgn
(

sgn
(
Vi
)
Ql
i − D̂l

)∣∣M
l=1

]T

For s, t = 1, . . . ,M

Wst(n + 1) =Wst(n) + μw sgn
(
Wst(n)

)
et(n)

{
VT (n + 1)Ast(n)

}

where Ast =
[
δ
(

sgn
(
Vi
)
Qt
i − D̂t

)
sgn

(
sgn

(
Wst

)
Xs
i −Qt

i

)∣∣N
i=1

]T

Algorithm 10.1. Summary of the LMA algorithm for the MWM filter I.

Notice that in (10.35), the derivative that introduces one more sech2 term is omit-
ted since it is insignificant compared to the other one.

After some mathematical manipulations and similar arguments as in [2], the
adaptive algorithm for the cross-channel weight matrix W can be simplified as
follows:

Wst(n + 1) =Wst(n) + μw sgn
(
Wst(n)

)
et(n)

{
VT(n)Ast(n)

}
, (10.36)

where Ast = [Ast1 Ast2 · · · AstN ]T , andAsti = δ(sgn(Vi)Qt
i−D̂t) sgn(sgn(Wst)Xs

i

− Qt
i) for i = 1, . . . ,N , where δ(x) = 1 for x = 0 and δ(x) = 0 otherwise. μw

is the step-size parameter for W updates. Algorithm 10.1 summarizes the LMA
algorithm for the MWM filter I.

One note on the initialization of the weight matrix W. Although it is set to
be the identity matrix in Algorithm 10.1, in simulations each element should be
added a small value so that the off-diagonal elements can be updated through
(10.36), otherwise they will be held 0 all the time. This is also true for Algorithm
10.2.

10.3.2. Optimization for the MWM filter II

The optimization process for the second MWM filtering structure is very similar
to the one shown above. Assume that the time-dependent weight vector and the
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Initialization
V = 1; W = I

For Loop
For i = 1, . . . ,N and l = 1, . . . ,M

Ql
i =MEDIAN

(∣∣W jl
∣∣� sgn

(
W jl

)
X
j
i

∣∣M
j=1

)

�̂D(n) =

⎡

⎢
⎢
⎢
⎢
⎣

MEDIAN
(∣∣V1

i

∣∣� sgn
(
V1
i

)
Q1
i

∣∣N
i=1

)

...

MEDIAN
(∣∣VM

i

∣∣� sgn
(
VM
i

)
QM
i

∣∣N
i=1

)

⎤

⎥
⎥
⎥
⎥
⎦

�e(n) = �D(n)− �̂D(n)

For i = 1, . . . ,N and t = 1, . . . ,M

Vt
i (n + 1) = Vt

i (n) + μv sgn
(
Vt
i (n)

)
et(n)GD̂

t

i (n)

where GD̂
t

i = sgn
(

sgn
(
Vt
i

)
Qt
i − D̂t

)

For s, t = 1, . . . ,M
Wst(n + 1) =Wst(n) + μw sgn

(
Wst(n)

)
et(n)

{(
Vt
)T

(n + 1)Ast(n)
}

where Ast =
[
δ
(

sgn
(
Vt
i

)
Qt
i − D̂t) sgn

(
sgn

(
Wst

)
Xs
i −Qt

i

)∣∣N
i=1

]T

Algorithm 10.2. Summary of the LMA algorithm for the MWM filter II.

cross-channel weight matrix are

V =

⎡

⎢
⎢
⎢
⎢
⎣

�V1

...

�VN

⎤

⎥
⎥
⎥
⎥
⎦

, W =

⎡

⎢
⎢
⎢
⎣

W11 · · · W1M

...
. . .

...

WM1 · · · WMM

⎤

⎥
⎥
⎥
⎦

, (10.37)

where �Vi = [V 1
i V 2

i · · · VM
i ]T .

If Ql
i and �Sq

l
i
i are defined as in the previous case, the output of the filter can be

written as

�̂D =
[
D̂1 D̂2 · · · D̂M

]T
, (10.38)

where for l = 1, . . . ,M,

D̂l =MEDIAN
(∣
∣Vl

i

∣
∣� sgn

(
Vl
i

)
Ql
i

∣
∣N
i=1

)

= 1
2

∫

MEDIAN
(∣
∣Vl

i

∣
∣� sgn

(
Vl
i

)
Ql
i

∣
∣N
i=1

)
dpl

= 1
2

∫

sgn
((

Vl
a

)T
Gpl

)
dpl,

(10.39)
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where

Vl
a =

[∣
∣Vl

1

∣
∣

∣
∣Vl

2

∣
∣ · · · ∣

∣Vl
N

∣
∣
]T

,

Gpl =
[

sgn
(

sgn
(
Vl

1

)
Ql

1 − pl
) · · · sgn

(
sgn

(
Vl
N

)
Ql
N − pl

)]T
.

(10.40)

Under the least mean absolute (LMA) criterion, the cost function to minimize will
be just like (10.28).

Taking the derivative of the above equation with respect to a particularVt
i and

using similar approximations to the ones used in the previous case results in

∂

∂Vt
i
J1(V, W) = −1

2

∫

E
{
ep

t
sech2

((
Vl
a

)T
Gpt

)
sgn

(
Vt
i

)
G
pt

i

}
dpt, (10.41)

where ep
t = sgn(Dt − pt)− sgn((Vl

a)TGpt ). Using instantaneous estimates for the
expectation the updates for V result in

Vt
i (n + 1) = Vt

i (n) + μv sgn
(
Vt
i (n)

)
et(n) sgn

(
sgn

(
Vt
i (n)

)
Qt
i(n)− D̂t(n)

)

= Vt
i (n) + μv sgn

(
Vt
i (n)

)
et(n)GD̂t

i (n).
(10.42)

On the other hand, the updates for W are given by

Wst(n + 1) =Wst(n) + μw sgn
(
Wst(n)

)
et(n)

{(
Vt
)T

(n)Ast(n)
}

(10.43)

that is basically the same as (10.36) with the only difference that every Vi is re-
placed by Vt

i . The LMA algorithm for the MWM filter II is summarized in
Algorithm 10.2.

10.4. Complex multichannel WMs and their optimization

10.4.1. Complex weighted median

The weighting strategy is essential to filtering operations. Many communications-
related applications, such as matched filtering, equalization, beamforming, and
so forth, require filtering structures admitting complex-valued weights. For linear
filters, there is no difficulties in obtaining the optimal weights. However, due to
the nonlinear nature of the median operation, the optimal complex weight design
for median-type filters has not been explored until the paper [11], and even the
meaning of the complex weighting itself is vague.

The simplest approach to attain complex WM filtering is to perform marginal
operations directly, where the real component of the weights {WR|Ni=1} affects the
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X3

P3

θ3
P1

P2

θ2 Re(X)

X2

X1

θ1

Im(X)

Figure 10.1. Marginal phase-coupled CWM illustration, “◦”: original samples, “·”: phase-coupled
samples, “�”: marginal median output, “♦”: marginal phase-coupled median output.

real part of the samples {XR|Ni=1} and the imaginary component of the weights
{WI |Ni=1} affects the imaginary part of the samples {XI |Ni=1}. This approach re-
ferred to as marginal complex WM filter outputs:

β̂marginal =MEDIAN
(∣∣WRi

∣∣♦ sgn
(
WRi

)
XRi
∣∣N
i=1

)

+ j MEDIAN
(∣∣WIi

∣∣♦ sgn
(
WIi

)
XIi
∣∣N
i=1

)
.

(10.44)

The definition in (10.44) assumes that the real and imaginary components of
the input samples are independent. On the other hand, if the real and imaginary
domains are correlated, better performance is attainable by mutually coupling the
real and imaginary components of the signal and weights. According to [11], the
complex weighted median we will refer to throughout the chapter is defined in the
following manner:

β̄ =MEDIAN
(∣∣Wi

∣∣♦ Re
{
Φ
(
W∗

i

)
Xi
}∣∣N

i=1

)

+ j MEDIAN
(∣∣Wi

∣∣♦ Im
{
Φ
(
W∗

i

)
Xi
}∣∣N

i=1

)
,

(10.45)

where Re{·} and Im{·} denote real and imaginary parts, respectively, |Wi| rep-
resents the modulus of Wi, Φ(Wi) represents the unit direction vector e j∠Wi . The
operation that the phases of the complex weights are incorporated into samples as
in Φ(W∗

i )Xi is called phase coupling.
To help understand this definition better, a simple example is given in Figure

10.1. Three complex-valued samples X1, X2, X3 and three complex-valued weights
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on the unit circle W1, W2, W3 are arbitrarily chosen. The phase-coupled samples
P1, P2, P3 are plotted to show the effect of phase coupling. The weights are not
directly shown in the figure, but their phases θ1, θ2, θ3 are shown as the angles
between the original and altered samples.

Due to the rotation of the samples, the real and imaginary parts of the sig-
nal are coupled together before further processing, hence the intrinsic correlation
in the signal is preserved. In addition, the complex WM in (10.45) clearly has a
structural advantage over the marginal complex WM in (10.44). In the above ex-
ample, the real part of the marginal complex WM is confined to be chosen from
{XRi|3i=1,−XRi|3i=1}; similarly, the imaginary part is confined to be chosen from
{XIi|3i=1,−XIi|3i=1}. While on the other hand, the output of the complex WM can
be any point on the complex plane inside a circle whose radius is the largest mag-
nitude among all three samples. This enables the capability of designing a more
powerful robust filter.

10.4.2. Complex differentiation

The previous subsection solves the problem of how to mathematically represent
the median filter in the complex domain. However in order to obtain an optimal
design of such filters, complex differentiation over this mathematical expression
has to be executed so that the gradient technique can be used to attain desired
filter configuration. Moreover, due to phase coupling, this complex differentiation
incurs even more difficulties. To better understand the properties of the complex
weighted median, and to develop its optimization algorithm, the differentiation
of a complex function of f (z) = |z|2 kind has to be exercised. Unfortunately in
complex analysis, function f (z) is differentiable only at the origin. It does not hold
the Cauchy-Riemann equations and thus is not analytic. In other words, it has no
derivative in the strict complex sense. To obviate this mathematical difficulty, we
adopt the so-called complex differential operators [6].

For z ∈ C, x, y ∈R, denote

z = x + j y, z∗ = x − j y. (10.46)

Two complex differential operators in Cartesian coordinates are defined as

∂z = 1
2

(
∂

∂x
− j

∂

∂y

)

, ∂z∗ = 1
2

(
∂

∂x
+ j

∂

∂y

)

. (10.47)

One immediate derivation of these operators would be

∂z(z) = 1,

∂z∗(z) = 0,

∂z
(
z∗
) = 0,

∂z∗
(
z∗
) = 1.

(10.48)
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A couple of properties which will be extensively used in later optimal filter deriva-
tion are listed here without proof (see [15] for details):

∂z|z|2 = ∂z
∣∣z∗

∣∣2 = z∗,

∂z∗
∣
∣z∗

∣
∣2 = ∂z∗|z|2 = z,

∂z|z| = ∂z
∣
∣z∗

∣
∣ = 1

2
Φ
(
z∗
)
,

∂z∗
∣
∣z∗

∣
∣ = ∂z∗|z| = 1

2
Φ(z),

∂zΦ(z) = 1
2|z| , ∂z∗Φ

(
z∗
) = 1

2
∣∣z∗

∣∣ ,

∂z∗Φ(z) = − 1
2|z|Φ

(
z2), ∂zΦ

(
z∗
) = − 1

2
∣
∣z∗

∣
∣Φ

(
z∗2).

(10.49)

Since the complex differential operators are defined only by the partial deriva-
tives over x and y, it greatly relaxes the requirements for differentiability of the
given complex function.

10.4.3. Multichannel WM filters in the complex domain

Given the filter input vector at time n is

X(n) =
[
�X1(n) �X2(n) · · · �XN (n)

]T
, (10.50)

where �Xi(n) = [X1
i (n) X2

i (n) · · · XM
i (n)]T and each element of �Xi(n) is

complex. Also, the time/spatial-dependent weight vector and the cross-channel
weight matrix are

V =
[
�V1 · · · �VN

]
, W =

⎡

⎢
⎢
⎣

W11 · · · W1M

...
. . .

...
WM1 · · · WMM

⎤

⎥
⎥
⎦ , (10.51)

where �Vi = [V 1
i V 2

i · · · VM
i ]T , and each element of them is complex-valued

too. Then applying the complex weighted median definition in (10.45), the multi-
channel WM filter II in (10.14) can be extended to complex domain as the follow-
ing:

�Y =
⎡

⎢
⎣

MEDIAN
(∣
∣(Vl

i

)∗∣∣♦ Re
{
Pli
}∣∣N

i=1

)

+ j MEDIAN
(∣
∣(Vl

i

)∗∣∣♦ Im
{
Pli
}∣∣N

i=1

)

∣
∣
∣
∣∣

M

l=1

⎤

⎥
⎦

T

, (10.52)
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where Pli = Φ((Vl
i )
∗)Ql

i. The intermediate variable Ql
i is defined by another com-

plex weighted median

Ql
i =MEDIAN

(∣
∣(W jl

)∗∣∣♦ Re
{
S
jl
i

}∣∣N
i=1

)

+ j MEDIAN
(∣
∣(W jl

)∗∣∣♦ Im
{
S
jl
i

}∣∣N
i=1

)
,

(10.53)

where S
jl
i = Φ((W jl)∗)Xl

i .
If we consider the complex MWM filter I as a special case of (10.52) where

Vl
i = Vi for all l, then the complex version of (10.11) can be expressed as

�Y =
⎡

⎢
⎣

MEDIAN
(∣
∣V∗i

∣
∣♦ Re

{
Pli
}∣∣N

i=1

)

+ j MEDIAN
(∣
∣V∗i

∣
∣♦ Im

{
Pli
}∣∣N

i=1

)

∣
∣
∣
∣∣

M

l=1

⎤

⎥
⎦

T

, (10.54)

where Pli = Φ(V∗i )Ql
i and Ql

i is the same as in (10.53).

10.4.4. Filter optimization

Assume that the observed process �X(n) is statistically related to a desired mul-

tichannel complex process �D(n) = [D1(n) D2(n) · · · DM(n)]T of interest,

typically considered a transformed or corrupted version of �D(n). Denote�e = �D−�Y
as the multivariate error signal, el = Dl − Yl its lth element.

Under the least mean absolute (LMA) criterion, the cost function to minimize
is

J1(V, W) = E
{∥∥�D − �Y∥∥1

} = E

⎧
⎨

⎩

M∑

l=1

∣
∣Dl − Yl

∣
∣

⎫
⎬

⎭ . (10.55)

After numerous mathematical manipulations and similar arguments as in
[11], the updates for V are given by

Vt
i (n + 1) = Vt

i (n) + μvΦ
(
Vt
i (n)

){
etR sgn

(
PtRi − Yt

R

)
+ etI sgn

(
PtIi − Yt

I

)

+ 2 jetRP
t
Iiδ
(
PtRi − Yt

R

)− 2 jetIP
t
Riδ
(
PtIi − Yt

I

)}

(10.56)

for s = 1, . . . ,N , t = 1, . . . ,M. For s, t = 1, . . . ,M, we have

Wst(n + 1) =Wst(n) + μwΦ
(
Wst(n)

)

×
⎧
⎨

⎩e
t
R

N∑

i=1

((
Vt
i

)∗
Asti +Vt

i B
st
i

)
δ
(
PtRi − Yt

R

)

− jetI
N∑

i=1

((
Vt
i

)∗
Asti −Vt

i B
st
i

)
δ
(
PtIi − Yt

I

)
⎫
⎬

⎭ ,

(10.57)
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where

Asti = sgn
(
SstRi −Qt

Ri

)
+ j2SstIi δ

(
SstRi −Qt

Ri

)
+ j sgn

(
SstIi −Qt

Ii

)
+ 2SstRiδ

(
SstIi −Qt

Ii

)
,

(10.58)

Bsti = sgn
(
SstRi −Qt

Ri

)
+ j2SstIi δ

(
SstRi −Qt

Ri

)− j sgn
(
SstIi −Qt

Ii

)− 2SstRiδ
(
SstIi −Qt

Ii

)
.

(10.59)

As a special case of the complex MWM filter II, the optimization for the com-
plex MWM filter I can be easily derived as

Vi(n + 1) = Vi(n)

+ μvΦ
(
Vi(n)

) M∑

l=1

{
elR
(

sgn
(
PlRi − Yl

R

))
+ elI

(
sgn

(
PlIi − Yl

I

))

+ 2 jelRP
l
Iiδ
(
PlRi − Yl

R

)− 2 jelIP
l
Riδ
(
PlIi − Yl

I

)}
,

Wst(n + 1) =Wst(n) + μwΦ
(
Wst(n)

)

×
⎧
⎨

⎩e
t
R

N∑

i=1

(
V∗i A

st
i +ViB

st
i

)
δ
(
PtRi − Yt

R

)

− jetI
N∑

i=1

(
V∗i A

st
i −ViB

st
i

)
δ
(
PtIi − Yt

I

)
⎫
⎬

⎭ ,

(10.60)

where Asti and Bsti are the same as in (10.58).

10.5. Simulations

10.5.1. Real-valued signals

In order to evaluate the performance improvement of the described filter struc-
tures in the previous sections over the existing approaches, two types of simula-
tions are executed. A color image denoising is set up mainly to test the validity and
efficiency of the MWM filter I, while a three-sensor array processing is formulated
to focus on the performance of the MWM filter II.

First, a RGB color image contaminated with 20% independent salt-and-pep-
per noise in each channel is processed by six multichannel filters, including the
marginal vector median filter (MARG) where three univariate weighted median
filters run through their correspondent channels independently, the WVM filter
which uses the greedy algorithm summarized in [25], the multichannel linear fil-
ter I (MLI) in (10.10), the MWM filter I and II developed in Section 10.2, and the
CMWM filter expressed in (10.6). The observation window is set to 3×3. The op-
timal weights for each filter are obtained by running the filters through a training
image with similar noise contamination. The uncorrupted version of the training
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(a) (b) (c)

(d) (e) (f)

Figure 10.2. Multichannel medians for color image denoising in salt-and-pepper noise, 3×3 window,
μv ,μw = 0.001 for MWMI, and μ = 0.01 for WVM, MARG, and CMWM. (a) Noiseless image, (b)
contaminated image, (c) WVM, (d) marginal, (e) MWMI, and (f) CMWM.

image is known and is used as the desired signal. In the simulation, we choose this
training image to be a 150×150 subsection of the test image for all filters. To guar-
antee that the weight training for every filter converges, the step-size parameter
(or parameters in the two MWM cases) for each filter has to be cautiously set. The
resulting weights are then passed to the corresponding filters to denoise the entire
image. The outputs of the four median-related filters are depicted in Figure 10.2.
The output of the MWMII filter is not shown because it closely resembles that
of MWMI. The result of the MLI filter is also not shown due to its blurry qual-
ity and loss of details which obviously is the direct consequence of averaging over
outliers.

As a measure of the effectiveness of the filters, the mean absolute error of the
outputs was calculated for each filter. Peak signal-to-noise ratio (PSNR) was also
used to evaluate the fidelity of the filtered images. The results of all six filters are
summarized in Table 10.2 along with their corresponding number of weights.

The visual outputs in Figure 10.2 and the performance metrics in Table 10.2
show that in general as the number of weights used by a filter structure increases,
the respective filter output performs better in terms of MAE, PSNR, and visual
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Table 10.2. Multichannel median filters comparison on color image denoising.

Filter No. of weights MAE PSNR (dB)

Noisy signal — 0.2970 11.74

WVM 9 0.1231 17.89

MARG 27 0.0343 25.89

MLI 18 0.2740 19.27

MWMI 18 0.0359 29.51

MWMII 36 0.0359 29.51

CMWM 81 0.0305 30.80

quality. As expected, the MLI filter performs the worst both in measurements
and visual perception, simply because the linear structure is susceptible to out-
liers. Among the five median-related multichannel filters, the WVM filter has the
least number of weights and its performance is the poorest. On the other hand,
the CMWM filter shows its superiority in both categories since it has the most
number of weights. However, due to the efficient structural characterization of
the strong cross-channel correlation of the signal, the MWMI filter can combine
useful information from other channels into its filtering process, while in MARG
such information is completely ignored. As a result, MWMI outperforms the mar-
ginal vector median filter with higher PSNR, visually less unfiltered outliers, and
comparable MAE even though it has one third less weights than MARG. Thus,
MWMI will always perform better than marginal filtering unless the signals from
subchannels are totally uncorrelated.

Table 10.3 compares the optimized weights obtained from MWMI and II to
distinquish the two structures. The cross-channel weight matrices W are column-
wise normalized with the magnitude of the diagonal element in that column. This
is done to emphasize how information from other channels are weighted into the
filtering process. The space-dependent weight vector V in MWMI case is normal-
ized with its biggest element. In MWMII case, the normalization is done within
each channel. All these space-dependent weights are not shown in their original
3× 3 matrix form for convenience of tabulation.

It is not surprising that the two cross-channel weight matrices are almost the
same, since they all reflect the intrinsic cross-channel correlation structure of the
color image. The weight vector V on the other hand, reflects the spatial correlation
within each channel. Due to the special characteristics of color images, the spa-
tial correlation within subchannels are very much alike, hence the three columns
shown in Table 10.3 under MWMII category are very similar. If they are replaced
by one of the columns, the MWMII filter reduces to another implementation of a
MWMI filter which differs with the one in the table only slightly on the weighting
of the center sample. The filter output thus will not show much difference. This ex-
plains why the MWMII filter will not gain anything from the MWMI filter in color
imaging applications. Lastly, since MWMI and II are just slightly behind CMWM
on measurements and visual perception yet they have significantly less weights,
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Table 10.3. Comparison on optimized weights of MWMI and MWMII.

MWMI MWMII

1.0000 0.9627 0.3232 1.0000 0.9624 0.3230

W 0.6656 1.0000 0.6754 0.6655 1.0000 0.6756

0.3340 1.0071 1.0000 0.3341 1.0071 1.0000

ch 1 ch 2 ch 3

0.6936 0.8886 0.8752 0.8562

0.6988 0.8963 0.8772 0.8523

0.6593 0.8825 0.8647 0.8302

0.7280 0.8741 0.8907 0.8973

V 1.0000 1.0000 1.0000 1.0000

0.7127 0.8831 0.8918 0.8680

0.6622 0.8327 0.8674 0.8806

0.6911 0.8468 0.8825 0.8898

0.6701 0.8409 0.8765 0.8726

Table 10.4. MAE of the output signals on array processing. (Reproduced from Y. Li, J. B. Rodriguez,
and G. R. Arce, “Weighted median filters for multichannel signals,” IEEE Transactions on Signal Pro-
cessing © 2006 IEEE.)

Filter MAE

Noisy signal 3.8031

WVM 1.7998

MWMI 1.4752

MLII ∞
MARG 0.6417

MWMII 0.6178

CMWM 0.4227

they can be considered as promising alternatives when excessive weighting is not
suitable.

To test the effectiveness of the MWM filter II, a simple array processing prob-
lem with real-valued signals is used. The system shown in Figure 10.3 is imple-
mented. It consists of a 3-element array and 3 sources in the farfield of the array
transmitting from different directions and at different frequencies as indicated in
the figure. The goal is to separate the signals from all sources using the receiver
array in the presence of independent alpha stable noise.

In order to do so, WVM, MARG, MLII, MWMI and II, and CMWM are put
to test all with a window size of 25. The filters are optimized using the techniques
described earlier in this section, with a reference signal whose components are
noiseless versions of the signals received at the sensors. The results obtained are
summarized in Figure 10.4 and Table 10.4.
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A3 A2 A1

d

−π/8 π/6

S2

f2 = 0.175

S3

f3 = 0.25
S1

f1 = 0.1

Figure 10.3. Three-element sensor array used for the simulation. Frequencies are normalized, and
d = λ3/4. (Reproduced from Y. Li, J. B. Rodriguez, and G. R. Arce, “Weighted median filters for multi-
channel signals,” IEEE Transactions on Signal Processing © 2006 IEEE.)

Simulations

Reference
signal

Received
signal

WVM
output

MLII
output

MARG
output

MWMII
output

CMWM
output

Channel 1 Channel 2

Figure 10.4. Input and output signals for array processing with multichannel medians. Each column
corresponds to a channel (only channel one and two are shown). The output of MWMI is not included
in the figure. To better illustrate, MARG, MWMII, and CMWM are plotted using the same scale, others
are not. (Reproduced from Y. Li, J. B. Rodriguez, and G. R. Arce, “Weighted median filters for multi-
channel signals,” IEEE Transactions on Signal Processing © 2006 IEEE.)

To extract different frequency components from the same multichannel sig-
nal, different time weighting structures should be applied at different channels. As
clearly shown in Figure 10.4, MARG, MWMII, and CMWM perform fairly suc-
cessfully in retrieving the desired signals in strongly impulsive noise, since they
all have enough time-dependent weights for each frequency component. WVM
and MWMI on the other hand are unable to do so because they only have one
set of time-dependent weights and cannot reflect the time correlation structure of
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W

(a)

V

(b)

V1

(c)

V2

(d)

V3

(e)

Figure 10.5. Optimized weights for the multichannel medians in the array processing example: (a)
W from WVM, (b) V from MWMI, (c) channel 1 of V from MWMII, (d) channel 2 of V, and (e)
channel 3 of V. (Reproduced from Y. Li, J. B. Rodriguez, and G. R. Arce, “Weighted median filters for
multichannel signals,” IEEE Transactions on Signal Processing © 2006 IEEE.)

three frequency components at the same time. In consequence, their outputs bear
no resemblance of the desired signals as seen in Figure 10.4. MLII gets diverged
very often due to the impulsiveness of the noise even with weight reset mecha-
nism. MWMII outperforms MARG and closely approaches the performance of
CMWM which is the best in the simulation. The improvement from marginal
filtering to MWMII filtering is clearly achieved by combining signals from other
channels. The final weights from several filters of interest are shown in Figure 10.5
and Table 10.5.

Figure 10.5(a) shows why the WVM filter is not able to obtain a good result
for this problem. The optimal weights are not reflecting any frequency component
in the signal due to the inadequate of the structure. A similar conclusion can be
reached for the weights of the MWMI filter in Figure 10.5(b). The outer weights of
the MWM filter II are shown in Figures 10.5(c)–10.5(e), each one corresponding
to a different channel of the signals. It can be seen how the weights show a certain
periodicity with frequencies related to the ones of the signals we want to extract in
each channel.

The inner weights for the MWM filter I and the MWM filter II are shown in
Table 10.5. The normalization of these weight matrices is done the same way as in
Table 10.3. Notice that the signs of these weights are not normalized out because
they are responsible for modifying corresponding samples.
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Table 10.5. Optimized inner weights W from MWMI and MWMII.

MWMI MWMII

1.0000 −0.6989 −2.3043 1.0000 0.6634 0.6013

1.0787 1.0000 −2.3760 0.8098 1.0000 0.4499

−0.1263 −0.3402 −1.0000 1.1263 0.6392 1.0000

A3 A2 A1

d

−π/4 π/3

S2

f2 = 0.175

S3

f3 = 0.25

S1

f1 = 0.1

Figure 10.6. Three-element sensor array used for the simulation. Frequencies are normalized, and
d = λ3/2.

It can be seen that the weight matrix from MWMII better reflects the cross-
channel correlation of the signals while the weight matrix from MWMI is kind of
eccentric mainly because of its inadequacy in structure. When the cross-channel
weight matrix is fixed to be an identity matrix which means the subchannels are
totally independent of each other, the MWM filter II reduces to a marginal vector
median filter. Thus given the same noise environment, the more correlated the
subchannels are, the better MWMII will perform.

10.5.2. Complex-valued signals

To test the effectiveness of the complex MWM filter II, a simple array processing
problem with complex-valued signals is used. The system shown in Figure 10.6 is
implemented. The system consists of a 3-element array and 3 sources in the farfield
of the array transmitting from different directions and at different frequencies. The
goal is to separate the signals from all sources using the array in the presence of
alpha stable noise.

A complex marginal vector median filter (MARGc) where M univariate com-
plex weighted median filters run through their correspondent channels indepen-
dently, and the forementioned complex multichannel WM filter II (MWMIIc) are
put to test all with a window size of 25. The filters are optimized with a reference
signal whose components are noiseless versions of the signals received at the sen-
sors.

The results obtained are summarized in Figure 10.7 and Table 10.6.
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Reference
signal

Received
signal

MARGc
output

MWMIIc
output

Channel 1
(real part)

Channel 3
(imaginary part)

Figure 10.7. Input and output signals for array processing with multivariate medians. Each column
corresponds to a channel (only the real part of channel one and the imaginary part of channel three
are shown).

Table 10.6. Average MAE of the output signals.

Filter MAE

Noisy signal 29.6263

MARG 2.5947

MWMIIc 1.6636

Figure 10.7 shows that MWMIIc outperforms MARGc and the improvement
is achieved mainly because it combines signals from other channels into filtering.

A considerable improvement MWMIIc has over MWMII is that, since each
single complex weight in the cross-channel weight matrix W has the capability
of compensating the phase discrepancy between two channels, MWMIIc theoret-
ically has no limitation on the incident angles. On the contrary, MWMII has to
rely on the magnitude similarity (or correlation) between channels to gain per-
formance boost over marginal processing. Thus the narrower the incident angles
are, the better the performance will be. Compare Figures 10.3 and 10.6 to see the
difference.

10.6. Summary

Using the concept of the multivariate maximum likelihood estimation of location,
two new multivariate weighting structures are described in this chapter to bridge
the gap between the “scalar weighting” extensively used today and the very com-
plicated “complete weighting” structure for multichannel signal processing. This
is made possible by exploiting the intrinsic correlation property between channels
or in other words the covariance matrix. When the covariance matrix assumes
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finely structured form, the optimal filter can be chosen accordingly in the exactly
same structure. In this way, excessive weighting can be avoided reducing the system
complexity.

The optimizations on the new multichannel linear filters as well as the mul-
tichannel weighted median filters exploiting these two weighting strategies are
developed. Moreover, these weighting structures can be extended onto the com-
plex domain making them more suitable to real-world array processing. Simula-
tions on color image denoising and array signal processing show that the multi-
channel weighted median filters in impulsive environments outperform the scalar-
weighted median, the marginal multichannel implementation, and other weighted
median filtering methods used today, yet require a much less weights than the
complete-weighted multichannel median filter.
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11
Color image processing:
problems, progress,
and perspectives

E. R. Davies and D. Charles

11.1. Introduction

Image processing has evolved over a period of some forty years, and it has now
attained a fair measure of maturity. It has spawned a good many branches, such as
image enhancement, image restoration, image matching, image compression, and
image recognition, not to mention the closely allied subjects of image analysis,
computer vision, and automated visual inspection—together with some appar-
ently less related subjects such as virtual reality.

In many ways, image processing is a narrow subject, its basic definition be-
ing the study of how one image may be converted into another: traditionally,
this means suppression of noise and artefacts, enhancement to improve clarity,
or “deconvolution” to eliminate mathematically modeled distortions. Effectively,
this definition means applying a transform to convert an image, pixel by pixel, into
an improved image of the same sort (though here we should not exclude chang-
ing the resolution to match the immediate purpose for which the images will be
used). This definition of image processing is motivated by the need to present hu-
man operators with improved images, which will be easier for them to examine:
for example, doctors may require X-radiographs to be enhanced and to have lower
levels of noise so that diagnosis will be made easier.

However, a separate motivation for image processing is to improve or adapt
images so that the computer will itself be able to analyze them more easily and
effectively. Image processing can then be considered as a preprocessing stage on
the way to analysis and recognition. A further aspect is that image processing can
be used to present a completely transformed image exhibiting edge signal instead
of image intensity, or to present a corner- or other feature-enhanced image, which
(to go one stage further) need only to be thresholded to indicate points that will
be of immediate relevance for matching, recognition, 3D disparity measurement,
and so on.

There are also higher level possibilities, such as transforming an image to a
different viewpoint in 3D, taking several images, and reconstructing whole scenes,
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or in some way, automatically removing undesired objects from photographs (a
recent case in point is automatically removing the effects of blooming in digital
cameras by deconvolution using inverses of rather complex blooming functions
[1]).

In this chapter, we largely ignore this last set of complexities, and indeed all
complexities arising from 3D aspects of the real world. Instead we concentrate on
fairly general image processing aspects pertaining to preprocessing and the needs
of subsequent image analysis; and we develop this topic to cover color process-
ing as well as standard gray-scale processing. Color has recently been increasing
in importance, with the advent of digital television, digitally generated films, and
ubiquitous digital cameras—which have also become very much the sine qua non
of the latest generation of mobile phones. In addition, we must not forget the
huge increase in the use of surveillance—not just from earth-circling satellites, but
from cameras above motorways and in urban environments including supermar-
kets, shops, and railway stations. Indeed, the digital camera and the webcam have
fallen in cost so far that price has become almost negligible relative to the cost of
computers and computer software, and, furthermore, it is actually becoming diffi-
cult to find cameras that present black and white rather than color images. Added
to this, color is almost always preferred by humans (whether acting as amateurs or
as professional operators), and it clearly gives far more information that may be
crucial for matching and recognition tasks. Note also that the arrival of color in a
convenient form and at competitive prices is very recent relative to the time span
of the whole subject area, and to a certain extent we have been caught unprepared
for its being provided so conveniently without behest.

It used to be possible to argue in many cases that color was a waste of re-
sources. For example, in a simple inspection application, a gray-scale image could
be thresholded to give a binary image that provided all the shape information
needed to inspect metal flanges or other flat objects, and to check that all holes,
corners, and other features were intact. That was a time when color seemed to add
little, and indeed, one of the few inspection applications where color seemed to be
crucial was in the inspection of fruit for ripeness and freedom from bruises [2].

On the other hand, we have now moved into the era of surveillance and crime
prevention and detection, and it has become necessary to use full-color images
to ascertain exactly what is going on in an outdoor environment: coincidentally,
the September 11 scenario happened at a time when it was becoming increasingly
possible to detect criminal and terrorist activity from surveillance cameras. This
chapter will pay special attention to the color question, and will examine the extent
to which color image processing has progressed in comparison with its gray-scale
counterpart.

The aspects of color processing that will be covered in this chapter include
how to manage the considerable additional information it brings; the concept of
color bleeding—how color bleeding arises and how to cope with it; the contrast
between linear and nonlinear filtering; the mode filter—its value and its imple-
mentation; the role of modern switched noise suppression filters; filters with ad-
justable parameters; image distortions produced by grayscale and color filters; and
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a general review of recent color work. Further extensions and clarifications will ap-
pear in the immediately following chapter, which covers nonlinear edge detection
in color images.

11.2. The color problem

Gray-scale images reflect a systematic change away from binary images, partly in
respect of logic values giving way to intensity values, but also in respect of 1-bit
arithmetic precision giving way to 8-bit (or even 12-bit) precision. In the latter
case, we are merely moving along a scale of precision that can proceed as far as
necessary, and the change is monotonic in nature. However, the change from gray-
scale to color is distinctly different: three separate channels (or more in the case
of multispectral, e.g., satellite, data) are involved, so the data characteristics have
undergone a quantum leap rather than a monotonic change. Furthermore, it is
not always obvious how to handle and combine the information from the different
independent channels. If the images arose in a fixed application, a single channel
could perhaps be produced by a simple linear weighting and addition operation
applied to the three intensities, so, for example, apples could be graded on a single
green-red scale. More complicated nonlinear functions could employ a lookup
table to convert from color to gray-scale for the same basic purpose. However, the
problem is that in a good many applications, the color is necessary, and the means
of processing it to produce optimal meaningful results are likely to be complex and
nontrivial. One standard approach [3] is to apply principal components analysis
(PCA) to find the main information-carrying channels, and move from there to
more systematic informed processing of the data. In fact, these aspects will not
be broached in this chapter, as our aim here is to concentrate on the basic image
processing: but the fact that there will be three independent channels rather than
a single one will form a vibrant theme in the analysis.

11.3. Linear versus nonlinear processing

Image processing is commonly carried out in small neighborhoods or “windows,”
and in the past, 3 × 3 pixels was the most commonly used, though windows as
large as 21× 21 pixels are not uncommon now that computers have become more
powerful. Linear processing is simple, useful, and straightforward to analyze and
understand mathematically. When a linear operation is applied uniformly across
the whole image, the mathematical process is actually a convolution—a very well
understood process, and one that is exceptionally powerful. Convolution forms the
basis of correlation-type template matching, and this provides maximum sensitiv-
ity for detection of features via the (spatial) matched filtering process, which came
into prominence in the development of radar [4]. Thus it is no surprise that convo-
lution forms the basis of most types of edge detector,1 and has also been employed
for corner detection, line segment detection, and sometimes detection of whole

1This also applies in the case of color; see the account given in the following chapter.
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objects. The overall procedure is to use convolutions to produce an image whose
pixels present the local signal for the feature in question, and then to apply non-
maximum suppression and/or thresholding—or more sophisticated methods—to
perform the actual feature detection. For example, the Sobel edge detector and the
Plessey corner detector apply convolutions that differentiate the image locally in
the x and y directions, giving gx and gy differential gradient images, from which
the following formulae lead to edge and corner signal values [5, 6]:

g = (g2
x + g2

y

)1/2
,

c =
〈
g2
x

〉〈
g2
y

〉− 〈gxgy
〉2

〈
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y

〉 ,
(11.1)

the latter being deduced from the rotationally invariant determinant and trace of
the locally defined matrix:
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Several other corner detectors employ second-order local derivatives, gxx, gxy ,
gyy—again derived by convolution masks—and these are applied within more
complex formulae to estimate the local corner signal [5].

Lastly, we note that mean and Gaussian image smoothing filters also apply
convolution operators, typified by the following 3× 3 convolution masks:
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Overall, considering that, even in a 3×3 window, the general convolution op-
erator has nine adjustable parameters, its high range of utility and power is unde-
niable. Nevertheless, its power is limited. First, two convolutions applied one after
another remain a convolution, not a more powerful operator (though an n×n and
anm×m convolutions applied in sequence will be equivalent to a larger p× p con-
volution, where p = n+m−1), that is, it is still linear. Second, several of the linear
processes mentioned above are normally followed by a highly nonlinear operation
such as thresholding to actually detect the features. Third, the image smoothing
operators are well known to have the disadvantage of smoothing the signal as well
as any noise, so it is generally impossible to use them for this purpose. (However,
Gaussian smoothing can be used for the special purpose of progressively cutting
down image detail to create a hierarchical image structure or data pyramid, lead-
ing on to scale-space representations of images—though we will not pursue this
possibility further here.)

These considerations show that in general we cannot do without nonlinear
processing of the image. In fact, a more important question is not whether linear
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processing is powerful enough to be used on its own but whether nonlinear pro-
cessing is powerful enough to be applied in this way. However, even this question
is misguided. Why constrain image processing in any such way? In fact, we should
use a method that is appropriate for the particular type of data and the particu-
lar task to be carried out. Again, in image smoothing, it is well known that mean
filtering is optimal for images that are corrupted by Gaussian noise, while median
filtering is optimal for suppressing impulse noise. (Mathematically, median filter-
ing is optimal for double exponential noise, which has wide wings matching well
the incidence of outliers [5, 7].)

11.4. Color filtering

The remarks in the previous section were restricted to gray-scale processing. How-
ever, it is now necessary to enquire how color processing differs from gray-scale
processing. We start by taking the well-known example of the median filter. In
fact, this provides an immediate problem, as the median is only applicable to a
single channel (such as gray-scale) whose entities are placed in numerical order
and the median element in the ordered set is selected as the output value. In the
multichannel case, there is no intrinsic ordering, and the median is hence unde-
fined. Much work has been carried out to allow a suitable ordering to be applied in
the multichannel (vectorial signal) case, but the problem has no universal solution,
and again, any solutions that are found will tend to be of limited applicability: as
remarked in the previous section (in the case of linear and nonlinear processing),
the particular choice must depend on the data and the task.

In spite of these remarks, we can deal with the median filter problem by an al-
ternative approach that does not require an ordering procedure [7]. We merely ap-
ply an alternative formulation—that the generalized median is the result of form-
ing the following minimum sum of distances in color space:2

M = min
i

∑

j

∣
∣di j

∣
∣ (i �= j), (11.4)
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di j =
⎡
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)2

⎤

⎦

1/2

, (11.5)

Ii, I j being RGB vectors, and Ii,k, I j,k (k = 1, . . . , 3) being the color components.
Thus the generalized median vector is the one that has the smallest total distance
to all the other vectors. Clearly, an outlier would have a rather large total distance

2A more precise statement is that Ii = arg(mini
∑

j |di j |), the value of i for which the minimum
occurs being used to point back to the appropriate input vector. (It may be helpful to note that the
mathematical expression arg mini is intended to be read “the sample vector giving the minimum value
of . . . .”)
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to all the other vectors, and this total distance would become smaller as the chosen
vector became more central: so this is an intuitively correct solution. More partic-
ularly, in one dimension, the formulation gives an identical result to that for the
standard median: there will be equal numbers of points on either side of the cho-
sen value. The only problem in the 1D case arises when there is an even number of
points. This particular formulation asserts that the proper answer is the midpoint
between the two central points, whereas that was only a convenient convention in
the normal median case (it was inconvenient to say that there were two medians or
alternatively none, so workers chose to say that the true median was the midpoint:
but the new formulation forces us to make the median the midpoint).

Finally, the generalized median is one of the original vectors, and this corre-
sponds to the median being one of the original data points in the 1D case. From
now on, we follow normal practice in calling the generalized median, defined in
this way, the vector median (though we will sometimes revert to calling it the me-
dian when it is understood that we are dealing with a particular 3D manifold).

Before proceeding further, it is worth noting that the generalized mean in
color space is readily defined using the same color space metric (e.g., the Euclidean
distance) as for the median. There is no necessity for the result to be one of the
initial data points, and indeed very little likelihood that the mean would be the
same as one of the initial points, either in 1D or in the multichannel case.

So far, there has been no indication whether or not it is desirable for the out-
put signal to be identical, in any dimensionality, to one of the input signals. It
seemed that in the median case, it had to be identical, whereas in the mean case
it was most unlikely to be identical. Yet in the latter case, restricting the result to
one of the input values would significantly limit the accuracy of the final result.
Indeed, Davies [8] has shown that this situation also applies for the single channel
median filter. We will consider the situation in more detail below.

11.5. Color bleeding

As has already been remarked, one of the advantages of median filtering is its ca-
pability for eliminating outliers. However, when an outlier occurs near an edge,
the effect can be to pull the edge closer to the outlier as well as eliminating the
outlier. This is seen from the 1D examples shown in Figure 11.1, for all of which a
3-element median has been applied to the data.

This behavior could be serious in the case of multichannel data. For example,
in a 3-color RGB image, if we applied the median separately to the three channels
and an outlier occurred in just one of them, the result would be that the outlier
would be eliminated, but the edge would be shifted in one channel, and this would
result in an erroneous change of color at that location [7] (Figure 11.2). The effect
might sometimes be more serious than the improvement resulting from elimina-
tion of the outlier—though “seriousness” may be at least partly a human subjective
response governed by the prominence of any new color that is introduced.

There is also the opportunity for erroneous colors to arise in other situations.
While edges tend to demarcate pairs of regions in an image, there will be places
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(a) (b)

(c) (d)

Figure 11.1. Application of a 1D median filter. Here a 3-element median filter is applied to four 1D
signals: (a) an isolated noise point, (b) a single edge, (c) a noise point far from an edge, (d) a noise
point near an edge. In (d), notice how the edge has been shifted left by one pixel.

Figure 11.2. Effect of scalar component-wise filtering. This figure shows the effect of mode filtering
on a brightly colored image with the filter applied to each color channel independently. Color bleeding
is most noticeable as isolated pink pixels and a number of green pixels around the yellow sweets. (Re-
produced from D. Charles and E. R. Davies, “Mode filters and their effectiveness for processing color
images,” Imaging Science Journal © 2004 RPS.)

where three regions come together, and at these points there will often be three to-
tally different colors, each of which can be regarded as an outlier to the other two.3

Depending on the particular geometry existing at the joining regions, and the lo-
cal variabilities of the channel intensities, substantial “bleeding” of one region into
another can occur. The problem is exacerbated by the numbers of different colors
that can result when different intensities of each color channel are brought in.

3It is important to remember that outliers may arise not only as a result of noise but also in the
form of background clutter.
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(a) (b)

Figure 11.3. Geometry of three color data points in 2D. In (a), the minimum total distance point
(MTDP) lies near the centroid of the triangle. In (b), the MTDP is the uppermost data point.

The value of the vector median approach now becomes particularly apparent:
the output pixel vector is severely restricted by the fact that it must be the same
as that of a particular pixel in the window. Thus no new color combination is
generated, and the output pixel vector will in the case of a 3×3 window be identical
to that of one of the nine pixels [7]. In larger windows, the restriction will not be
so marked. However, in a p× p window, the maximum number of available colors
will be p2, compared with (p2)3 = p6 when the input to any color channel may be
combined with the input of any other two color channels in 3D color space.

It should next be questioned whether any disadvantage can result from ap-
plication of the vector median procedure. Here we consider just one problem. We
illustrate the problem by reference to a 2D color space containing three data points
(the case of two data points is essentially a 1D problem). Let us find the minimum
total distance point (MTDP) given by (11.4) for several sets of 2D vector data.
Figure 11.3 suggests that the MTDP will, in most cases, occur in the space between
the data points. Exceptions arise when the points are arranged in a rather squat
triangle. In fact, for nonsquat triangles, the MTDP will lie near the centroid of
the space, where the lines joining the MTDP to the three data points are at angles
of 120◦ to each other. (An intuitive proof of this result involves first considering
the points at the corners of an equilateral triangle, and then noticing that mov-
ing them, arbitrary distances from the MTDP in the same directions would not
produce any movement of the MTDP.)

For four data points in 2D, there are again two possibilities [9]: one is that the
MTDP is at the space near the centroid of the points; the other is that the MTDP
is situated at one of the points. In the first of these cases, the actual MTDP is on
the crossing of the diagonals of the quadrilateral formed from the four data points
(Figure 11.4): to prove this, we merely note that moving in any direction from the
crossing point changes one or other diagonal, or both, to two sides of a triangle,
which must have greater total length. The second case corresponds to a concave
quadrilateral (i.e., one point lies inside the triangle formed from the other three
points): to prove that the central point C has smaller total distance to the other
points, first move to a point T a short distance in the direction of the point P
(Figure 11.5); this will not change the sum of the distances to C and to P, but will
increase the distances to the other two points Q and R; the MTDP is at C.
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(a) (b)

Figure 11.4. Geometry of four color data points in 2D. Case where (a) none and (b) one of the points
lie within the triangle formed from the other three points. In (a), the MTDP is at the crossing of the
diagonals, whereas in (b), it is at the central data point.

Q

R

T
C

P

Figure 11.5. Geometry for proving the position of the MTDP for four color data points in 2D. In this
case, the MTDP for data points P,Q, R, C cannot be at T , because this would extend the distances from
Q and R, but not the sum of the distances from P and C.

Coupled with the 1D case, these two examples show that there is something
like 50% probability that the MTDP will lie in free space, and not at one of the
initial data points—and this situation does not seem likely to be different in a
3D color space, or in higher dimensional spaces [9]. Thus the basic mathematical
equivalent of the median ordering formulation, (11.4), would appear to state that
for minimum error, we must always use the MTDP: it does not insist that the
median be taken to be the data point that is closest to the MTDP. Contrariwise,
restricting the output multichannel median to one of the input vector samples
seems likely to introduce substantial error.

Understanding the situation is not trivial. One view is that if a purely numeric
solution is needed, the MTDP must give the correct solution. On the other hand, if
a true color interpretation or color recognition process is to ensue, then the vector
median solution must be used, as misinterpretation of the color would constitute
a major error. Another factor is that if the noise is Gaussian, the MTDP will be
better (in the sense of being numerically more accurate), whereas if the noise is
impulse noise, the vector median will be better (in the sense of not being open to
misinterpretation). In any case, it should always be borne in mind that using the
vector median procedure may not represent the most accurate solution, and that
the decision about whether to use it must be task dependent.
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Figure 11.6. Action of the mode filter. Here the mode filter is applied to a 1D edge intensity profile.
The filter outputs the majority value of the intensities within each window and thus pushes this inten-
sity towards the edge boundary from each side. The result is a profile more like that indicated by the
gray line.

11.6. The mode filter

As indicated above, median filters are widely used for suppressing noise in images,
and are particularly important in view of the fact that they do not at the same time
blur the image signals. In fact, there are many other types of image filter. One other
type of filter based on a commonly known statistic is the mode filter. This takes
the main mode of the local intensity distribution (in the case of gray-scale images)
and uses it to provide the output value for each pixel. There is much sense in using
this particular statistic, as its value ought to represent the most probable intensity
in the local intensity distribution. However, the result is not exactly what might
a priori have been expected—for the mode filter enhances the image rather than
merely eliminating noise (though it does achieve a considerable degree of noise
reduction, as the mode is generally well away from the extremes of the distribution
and thus it is good at eliminating outliers). The enhancement property is achieved
since the filter ignores minor modes and therefore gives a majority view in the
vicinity of edge points: just inside an edge it gives the inside view, ignoring the
outside view, and just outside an edge it gives the outside view, ignoring the inside
view. The result is that it pushes the local majority intensity inwards from both
sides of the edge—thereby giving a much more crisp boundary to the edge [10]
(Figure 11.6).

Unfortunately, there are distinct problems in estimating the mode, not merely
because of noise, but also because the local intensity distribution is sparse; as a
result, while the highest point is technically the mode, it is not necessarily the
underlying mode, which is the one that needs to be used as the filter output. To
overcome this problem, Algorithm 11.1 was devised (see also Figure 11.7) [10].

The rationale of this algorithm is the following: if we knew the position of the
underlying mode U , and located the nearer end E of the distribution, and then
moved from E to U and an equal distance further on, this would be a reasonable
position to truncate the distribution. Next, noting that the median of the distri-
bution is normally on the far side of the underlying mode relative to E, using the
median as an estimator of U is safe in the sense that it will never truncate more
than the ideal proportion of distribution (Figure 11.7). While iterating the proce-
dure can in principle give a better estimate of U , it has been found that this is not
necessary in practice. Indeed, the mode filter has been found to produce very good
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(1) Find the median M of the distribution.
(2) Find the end E of the distribution that is nearer to M.
(3) Measure the distance d from E to M.
(4) Move a further distance d from M, to point T .
(5) Truncate the distribution from T to the other end F of the distribution.
(6) Find the median U of the remaining portion of the distribution.
(7) Use the median value U as an estimator of the underlying mode.

Algorithm 11.1. Mode filter algorithm for gray-scale images.

E FTM

d d

f (I)

I0

Mode
Median

Mean

Figure 11.7. Method of truncating the local distribution. The diagram shows the ordering of the three
means for a bimodal distribution. It also shows how the intensity histogram is truncated at a specified
distance from the median. The rationale for this procedure is indicated by the idealized situation that
would exist if the position of the mode was known initially. (Reproduced from D. Charles and E. R.
Davies, “Mode filters and their effectiveness for processing color images,” Imaging Science Journal ©
2004 RPS.)

results with a minimum of algorithmic complexity and to be reasonably resistant
to the effects of sparsity of the local intensity distribution [10]. One final aspect
that is of interest here: in stage 7 of the algorithm, the median can be replaced
by the mean with little effect on performance, and without introducing blurring.
This is because blurring is normally introduced by a mean filter as a result of mix-
ing together the intensities from parts of the window inside and outside the edge,
but here this is prevented as the smaller of these parts has been eliminated by trun-
cating the distribution.

11.6.1. The situation in color images

When applying the mode filter to color images, all the basic components of the
algorithm can be replicated without problem. Specifically, the median can be re-
placed by the vector median, and the truncation can be carried out without diffi-
culty. Nevertheless, determining exactly where to perform the truncation involves
slight difficulties and the gray-scale algorithm has to be adapted carefully.

The first requirement is to find the vector median of the sample points in the
3D color space. Then we need to consider where the closest part on the bound-
ary of the distribution might be. However, this is difficult to do robustly, as it is
necessary to distinguish the closest points on the boundary from those internal to
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F

r

d

d

Figure 11.8. Method of truncating the local distribution in 2D, extendible to 3D color spaces. The
circles are samples, the shaded circle is the vector median M of the input distribution, and the black
circle U is the vector median of the truncated distribution. The dot D is not a sample: it is the location
in color space found by moving from sample F to sampleM and then the same vector distance d further
on. (Reproduced from D. Charles and E. R. Davies, “Properties of the mode filter when applied to color
images,” IEE Conference Publication, © 2003 IEE.)

(1) Find the vector median M of the distribution.
(2) Find the end F of the distribution that is furthest from M.
(3) Find the position D that is (relative to M) diametrically opposite the end F.
(4) Find the point E that is closest to D.
(5) Construct a sphere S centered at M and passing through E.
(6) Truncate the parts of the distribution lying outside S.
(7) Find the vector median U of the remaining portion of the distribution.
(8) Use the vector median U as an estimator of the underlying mode.

Algorithm 11.2. Mode filter algorithm for color images.

the distribution. In fact, it is easiest to start by determining the furthest part of the
boundary, that is, the position and direction of the furthest outlier F. Once these
have been located, we move to the median and then an equal vector distance d fur-
ther on, to D; next, we find the sample that is closest to D [11, 12] (Figure 11.8).
The resulting algorithm is shown in Algorithm 11.2: it is essentially the same as in
the gray-scale case. However, it is important to note that stage 8 now has to employ
the vector median rather than the mean or the MTDP, as the final position selected
must be one of the original data points, so that color bleeding will be suppressed.

An interesting aspect of mode filters in color images is that in addition to their
enhancement properties (Figure 11.9), they turn out to have remarkable capabil-
ities for eliminating large amounts of impulse noise [12]. In fact, up to 70% of
randomly corrupted pixels containing random colors (each color channel having
70% of the intensities uniformly distributed over the entire range 0 to 255) were
largely eliminated with very little distortion of the final images (Figure 11.10). This
capability for elimination of high levels of noise was not matched by the median
filter in spite of the fact that the median filter ought to be more resistant to out-
liers, as theory and earlier work on gray-scale images had suggested. It is likely that
this degree of improvement resulted from using larger windows than used to be
customary with these relatively computation intensive filters, thereby allowing the
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(a) (b)

(c)

Figure 11.9. Effect of the mode filter on a color image. (a) Original image. (b) Effect of vector median
filtering. (c) Effect of vector mode filtering. Both of the filters are applied in a 5 × 5 window. (Re-
produced from D. Charles and E. R. Davies, “Mode filters and their effectiveness for processing color
images,” Imaging Science Journal © 2004 RPS.)

mode filter to lock on to and make full use of the remaining 30% of unaffected pix-
els. Another factor is the considerable discriminating power available when color
is taken into account.

11.7. Modern “switched” noise suppression filters

In the past few years, several filters that are substantially better than the median
at eliminating noise have been devised (see, e.g., [13–16]), and some comment on
the mode filter’s noise performance vis-à-vis these new filters is appropriate.

Typically, these new filters obtain their improvements by analyzing the im-
age contents more carefully than the median does, and acting accordingly. Rather
than merely sorting the pixel intensity values and taking no account of where in
the window each intensity originated, the new filters adopt cleverer strategies. In
particular, they have several means of calculating the output intensity, and select
amongst (or “switch” between) these values according to deductions made about
the situation at and around each pixel. For instance, they retain the option of us-
ing the output of a standard median filter or leaving the pixel intensity unchanged
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(a) (b)

(c)

Figure 11.10. Filtering in the presence of large amounts of impulse noise. (a) Lena image with 70%
random impulse noise. (b) Effect of vector median filtering. (c) Effect of vector mode filtering. Both of
the filters are applied in a 9× 9 window. (Reproduced from D. Charles and E. R. Davies, “Mode filters
and their effectiveness for processing color images,” Imaging Science Journal © 2004 RPS.)

if it is judged not to be modified by impulse noise. In the case of the Eng and
Ma [13] noise adaptive soft-switching median (NASM) and “ideal” filters,4 selec-
tion of output values is also made on the basis of any local edges that are detected
in the image and whether more than one noise impulse is found at or near a given
pixel. These particular filters also consider the optimum size of the filter window,
larger windows being selected when the noise density is greater.

Tests made by Charles and Davies [12] confirmed that the two filters proposed
by Eng and Ma were very effective at suppressing high levels of impulse noise.
These tests employed gray-scale images, as the Eng and Ma filters only provided
this capability. In comparison with the median and mode filters, the peak signal-
to-noise ratios achieved for an impulse noise density of 70% were

(i) median 17 dB,
(ii) mode 24 dB,

(iii) NASM 28 dB,
(iv) ideal 32 dB.

4The “ideal” filter is a simulated idealized filter in which the positions of the noise impulses are
taken to be known, and to this extent it does not provide a realistic comparison.
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Clearly, then, the mode filter is not as effective as the NASM filter at suppress-
ing high densities of impulse noise, though in this respect it is much better than
the median filter. What is interesting is how well the mode filter performs despite
its simplicity (the C++ code is only about 30 lines long) and lack of specific mech-
anisms for adapting to the local conditions.

As remarked above, the two switched types of filter outlined above were ap-
plied only to gray-scale images, and it is of interest here whether they could be
applied successfully to color images. The critical aspects of these filters include the
use of a median filter and switching its output on and off depending on local con-
ditions in the image. None of these aspects precludes their use with color images,
the only proviso being that a vector median filter needs to be used in place of a
median filter. Further developments in this area are therefore to be expected in the
near future.

11.8. Filters with adjustable parameters

Many image filters such as the median filter have no adjustable parameters other
than the crude one of deciding the size of window in which they are to be applied.
Hence there is virtually no scope for optimization to the conditions occurring in
different images—such as varying levels of noise. Thus there has been a trend to-
wards the inclusion of adjustable parameters within filter algorithms. As we will
see below, these parameters often take the form of weights.

The concept of weighted median filters is now well established in the litera-
ture, and a number of workers have given much attention to the development of
weighted filters for gray and color image noise removal and enhancement (Sun
and Neuvo [17]; Fotopoulos et al. [18]; Sangwine and Horne [19]; Marshall [20]).
In one definition (Sun and Neuvo [17]), the weighting is achieved by duplication
of samples inside the filter, such that with input sample set x = [x1, x2, . . . , xn] and
corresponding weights w = [w1,w2, . . . ,wn], the output y of the filter is

y = median
[
w1♦x1,w2♦x2, . . . ,wn♦xn

]
, (11.6)

where ♦ denotes weighting by using each xi data point wi times. In this case, the
wi are necessarily integral. In contrast, the minimum weighted distance function
defined by Fotopoulos et al. [18] (leading to the result xi) is

M = min
i
wi

∑

j

∣∣di j
∣∣ (i �= j), (11.7)

where the weights wi need not be integral.
In an alternative approach, Charles and Davies [21] introduced a filter that in-

corporates a window distance weighting function. In particular, (11.4) is modified
by introducing a weighting function f (ri) dependent on the Euclidean distance ri
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between pixel i and the center of the window:

M = min
i

f
(
ri
)∑

j

∣
∣di j

∣
∣ (i �= j), (11.8)

where

ri =
[(
xi − x0

)2
+
(
yi − y0

)2
]1/2

. (11.9)

Here x0 and y0 represent the location of the center pixel and f (r) is the weighting
function chosen according to the application.

The weighting functions f (r) are necessarily increasing functions which are
largest at large distances. This is useful for continuity reasons, so that the limita-
tions of the window support region do not have a too great effect on the properties
of the operation: indeed, if the function value went to infinity at the boundary of
the support region, increasing the size of the window would give no observable ef-
fect. (It is of course necessary to remember that the most relevant function values
are those for small r, as (11.8) takes the minimum value as the output.)

The value of this approach is that one or two crucial carefully selected param-
eters can be employed instead of a plethora of arbitrary weights. In fact, in [21],
only a single parameter α reflecting the radial extent of the function was used:

f (r) = 1 +
r

α
. (11.10)

Clearly, the weighting function and the amount of weighting applied will vary
with the type of application and desired results, but even in its basic form, this type
of weighted median filter moves continuously from the detail-preserving proper-
ties of a small operator to the greater noise-averaging properties of a large operator
by adjustment of the single parameter α.

Figure 11.11 shows the shape of the normalized mean-square error (NMSE)
optimization curve when applying the distance-weighted filter for a range of pa-
rameter values. (In such cases, tests are made by adding known amounts of noise
and then measuring how much of the noise is eliminated by the algorithm.) Note
that the horizontal asymptote shows the situation when a standard vector me-
dian filter is employed—that is, this is a limiting, suboptimal case of the distance-
weighted filter.

11.9. Distortions produced by median and other filters

The previous sections of this chapter have discussed image processing and filtering,
and have gone to some trouble to consider how color modifies the algorithms and
to assess their effectiveness. At this point it is useful to consider the extent to which
they may produce distortions in the images as a by-product of their desired action,
whether this be noise elimination or some other effect such as enhancement.
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NMSE

0 αopt α

Figure 11.11. Shape of the normalized mean-square error (NMSE) optimization curve when applying
the distance weighted filter for a range of parameter values. The horizontal gray line shows the NMSE
for the standard vector median filtered image.
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Figure 11.12. Geometry for calculation of contour shifts using the median filter. The area A is shown
shaded. The origin on the median contour (which bisects the area of the circular window C) is not at
the center of C. (Reproduced from E. R. Davies, “Image distortions produced by mean, median, and
mode filters,” IEE Proceedings-Vision Image and Signal Processing, © 1999 IEE.)

In fact, median and other filters produce distinct edge shifts, but only for
curved edges. For straight edges, symmetry dictates that there will be no shifts
(any straight edge will be shifted laterally by the same amount in both directions).
To discuss the situation for curved edges, consider first the case of binary images—
or, equivalently, gray-scale images containing step edges. Here the median contour
in a window will be the one with equal areas (equal numbers of pixels) on either
side of the contour. The same applies when mean or mode images are being pro-
duced. Interestingly, the same result applies again in the case of the median filter
when the edge profiles present linear rather than step variations. We will return
later to certain other possibilities.

Fortunately, it is quite simple to see what happens when a circular boundary
divides the region in a circular window into equal areas [22]. Examining Figure
11.12, we can see that the circular boundary cannot pass through the center of the
window, so when its intensity is placed at the output of the filter, it will appear at
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C

D a b

Figure 11.13. Geometry for the calculation of contour shifts using the mode filter. (Reproduced from
E. R. Davies, “Image distortions produced by mean, median, and mode filters,” IEE Proceedings-Vision
Image and Signal Processing, © 1999 IEE.)

the center position in the output image—that is, there will be a distinct shift in-
wards. We can find an approximate value for the shift by taking a circular contour,
centered at (b, 0) and passing through the origin (Figure 11.12)

(x − b)2 + y2 = b2. (11.11)

After simplifying and approximating to large b, we find

x ≈ y2

2b
. (11.12)

The part of the area in the positive quadrant lying to the left of the contour is

A ≈
∫ a

0
x dy = 1

2b

∫ a

0
y2dy = 1

2b

[
y3

3

]a

0
= 1

6b
a3 = 1

6
κa3, (11.13)

where a is the radius of the circular window; the result is an approximation which
is only valid if the curvature κ(= 1/b) is small and applies because A is actually
bounded by the curved boundary of the window rather than a horizontal line dis-
tant a from the x-axis. For a median contour, A must be equal to aD. Hence

D = 1
6
κa2. (11.14)

This proves the result for a median filter for all shapes of edge profile, and for
the mean and mode filters when there is a step edge profile. Moving on to the mean
filter when there is a linear edge profile, we find that we have a similar calculation
to perform with similar approximations, except that in this case we have to find the
mean intensity in the window using a polar coordinate representation, and then
deduce for what contour the mean intensity would arise. This leads to the formula

D = 1
8
κa2. (11.15)

For details of the calculation, the reader is referred to [23, 24].
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Table 11.1. Summary of shifts predicted on continuum model. (Reproduced from E. R. Davies, “Im-
age distortions produced by mean, median, and mode filters,” IEE Proceedings-Vision Image and Signal
Processing, © 1999 IEE.)

Edge type Mean Median Mode

Step
1
6
κa2 1

6
κa2 1

6
κa2

Intermediate ∼ 1
7
κa2 1

6
κa2 1

2
κa2

Linear
1
8
κa2 1

6
κa2 1

2
κa2

In the case of the mode filter when there is a step edge profile, the situation
turns out to be far simpler and no integration is required [24, 25]. This is because
the contour with the mode intensity must be the longest one, and is therefore
the one which spans the longest diameter of the window (Figure 11.13). Thus we
merely have to ask how far this contour is from the center of the window. The
answer is given by setting x = D and y = a in (11.11) and (11.12), leading to the
formula

D = 1
2
κa2. (11.16)

All the above results are summarized in Table 11.1. Table 11.1 also includes a
set of estimates of shifts for intermediate intensity patterns—namely those whose
profiles lie between a linear edge and a step edge. Note, however, that a full expla-
nation of the variations in the shifts for the mode filter is quite complex [24].

11.9.1. Using a discrete model to explain median shifts

The explanation of edge shifts given above was completely analog in nature, as it
effectively dealt with spatial densities of pixels in various parts of the filter window.
While it leads to good estimates of the shifts for large windows, it is inaccurate
for small windows and thus a new discrete model had to be developed to make
accurate predictions of the shifts [22, 26].

To produce a discrete model, we need to recognize explicitly the positions of
the pixels within an n×n window. We approximate by assuming that the intensity
of any pixel is the mean intensity over the whole pixel and is represented by a
sample positioned at the center of the pixel. We start by examining the case of a
3× 3 window, and proceed by taking the underlying analog intensity variation to
have contours of curvature κ.

First, zero shift occurs for κ = 0. Next, if κ is even minutely greater than zero,
the center pixel will not necessarily be the median pixel. Consider the case when
the circular median intensity contour passes close to the center of the window at a
small angle θ to the positive x-axis (Figures 11.14 and 11.15(a)). In that case, the
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θ

Figure 11.14. Geometry for the calculation of median shifts on the discrete model. (Reproduced from
E. R. Davies, “Image distortions produced by mean, median, and mode filters,” IEE Proceedings-Vision
Image and Signal Processing, © 1999 IEE.)

filter will produce a definite shift, whose value is

Dθ ≈ 1
2
κa2

0 − a0θ = 1
2
κ− θ, (11.17)

where a0 is the interpixel separation, which is taken as unity in this chapter. (The
factor 1/2 in the first term arises following (11.12) when y is replaced by a0.) If θ
is close to 45◦, the shift will have the value

Dφ ≈ 1
2
κ
(√

2a0
)2 − (√2a0

)
φ = κ−√2φ, (11.18)

where

φ = π

4
− θ (11.19)

and the relevant pixel separation is
√

2a0 rather than a0 (see Figure 11.15(c)).
As indicated above, (11.17) and (11.18) are approximate. However, the above

derivations and solutions provide a useful insight into the situation. In particular,
(11.17) and (11.18) show that at the ends of the range 0 ≤ θ ≤ π/4, Dθ varies in
proportion to Δθ. The next problem is understanding what happens when Dθ falls
to zero at intermediate values of θ. In fact,Dθ remains at zero in this range, the rea-
son being that the median contour reverts to passing through the central pixel in
the window (Figure 11.15(b)). The resulting approximately piecewise-linear vari-
ation in Dθ is far from what would be expected on the continuum model. To make
a realistic comparison, we must average over all θ. In that case we obtain the result

D ≈
[∫ κ/2

0 (κ/2− θ)dθ +
∫ κ/
√

2
0

(
κ−√2φ

)
dφ
]

(π/4)

= 4
π

{[
− 1

2

(
κ

2
− θ

)2]κ/2

0
+
[
− 1

2
√

2

(
κ−√2φ

)2
]κ/
√

2

0

}

= 1 + 2
√

2
2π

κ2 ≈ 0.61κ2.

(11.20)
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(a) (b)

(c)

Figure 11.15. Geometry for the calculation of median shifts at low κ. These three diagrams show the
positions of the median pixels and the ranges of orientations of circular intensity contours for which
they apply: (a) for low θ, (b) for intermediate θ, and (c) for high θ. (Reproduced from E. R. Davies,
“Image distortions produced by mean, median, and mode filters,” IEE Proceedings-Vision Image and
Signal Processing, © 1999 IEE.)

This shows that D follows a square law rather than a linear law at low values
of κ, unlike the situation for the continuum model. However, for increasing values
of κ, the variation reverts ever more closely to a linear model: this occurs when κ
reaches such high values that the range of values of θ for which Dθ = 0 falls to
zero.

11.9.2. The situation for color images

Interestingly, the continuum and discrete shift models given above apply without
change for color images. It is clear that they apply for the individual color channels.
However, why should they apply when the colors are considered together? The
reason is that the models are rather special in considering single idealized circular
edges, with no complicating factors arising from other edge fragments (such as
might arise from shadows or image clutter) or from noise. The models were very
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carefully set up to consider what happened to the underlying signal. Other work
had already been carried out on the effects of noise and how noise can introduce
edge shifts (as has already been considered in Section 11.5) [27, 28]. Thus the idea
of the two types of the model was to provide a framework on which noise aspects
could be considered properly.

As a check on the two models and the theories of edge shifts they gave rise
to, careful experimental measurements were made by Charles and Davies [12] for
median filters: no detectable difference between the color and gray-scale shifts was
found. Exactly the same situation occurred for color and gray-scale mode filters
(though at certain curvature values the mode shifts suddenly rose sharply relative
to the median shifts—a result for which a reasonable explanation was found [12]).

Overall, intrinsic shifts have been found to occur for binary, gray-scale, and
color images when median, mean, and mode filters are applied. It has been found
possible to explain these shifts using continuum models and, to a limited extent,
(but where this is possible, more accurately) using discrete models.5 As the shifts
are intrinsic rather than being due to noise, they are unavoidable, and in practical
applications, they can be dealt with in the following ways:

(1) by avoiding the use of filters wherever possible;
(2) by applying special types of filter such as the hybrid median filter [29]

or the neural network (trained) filter [30];
(3) by correcting for the shifts using the models outlined in this section.

11.10. Review of other color work

In the preceding sections, color arose in a natural way as the simultaneous rep-
resentation and use of three color channels—normally RGB—and no interaction
between them was envisaged. However, it was noted that the results of processing
using obvious types of filter could appear unnatural to the human eye. It is also
the case that image analysis needs to make best use of the image colors if objects
such as faces and trees are to be segmented or recognized easily. Indeed, one does
not have to look far in the literature of color vision (human or machine) before
questions emerge about the most appropriate color spaces.

If color filtering was solely an abstract process, it would make little difference
which of many orthogonal rotations were made in a color space from the original
RGB axes. However, human perceptual problems, and the complex task of ma-
chine recognition, place a substantial gloss on this question. But the situation is far
more complex than this. Spaces such as HSI (hue, saturation, intensity) reexpress
the relevant variables nonlinearly, in such a way that hue is an angle and saturation
is the argument of the hue, to which varying degrees of whiteness are added. Thus
hue is periodic; furthermore, its value is meaningless when S = 0, a situation that

5Note that the mathematical analysis of discrete models is not trivial, and so far has only been
achieved for median filters. Hence continuum models have by no means been superseded: this is why
both types of model have been examined in the present chapter.
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arises both when I = 0 and when I = 255;6 this reflects the “double-cone” struc-
ture of color space (the vertices of the cones lie at (0, 0, 0) and (255, 255, 255)).

The motivation for the HSI representation is supposedly that of theoretical
relevance, but the factors just mentioned make it difficult to work with. As a result,
many workers have searched for more appropriate representations within their
own spheres of relevance. Normalized RGB (or rgb) is a useful representation, and
is also useful as a paradigm for comparison:

r = R

(R +G + B)
,

g = G

(R +G + B)
,

b = B

(R +G + B)
.

(11.21)

It will be impossible here to do justice to the plethora of color spaces that
have been developed. Instead it will be useful to outline a few choices workers have
recently made in different areas of application. For further examples and insights
into color spaces, see Chapter 12.

11.10.1. Recognizing human skin tones

When finding human skin regions, Chen and Grecos [31] found that skin-tone
color pixels are most compact (and therefore most easily segmented) in normal-
ized RGB space, and recalled previous work showing that normalized RG color
space performs almost as well as RGB space. Working with this space, they cut
down computation and also avoided a color affine transformation. Hsu et al. [32]
tackled the same problem, stating that normalized RG space is not the best choice
for face detection, and adopting YCbCr space since it is “perceptually uniform”
and also gives compact skin clusters in color space.

11.10.2. Extraction of multicolored objects

Bucha et al. [33], working on extraction of multicolored cartographic objects,
stated that it is difficult to design color image processing algorithms in RGB space
because of the high correlation between channels, and asserted that HSI allows
more robust measures of the differences between two colors to be made; they then
reiterated the difficulties with HSI mentioned earlier. They therefore combined
RGB and HSI to obtain more reliable distance measures, following earlier work
by Gevers and Smeulders [34]. The latter presented several new color models and
gave theoretical justification for choice of color spaces depending on whether the

6When S ≈ 0, a similar situation arises, especially if noise is present.
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illumination is controlled, whether highlights are present, and whether the objects
to be recognized are multicolored.

11.10.3. Mathematical morphology in color spaces

Hanbury and Serra [35] approach the problem of mathematical morphology in
color spaces. In fact, color morphology suffers from exactly the same problems as
median (and other) filtering, in that an ordering of the pixels within the window
is needed, and in color images it is a priori undefined. Thus an ordering has to
be imposed. Lexicographic ordering (applying a dictionary type of ordering, such
as ordering by R, then by G and then by B—effectively ordering by the value of
2562R + 256G + B) is an obvious one, but is arbitrary: in fact, any such ordering
may be appropriate in some situations but poor in others. The chapter aimed to
find a theoretically more suitable ordering: specifically, it examined how the HLS
space could best be adapted for the purpose (a priori, hue should be taken first,
then saturation and finally luminance). They found that because HLS space has a
double-cone shape, it is far better to weight hue by saturation, and only then to
prioritize using hue, saturation, and luminance (note that hue had to be applied
on its own to avoid introducing false colors). Another aspect of this work was the
need to choose an origin of hue, as this permitted ordering on the hue unit circle—
hue being a periodic function. However, this imparted a degree of arbitrariness to
the methodology, which would make it less general but at the same time more
adaptable to different recognition tasks. Discussions of some alternative schemes
are given by Hanbury and Serra [36].

J. Li and Y. Li [37] took a rather different approach to ordering in color space
by concentrating on principal component analysis (PCA) to provide a suitable
ordering procedure. As a result, the method is able to preserve colors in the same
way as the vector median filter.

11.10.4. Effect of varying illumination and shadows

All the cases listed so far provide fixed color spaces with perhaps one or two param-
eters that are adjusted to optimize for any given application. The approach made
by Finlayson et al. [38, 39] looks instead at achieving color constancy—that is, re-
sistance to natural variations in illumination on objects. In this work, two images
of a scene are taken, in one of which a color filter is placed in front of the camera.
This gives additional information which allows the color to be normalized. Specif-
ically, the additional information is of such a type that it can be used to cancel out
misleading information that arises as the background illumination changes. The
work is founded on rigorous theory and is practically impressive; for details, the
reader is referred to [38, 39]. In related work, Finlayson et al. have found how to
eliminate shadows from color images [40]: only a single image is needed once the
camera has been calibrated. Both of these sets of work can be called “filtering,”
though they are some way away from conventional filtering as described in the
literature as, to some degree, they embody global understanding of image content.
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11.11. Summary

This chapter has presented a short survey of image processing, color filtering,
and their inter-relationship. There is clearly much more to be said on this topic,
given its marked overlap with image analysis and recognition. One point that
has emerged strongly is that image processing does not happen in a vacuum: it
is needed as an aid both for human interaction and for computer interpreta-
tion. In either, case divergences and preferences exist. What humans regard as
divisive color bleeding may be largely irrelevant to a computer recognition al-
gorithm, though in the latter case it could introduce inaccuracies of measure-
ment.

At first, color bleeding appeared to be an accidental occurrence in image fil-
tering. However, its incidence is deeper, and it applies equally to mathematical
morphology, which is a widely used, rather generalized approach to the process-
ing and analysis of images. Intrinsic to bleeding is the need to order image data
points, and in a multichannel context, this is fraught with difficulty. Some ap-
proaches to multichannel ordering, such as lexicographic ordering, are obviously
arbitrary, and there is no reason why they would work well in practice (except
with restricted data sets and algorithm settings). More systematic approaches aim
to identify relevant color representations, but these will often be applicable only
to restricted types of data. Methods based on PCA have more right to be called
general, but (as in many other applications of PCA) they may still be suboptimal
and at this stage they do not appear to be fully proven experimentally in the color
context.

Color is a complex topic: while it is perceptually simple for humans, it is dif-
ficult to program and equally difficult to be sure of optimality. In fact, the com-
puter vision community has not had anything like as much experience with color
as with gray-scale images, but with the advent of very cheap color cameras, this
situation seems certain to change quite quickly. Nevertheless, the multichannel
ordering problem is a hard one, and much more work is required before the the-
oretical backcloth is fully prepared for guaranteeing optimal algorithms. The fol-
lowing chapter confirms that the problems recounted in the present chapter are
not parochial, but are manifest for a good many aspects of color processing. For
further reading, a number of useful articles on color image processing appear in
[41]: in particular, the article by Lukac et al. on vector filtering contains valuable
additional topics such as vector directional filters which could not be covered ad-
equately in the present chapter [42].
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12
Nonlinear edge detection in
color images

Adrian N. Evans

12.1. Introduction

The widespread use of low-cost color digital cameras and the increasing availabil-
ity of satellite imagery have brought about the situation where color and multi-
spectral images are increasingly popular digital image formats. As a consequence,
many of the basic image processing operations that have been developed for gray-
scale images are now being extended to multichannel images. Edge detection is
one of the most important tasks in image processing and its application to color
images is a subject of much current interest [1, 2]. In gray-scale images, edge de-
tection often performs a preprocessing role and is used in combination with other
computer vision algorithms. For example, feature extraction techniques such as
the Hough transform and active contour models require edge information as in-
put. Alternatively, image segmentation can be achieved by applying the watershed
transformation to a gradient function.

From an information theory perspective, as edge points typically constitute
less than 5% of the total pixels, they are very rich in information. In this con-
text edge detection can be viewed as an information filter that greatly reduces the
number of pixels that have to be considered with little impact on the information
content. As the volume of data for color and multispectral images is m times that
of gray-scale images, wherem is the number of channels, it can be argued that edge
detection provides a greater advantage here than for the gray-scale case.

A naive approach to detecting color edges is to simply apply existing gray-scale
techniques to the luminance component. However, this overlooks the fact that
color edges cannot simply be modeled as discontinuities in intensity. For example,
an edge can occur in a region of constant intensity when the chromaticity changes.
Novak and Shafer [3] found that 90% of the edge points in a color image are also
gray-scale edge points, and therefore, to detect the remaining 10%, a color edge
detection scheme is required. The use of color edge detectors also better reflects
the human visual system (HVS) where color edges play an important role in scene
interpretation.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


330 Nonlinear edge detection in color images

Image
decomposition

(a)

Gradient
finding

(b)
Thresholding

(c)
Edge map

Image
recombination

Figure 12.1. Classification of color edge detection algorithms after [4]. Inserting the image recom-
bination step at positions (a), (b), or (c) gives rise to vector, multidimensional gradient, and output
fusion methods, respectively.

This chapter first reviews the current state of the art in color edge detection.
Nonlinear approaches to color edge detection typically treat color images as two-
dimensional multichannel vector images and calculate their outputs based on vec-
tor differences. In addition, vector-based edge detectors may employ an explicit
or implicit vector ordering prior to applying a distance metric. Both the ordering
and differencing operations depend on the color space and the distance metric
applied. Some of choices for these are discussed. The difference vector and vector
gradient operators are then described. These operators calculate vector differences
between color pixels according to their positions within a mask. An alternative
approach is to select the color pixels to be differenced by using their position in
an ordered list. In this class, color edge detectors based on vector order statistics
(VOS) have been cited as one of the most compelling vector methods [4] and fea-
ture in several recent review papers [1, 5]. Their operation is discussed in detail
in Section 12.5. However, despite their well-known qualities, they have a tendency
to produce a bimodal response to a single edge and a new analysis of this phe-
nomenon is presented. Color morphological gradient operators are a new class of
color edge detectors that employ a pairwise vector ordering and can be viewed as
an extension of the morphological gradient to color images. Their performance
is evaluated both objectively and subjectively, in comparison with the VOS edge
detectors.

12.2. Color edge detection

A useful classification of color edge detectors is given in [4], which groups color
edge detection techniques into output fusion methods, multidimensional gradient
methods, or vector methods, according to the position of the image recombina-
tion step in the processing chain, see Figure 12.1. Output fusion methods combine
the results produced by applying gray-scale edge detectors to the individual color
channels. Operations used in the combination process include the logical OR [6],
effectively stating that a color edge exists if an edge is present in at least one of the
color channels. Other authors have proposed a summation [7] or some form of
weighted sum [8, 9].

Multidimensional gradient methods combined the gradients from the indi-
vidual channels before the thresholding stage. Robinson determined the direc-
tional derivatives for each neighbor in each channel, giving 8 × 3 = 24 gradients,
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and then selected the one with the largest magnitude. A more advanced approach
first computes the derivatives of the gradient in the horizontal and vertical direc-
tions [10]. The products are then used to form a 2× 2 matrix in each component,
the matrices summed over all channels and the edge magnitude, and direction
given by the principal eigenvalue and its eigenvector. Cumani [11], Chapron [12],
and Alshatti and Lambert [13] have all used variations of this approach; for a com-
parison of these and other simpler techniques see [14].

Vector methods do not have to consider the problem of how to combine the
channels to produce a final edge map as all their gradient finding operation is
performed in the vector space. As such they are the most attractive of the three ap-
proaches. To determine the rate and direction of maximum change at each pixel,
differential geometry can be employed [15, 16]. Using Bayesian theory, the max-
imum a posteriori criterion can be used to detect and locate edges in vector im-
ages [17]. Another approach makes use of probability distributions. For example,
in [18] relative entropy is used as a dissimilarity measure between the probabil-
ity distributions found locally and in a homogenous region. Alternatively, edge
points can be defined by the location of density minima in multidimensional
feature space, while the regions either side of the edge form clusters [19]. The
compass edge detector uses vector quantization to produce a compact color sig-
nature that, unlike histograms, does not enforce an arbitrary partitioning of the
color space [4]. In this impressive work, a circular window is split in half and
the difference between color signatures on either side measured using the earth
mover’s distance. Repeating this operation at multiple orientations produces a
maximum response and associated edge direction. Prefiltering can be employed to
reduce noise prior to edge detection. Russo and Lazzari propose a multipass non-
linear filtering stage before a noise-protected edge detector based on fuzzy models
[20].

12.3. Color spaces and distance measures

The output of color edge detectors that calculate vector differences depends on
both the distance metric and the color space in which it is applied, and these areas
have been the subject of recent research. This brief review of color spaces presented
is focussed on color representations for edge detection and is not in any way in-
tended to be comprehensive. For a more complete treatment see [2, Chapter 1],
[21], and the references therein.

Cones found in the human eye provide the basis for photopic vision. They
can be classified into three types according to the wavelength of light they are most
sensitive to, providing the basis for the red, green, and blue (RGB) color space. As
most color images are captured using a sensor array that responds to the primary
colors, the RGB color space is widely used, despite the fact that this representa-
tion neglects the perceptual aspects of color. The direct use of the RGB space also
avoids the need to perform color space conversion which can be computation-
ally expensive. However, its color channels are highly correlated and it does not
describe colors in a form well suited for human interpretation.
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Color models that specify a color in terms of its hue, saturation, and bright-
ness give a color description that corresponds well with human perception. Many
such models have been proposed including hue, saturation, and intensity (HSI);
hue, lightness, and saturation (HLS); and HSV. The conversion from RGB to any of
these is achieved by a transformation from a rectangular to a polar coordinate sys-
tem. Three-dimensional polar representations decouple the luminance from the
chrominance components and are compatible with human intuition. However, as
discussed in Section 11.10, many of them were not designed for image processing
operations and are therefore difficult representations to work with. More recently,
a family of improved HLS (IHLS) representations have been proposed and its com-
patibility with a number of color gradients has been assessed [22]. The opponent
color spaces such as YUV and YIQ used in television and video applications also
separate the chrominance and intensity information. One such space is the xyY
color space, designed for use with a color filtering scheme that is nonlinear in the
x and y chrominance components and linear in the Y component [23].

The CIE L∗a∗b∗ and L∗u∗v∗ color spaces were designed to be perceptually
uniform and to separate the perceived lightness L∗ from the chrominance, given
by the a∗b∗ or the u∗v∗ components, respectively. Although the two spaces differ
in formulation, in both the Euclidean distance between two colors provides a good
estimate of the perceptual distance between them. An important caveat to this is
given in [4], namely, that the equivalence between the perceptual and Euclidean
distances in the L∗a∗b∗ space only holds for small distances. Therefore the Eu-
clidean distance at edges consisting of two disparate colors can classify the colors
as different but the distance is not well quantified perceptually.

Many color edge detectors have been developed and evaluated in the RGB
color space although few, if any, are restricted to this representation. Wesolkowski
et al. have evaluated the performance of a number of vector edge detectors and
multichannel implementations of the Roberts and Sobel operators in multiple
color spaces [24]. The operators evaluated in this study include the vector gra-
dient edge detector of [25] that was originally developed for use in the L∗u∗v∗

color space and is described in Section 12.4.3.
A separate issue from the color space used is the choice of metric to apply in

a given space. Much of the work in this area is concerned with the development of
distance measures that give improved performance in the RGB space, thus avoid-
ing the need for expensive color space conversion. The most popular metric to
assess the distance between two vectors Xi and X j is the Lp norm

‖X‖p =
[
∑

k

∣
∣Xi

k −X
j
k

∣
∣p
]1/p

, (12.1)

where p = 1, 2 and ∞ are most commonly used, giving the city-block, euclidean,
and chess-board distances, respectively.

Equation (12.1) assesses the difference between two vectors in the magnitude
domain. An alternative is to consider differences in terms of orientation and the
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angular difference θ between two vectors can be found by considering its cosine,

cos θ = XiX jT
∥
∥Xi

∥
∥
∥
∥X j

∥
∥ . (12.2)

The vector angle is employed by the chromaticity-preserving vector directional
filters [26, 27] and can be combined with a magnitude-based measure to produce
a generalized set of measures for assessing the similarity between vectors [28]. As
a brief aside, [29] reports that neither θ nor cos θ are suitable for direct use as
a gradient measure and, instead, sin θ can be used, given by a modified form of
(12.2),

sin θ =
(

1−
(

XiX jT
)2

XiXiTX jX jT

)1/2

. (12.3)

Combined distance measures have the advantage of responding to differences
in both magnitude and angle. Color edge detectors that employ intensity-based
and saturation-based approaches to combining angle and distance metrics are pre-
sented in [30]. In this work, the intensity-based approach favors the angle differ-
ence when the intensity of both pixels is high and the Euclidean distance when
either or both pixels have low intensity. Similarly, when both pixels have a high
saturation the vector angle is used, and the Euclidean distance is used when one
pixel is low in saturation. Another combined measure that is also applied directly
in the RGB color space is the combined difference Diffcom given by

Diffcom = 1−
[

1− 2
π

cos−1

(
Xi ·X j
∥∥Xi

∥∥∥∥X j
∥∥

)][

1−
∥
∥Xi −X j

∥
∥

√
3 · 2552

]

, (12.4)

where the terms in square brackets assess the difference in angle and magnitude,
respectively [31]. This measure was originally proposed for color image retrieval
and includes normalization factors relating to the maximum angle and magnitude.

12.4. Color edge detectors based on vector differences

Many vector methods of color edge detection form their output from some com-
bination of the vector differences between pixels contained within a local mask.
These techniques use two approaches to the problem of determining which vec-
tors from the mask are used to calculate the output. In the first, the vectors are
chosen according to their position in the mask while, in the second, the vectors are
selected according to their positions in a ranked list. Color edge detectors belong-
ing to the first category have the advantage that, in addition to edge magnitude,
they are able to estimate edge direction. These detectors are reviewed below. An
estimate of edge direction is advantageous as it allows the nonmaxima suppres-
sion stage of the Canny edge detector [32] to be applied, producing thinner edges.
One of the most widely reported classes of edge detectors belonging to the second
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category are those based on VOS. These are described in detail in Section 12.5.
Although the color morphological gradient (CMG) operators are also based on
vector ordering and therefore belong to the latter class of approaches, they are also
able to provide an estimate of the edge direction. The CMG edge detectors are
described in Section 12.6.

12.4.1. Directional operators

Directional operators for color edge detection that, conceptually, are an extension
of the well-known Prewitt edge operators for gray-scale images to color images
were proposed in [33]. The Prewitt edge detector employs two orthogonal masks
PH and PV that respond to horizontal and vertical gradients, respectively,

PH = 1
3

⎡

⎢
⎢
⎣

−1 0 1

−1 0 1

−1 0 1

⎤

⎥
⎥
⎦ , PV = 1

3

⎡

⎢
⎢
⎣

−1 −1 −1

0 0 0

1 1 1

⎤

⎥
⎥
⎦ . (12.5)

The Prewitt edge detector therefore finds the average intensity of the regions
marked +1 and −1 in (12.5) and then calculates their differences. Noting that the
operators are not restricted to a 3 × 3 mask, the corresponding directional oper-
ators for color images first find the average color vectors H−, H+, V−, and V+ for
the +1 and −1 regions in the horizontal and vertical masks. For a window size
(2w + 1)× (2w + 1) located at pixel (x0, y0) these are given by

H−
(
x0, y0

) = 1
w(2w + 1)

y0+w∑

y=y0−w

x0−w∑

x=x0−1

f(x, y),

H+
(
x0, y0

) = 1
w(2w + 1)

y0+w∑

y=y0−w

x0+w∑

x=x0+1

f(x, y),

V−
(
x0, y0

) = 1
w(2w + 1)

y0−w∑

y=y0−1

x0+w∑

x=x0−w
f(x, y),

V+
(
x0, y0

) = 1
w(2w + 1)

y0+w∑

y=y0+1

x0+w∑

x=x0−w
f(x, y),

(12.6)

where f(x, y) is the color (r, g, b). The directional operators are then given by

H
(
x0, y0

) = H+
(
x0, y0

)−H−
(
x0, y0

)
,

V
(
x0, y0

) = V+
(
x0, y0

)−V−
(
x0, y0

)
,

(12.7)

and the change in color in the horizontal and vertical directions by the Euclidean
norms ‖H(x0, y0)‖ and ‖V(x0, y0)‖, respectively. From these two scalars the edge
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magnitude M is found in an identical manner to that of the Prewitt operator by

M =
√∥
∥H
(
x0, y0

)∥∥2
+
∥
∥V
(
x0, y0

)∥∥2
. (12.8)

The estimation of the direction is not quite so straightforward, because the scalar
values ‖H(x0, y0)‖ and ‖V(x0, y0)‖ do not have any signs associated with them.
Signed values of color contrast Hs(x0, y0) and Vs(x0, y0) can be found by consid-
ering whether the change in luminous energy is positive or negative such that

Hs
(
x0, y0

) =
⎧
⎪⎨

⎪⎩

∥
∥H
(
x0, y0

)∥∥ if
∥
∥H+

(
x0, y0

)∥∥ ≥ ∥∥H−
(
x0, y0

)∥∥,

−∥∥H
(
x0, y0

)∥∥ otherwise,

Vs
(
x0, y0

) =
⎧
⎪⎨

⎪⎩

∥∥V
(
x0, y0

)∥∥ if
∥∥V+

(
x0, y0

)∥∥ ≥ ∥∥V−
(
x0, y0

)∥∥,

−∥∥V
(
x0, y0

)∥∥ otherwise,

(12.9)

and the edge direction θ is estimated by

θ = arctan

(
Vs
(
x0, y0

)

Hs
(
x0, y0

)

)

+ kπ, (12.10)

where k is an integer.

12.4.2. Difference vector operators

Difference vector (DV) operators calculate the maximum gradient across the cen-
tral pixel. They work by dividing the window into subwindows at four orienta-
tions: horizontal, vertical, positive, and negative diagonals [34, 35]. The vector
difference between the two subwindows provides a measure of the gradient at each
orientation and the maximum vector provides the gradient magnitude and the as-
sociated direction. For a 3× 3 window located at pixel (x0, y0) the DV gradients in
four directions are defined by

DV0◦
(
x0, y0

) = ∥∥f
(
x0 + 1, y0

)− f
(
x0 − 1, y0

)∥∥,

DV45◦
(
x0, y0

) = ∥∥f
(
x0 + 1, y0 − 1

)− f
(
x0 − 1, y0 + 1

)∥∥,

DV90◦
(
x0, y0

) = ∥∥f
(
x0, y0 + 1

)− f
(
x0, y0 − 1

)∥∥,

DV135◦
(
x0, y0

) = ∥∥f
(
x0 − 1, y0 − 1

)− f
(
x0 + 1, y0 + 1

)∥∥.

(12.11)

The output difference vector is the maximum response such that

DV = max
(

DV0◦ , DV45◦ , DV90◦ , DV135◦
)

(12.12)

and the edge direction is that associated with the maximum response.
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336 Nonlinear edge detection in color images

To improve the performance of the operators in the presence of impulsive
and Gaussian noise, the window size can be increased although, for computational
and localization reasons, a 5× 5 window is preferred [35]. This gives 11 vectors in
each subwindow if the center pixel is included in all subwindows, as recommended
in [34]. A filter function can then be applied to the subwindows to produce the
two vectors required by (12.11). Zhu et al. have investigated various nonlinear
filters including the vector median, the vector mean, and the adaptive nearest-
neighbor filter [35]. Instead of filtering the subwindows, a more computationally
attractive approach is to prefilter the entire image using a 3 × 3 window and then
apply (12.11) and (12.12), again using a 3 × 3 mask. In addition, this approach
was shown to have a better noise suppression performance that of the subwindow-
based methods. However, as discussed in Section 11.9, care must be taken when
applying the median and other filters to color images as they can introduce edge
shifts.

A further variation that reduces the thickness of diagonal edges and slightly
reduces the computational complexity is to calculate only the difference vectors in
the horizontal and vertical directions, giving

DVhv = max
(

DV0◦ , DV90◦
)
. (12.13)

A probabilistic evaluation has shown this approach to detect fewer false edges
while finding virtually the same number of true edge points [2, 35]. In addition, its
peak SNR performance on real images corrupted with mixed noise is only slightly
worse than that produced by calculating the vector differences in all four direc-
tions.

12.4.3. Vector gradient operators

The vector gradient (VG) edge detector calculates the maximum difference be-
tween the center pixel and its eight-connected neighbors. The VG at pixel (x0, y0)
is given by

VG
(
x0, y0

) = max
i∈N (x0,y0)

{∥∥fi(x, y)− f
(
x0, y0

)∥∥}, (12.14)

where N (x0, y0) is the set of neighbors of pixel (x0, y0). This operator differs from
the difference vector (DV) operator in that it calculates a noncentered difference.
However, it still allows edge direction to be estimated from the direction of maxi-
mum gradient.

The technique was originally proposed for use with the L∗u∗v∗ color space
that was specifically designed so that the similarity between any two colors is quan-
tified by the Euclidean distance [25]. It has also been applied in the RGB color
space using combined Euclidean distance and vector angle metrics [30], and a
study of its performance in multiple color spaces was undertaken in [24].
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(a) (b)

Figure 12.2. Ideal color edges consisting of vectors V1 = (−3,−5), V2 = (3,−5), and V3 = (0,−5):
(a) ideal step edge and (b) ideal ramp edge. (Reproduced from Adrian N. Evans and Xin U. Liu, “A
morphological gradient approach to color edge detection,” IEEE Transactions on Image Processing, ©
2006 IEEE.)

12.5. Vector order statistics color edge detectors

Color edge detectors based on VOS were proposed by Trahanias and Venetsanopo-
ulos [26, 27] and represent an extension of the morphological edge operators for
gray-scale images of [36] to multichannel images. VOS edge detectors employ re-
duced or aggregate ordering (R-ordering) to sort a set of n vectors X1, X2, . . . , Xn

according to their aggregate distances, dis. Each di is given by

di =
n∑

k=1

∥
∥Xi −Xk

∥
∥
p, i = 1, 2, . . . ,n, (12.15)

where ‖ · ‖p is a vector norm. When the vectors are ordered according to their
dis such that d(1) ≤ d(2) ≤ · · · ≤ d(n), the result is the ordered sequence X(1) ≤
X(2) ≤ · · · ≤ X(n) in which X(1) is the vector median [37] and X(n) is the vec-
tor extremum. This ordering avoids the difficulty of distinguishing between the
minimum and maximum vectors as both are simply high-ranking vectors and are
termed extrema.

The simplest VOS edge detector is the vector range (VR) defined by

VR = ∥∥X(n) −X(1)
∥
∥
p, (12.16)

which provides a quantitative measure of the distance from the vector median to
the highest-ranking vector. The VR is the underlying distance measure for the VOS
edge detectors and its operation can be illustrated by considering its response to
the ideal color step and ramp edges shown in Figure 12.2, using a 3 × 3 mask.
The response of the VR to the ideal step edge shown in Figure 12.3(a) is 2 pixels
wide and is unbiased. For the color ramp edge, the VR response in Figure 12.3(b)
extends across 3 pixels and does not differentiate between the response of the true
edge pixels and those of their neighbors [27]. This can be explained by reducing
the VR to a single channel form where it can be seen that it measures the difference
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Figure 12.3. Response of VOS edge detectors to ideal color edges using a 3 × 3 mask, where R =
‖V1 − V2‖2 = 6 and R/2 = ‖V1 − V3‖2 = 3: (a) VR response to step edge, (b) VR response to ramp
edge, and (c) MVD response to ramp edge with k = 3 and l = 6.

between the median and either the highest or the lowest intensity depending on
which is furthest from the median. For a ramp edge this is a noncentered difference
and therefore may not always provide an accurate estimate of the true gradient.

As the output of the VR depends on the extremum vector, it is very sensitive
to noise, and will respond to a single noisy pixel. To improve the robustness to
exponential and impulsive noise, the VR can be modified by calculating the dis-
tances from the vector median to the k highest-ranked vectors and then selecting
the minimum of these, giving rise to the minimum vector range (MVR) color edge
detector,

MVR = min
j

{∥
∥X(n− j+1) −X(1)

∥
∥
p

}
, j = 1, 2, . . . , k; k < n. (12.17)

The MVR therefore rejects all but one of the k highest-ranked vectors. In practice
the value of k can be selected by considering the number of pixels belonging to the
minority population at an edge; for example, k should be ≤ 10 for a 5× 5 mask.

Finally, a VOS edge detector that is also robust to short-tailed or Gaussian
noise is obtained by replacing the vector median in (12.16) by the α-trimmed
mean of the l lowest-ranked vectors. The resultant operator is known as the vector
dispersion (VD) edge detector which, when combined with the MVR of (12.17),
results in the minimum vector dispersion (MVD) color edge detector given by

MVD = min
j

⎧
⎨

⎩

∥∥
∥
∥
∥X(n− j+1) −

l∑

i=1

X(i)

l

∥∥
∥
∥
∥
p

⎫
⎬

⎭ , j = 1, 2, . . . , k; k, l < n. (12.18)

Although no formal definition exists for the parameter l, an intuitive interpreta-
tion is that it is the number of pixels in the majority population contained by the
mask. This is analogous to the interpretation of k for the MVR.

A further advantage of the color edge detectors employing the α-trimmed
mean is an improved performance for color ramp edges resulting from an in-
creased response at the true edge pixel [27]. For example, when the MVD edge
detector is applied to the ideal ramp edge of Figure 12.2(b) the true edge pixel has
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Figure 12.4. Response of MVD edge detector to ramp edge corrupted by Gaussian noise (σ = 0.3):
(a) noisy edge; (b) and (c) MVD response to central 5× 5 pixels from (a) with parameters k = 3, l = 3,
and l = 6, respectively.

a raised response for 4 ≤ l ≤ 6. The maximum MVD response to the true edge
occurs with parameters 1 ≤ k ≤ 3 and l = 6, when the output at the edge is
‖V2 − (3V1 + 3V3)/6‖ = 3R/4, where R = ‖V1 − V2‖2 = 6; this is illustrated in
Figure 12.3(c).

Extensive experimentation has shown the MVD to be the best performing
VOS edge detector in the presence of noise [26, 27]. However, it has also been ob-
served that it can often produce a double response to a single ramp edge [38]. The
α-trimmed mean of the l lowest-ranked vectors used by the VD and MVD edge de-
tectors requires the vectors on each side of the edge to be ranked in adjacent posi-
tions if it is to produce a raised response. For the ideal ramp edge of Figure 12.2(b),
the maximum MVD response at the true edge position of 3R/4 is achieved when
l = 6 and the ordered sequence is [V3,V3,V3,V1,V1,V1,V2,V2,V2]. However,
when the edge is corrupted by a small amount of Gaussian noise, such as in Figure
12.4(a), the fragile ordering of the 6 highest-ranking vectors from the noise-free
case is lost. As a consequence, the MVD can produce a lower response at the true
edge position than at the neighboring positions.

Figure 12.4 illustrates this point and shows the MVD response for the central
5 × 5 pixels of Figure 12.4(a) for l = 3 and l = 6, with k set to 3. When l = 3, the
response in Figure 12.4(b) exhibits a slightly raised response to the true edge in
line with expectations. However, the situation in Figure 12.4(c) shows that when
l = 6 the response at the true edge positions is reduced from the noise-free value
of 3R/4 = 4.5 to values in approximate range of 2.7 to 2.9. The true edge positions
now have a lower response than their neighbors and when a threshold is applied
this can produce false edge points on either side of missed true edge points.

Finally, it should be noted that in contrast to the DV and VG operators of the
multidimensional gradient methods of [25, 35], the MVD edge detector only pro-
vides edge magnitude and not edge direction as there is no physical position in the
mask associated with the α-trimmed mean. Even the simpler VR and MVR edge
detectors are unable to provide a reliable estimate of edge orientation as the direc-
tion from the vector median to a high-ranked vector will not necessarily coincide
with the true edge direction.
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12.6. Color morphological gradient operators

A different approach to vector ordering is provided by the color morphological
gradient (CMG) edge detectors [38, 39]. These operators were inspired by the
classic morphological gradient operator for gray-scale images, given by the dif-
ference between a dilation and an erosion [40]. For a structuring element B, the
morphological gradient (MG) is given by

MG = δB( f )− εB( f ). (12.19)

As δB( f ) and εB( f ) are given by the maximum and minimum pixels, respec-
tively, (12.19) cannot be applied directly to color images. However, if the MG is
expressed by the alternative form

MG = max
x∈B

{
f (x)

}−min
y∈B

{
f (y)

}

= max
(∣∣ f (x)− f (y)

∣∣) ∀x, y ∈ B,
(12.20)

the MG of color images can easily be found by replacing the absolute operation by
a norm. The CMG is therefore given by

CMG = max
i, j∈X

(∥
∥Xi −X j

∥
∥
p

)
, (12.21)

where X = [X1, X2, . . . , Xn] is the set of n vectors contained within the structuring
element B and ‖ · ‖p is an Lp norm. The CMG therefore identifies the maximum
and minimum vectors as the two vectors that are furthest apart but does not dis-
tinguish between them.

Removing the two vectors associated with the CMG and applying (12.21) to
the remaining vectors produces another gradient estimate. Repeatedly applying
this process results in a pairwise vector ordering scheme that is the basis of the
other CMG operator, namely, the robust color morphological gradient (RCMG).
The pairwise vector ordering scheme uses the distances

ds =
∥
∥∥X(s)

1 −X(s)
2

∥
∥∥
p
, s = 0, 1, . . . ,

n

2
− 1, (12.22)

where X(s)
1 and X(s)

2 are the two vectors associated with the maximum distance in
(12.21) after s pairs of vectors have been removed. Using the distances d0 ≥ d1 ≥
· · · ≥ d(n/2)−1, the pairwise vector ordering can be defined by

X(1) ≤ X(2) ≤ · · · ≤ X(n−1) ≤ X(n), (12.23)

where X(s+1) and X(n−s) are the two vectors associated with distance ds and are
interchangeable. The vector norms are then ordered by

∥
∥X(1) −X(n)

∥
∥
p ≥

∥
∥X(2) −X(n−1)

∥
∥
p ≥ · · · ≥

∥
∥X(n/2) −X((n/2)+1)

∥
∥
p. (12.24)
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Figure 12.5. CMG response to ideal color edges of Figure 12.2: (a) step edge and (b) ramp edge.
(Figure 12.5(b) is reproduced from Adrian N. Evans and Xin U. Liu, “A morphological gradient ap-
proach to color edge detection,” IEEE Transactions on Image Processing, © 2006 IEEE.)

Equations (12.22)–(12.24) can be used to produce a pairwise vector ordering
for n vectors, where n is even. However, like the standard median, for even n there
are two mid-ranked vectors and if the median vector is required, recourse to the
somewhat unsatisfactory convention of choosing the midpoint between the two
central vectors is necessary. When n is odd there is one unpaired vector remain-
ing after the other n − 1 vectors are ordered. This vector is assigned the distance
d(n+1)/2 = ‖X(n+1)/2 − X(n+1)/2‖p = 0 and ranked in position (n + 1)/2. It therefore
follows that, for n odd, the final unpaired vector is the median vector.

The CMG of (12.21) is the simplest operator to employ this pairwise ordering,
and Figure 12.5 presents its response to the ideal color step and ramp edges of
Figure 12.2 using a 3 × 3 mask. The CMG response to the step edge is unbiased
and identical to that of the VOS edge detectors. The ramp edge response is 3 pixels
wide but is raised from R/2 to R at the true edge position; this compares favorably
with the MVD response of Figure 12.3(c) which has a maximum raised response of
3R/4. This improved ramp edge performance can be explained by considering the
single channel form of the CMG, which is the difference between the maximum
and minimum pixels and, for the ramp edge, measures the centered difference. The
CMG performs exactly the same operation on vector-valued images and defines
the maximum and minimum vectors as the two vectors that are furthest apart
without uniquely identifying which is which.

Although the CMG produces a favorable response on ideal edges, its out-
put depends on outlying vectors and is sensitive to image noise. This problem
is overcome by the RCMG that outputs the distance ‖X(s+1) − X(n−s)‖p for s =
0, 1, . . . , �(n/2)− 1�, a process equivalent to removing s outlying vector pairs from
X and finding the CMG of the remainder. The RCMG is therefore defined by

RCMG = max
i, j∈{X−Rs}

{∥
∥Xi −X j

∥
∥
p

}
, (12.25)

where Rs is the set of s pairs of vectors removed. In this context, the CMG operator
of (12.21) can bethought of as a special case of the RCMG for s = 0.

The performance of the RCMG operator in noise is now considered. Figure
12.6(a) presents the intensity distribution of a single channel step edge corrupted
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Figure 12.6. (a) Distribution of intensities at step edge corrupted by Gaussian noise and (b) response
of RCMG to central 5× 5 pixels from Figure 12.4(a) using a 3× 3 mask with s = 1.

by Gaussian noise. It has two populations on either side of the edge centered on
intensity values of 70 and 180, giving an ideal difference of 110. The response of
the RCMG will be closest to this distance when its output is formed from one pixel
from each of the two modes of the distribution. To approximate this, the approach
presented in [39] is to set the parameter s so that the output is the median of
the centered differences across the edge. The number of centered differences is
determined by the number of pixels in the minority population. For example, with
a 3×3 mask there are 3 centered differences and setting s = 1 selects their median.
The RCMG response to the central 5×5 pixels from the noise corrupted ramp edge
of Figure 12.4(a) with s = 1 is given in Figure 12.6(b) and shows the responses at
the true edge positions to be close to the noise-free response of R = 6. Compared
with the noise-free case, the RCMG responses on either side of the edge are slightly
increased and the responses away from the edge are raised by a greater amount.
Overall, the differences between the responses at and away from the edge compare
favorably with those of the MVD.

The RCMG is also robust to impulsive noise as outlying vectors are high rank-
ing and are typically contained in the vector pairs removed. If a nonoutlying vector
is removed, the output will only be slightly affected as other, similar vectors will
exist. To find the median centered difference in the presence of impulsive or ex-
ponential noise, it is necessary to remove some outlying pairs of vectors before
finding the median of the remaining centered differences across the edge. This can
be achieved by increasing the value of the parameter s and hence the number of
pairs of vectors removed. However, for the RCMG operator to work as designed, s
should not be greater than the number of pixels in the minority population. For a
5× 5 mask this restricts s to the range 4 ≤ s ≤ 9 [39].

The performance of many edge detectors can be improved by applying the
nonmaximal suppression and thresholding with hysteresis stages of the Canny
edge detector [32]. For these steps to be appropriate for the CMG operators, two
criteria must be met. Firstly, the peak response of the color edge detector should
occur at the true edge position and, secondly, the operators must be able to provide
an estimate of the edge direction. From the theoretical analysis above, the CMG
and RCMG operators meet the first criterion and an evaluation to determine that
this is also the case for natural images is undertaken in Section 12.7.2 below.
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Figure 12.7. CMG operators edge direction is given by the normal to the line joining the pixel posi-
tions of the vector pair which are furthest apart.

As the CMG operators select their vectors according to their differences in a
ranked list, it is not immediately obvious that they are able to estimate an edge’s
direction as well as its magnitude. However, an approximate estimate of edge di-
rection can be found by considering the fact that the two pixels that give rise to
the centered difference come from either side of the edge. Edge direction can then
be estimated by first constructing a line joining the two pixels that give rise to
the RCMG output and then defining the edge direction as the normal to this line,
see Figure 12.7. Provided the two pixels used to define the gradient lie on oppo-
site sides of the edge, the error in the direction estimate will be bounded by 45◦.
Therefore, although the edge direction is only approximate, it is suitable for use
with nonmaximal suppression schemes where only a quantized edge direction is
required.

12.7. Results and evaluation

In this section, the performance of the color edge detectors that employ vector
ordering is evaluated. The operators compared are those based on VOS (Section
12.5) and the CMG operators that employ the pairwise ordering described in
Section 12.6. The performance of the color edge detectors is evaluated in appli-
cation to both simulated and natural images using the Euclidean distance and the
RGB color space. A simulated image is useful as it contains known edges and can
therefore be used to provide quantitative performance information, for example,
in the presence of artificial noise. As a subjective evaluation in application to natu-
ral color test images remains an important test procedure, this is also undertaken.
A mask size of 5×5 was used for both edge detectors as this represents a good com-
promise between performance and computational complexity. For all experiments
the parameter value of s = 8 suggested in [39] is used for the RCMG. In [26] the
suggested ranges for the MVD parameter values are 7 ≤ k ≤ 10 and 10 ≤ l ≤ 15.
More recently, Androutsos et al. recommended k = 6 and l = 10 as the best MVD
parameter settings [34]. For the experiments presented here, k was set to 7 and l
to 10 as this provides a good compromise.
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(a) (b)

Figure 12.8. Simulated color test image: (a) original image and (b) ideal edge response.

12.7.1. Robustness to noise

The performance of the edge detectors in the presence of noise is investigated by
using a simulated image in conjunction with a measure of edge deviation. To this
end, the (128× 128)-pixel color test image shown in Figure 12.8(a) was corrupted
by Gaussian and impulsive noise. The noise was additionally classified as either
independent or correlated, with a correlation factor ρ = 0.5. Pratt’s figure of merit
(FOM) [41] is used to provide a quantitative measure of the quality of the edges
and is given by

FOM = 1
max

{
ID, II

}
ID∑

k=1

1

1 + α
(
dk
)2 , (12.26)

where ID and II are the number of detected and ideal edge points, dk is the distance
from the kth detected edge point to the nearest true edge point and α (> 0) is a scal-
ing constant. The ideal edge map required by the FOM is shown in Figure 12.8(b)
and was generated by marking all pixels in Figure 12.8(a) with any differently col-
ored neighbors as edge points. This contrasts with other approaches where the
response of color edge detectors to a noise-free image is used. Using a theoretical
response provides a sterner test as even when no noise is present, edge detectors
can produce a nonideal response, particularly at corners.

Figure 12.9 presents the FOM results for Gaussian and impulsive noise with
α set to 0.2. The FOM values for each edge detector were obtained by adjusting
a global threshold until the maximum FOM value resulted. Only the MVD and
RCMG operators were evaluated as the VR and CMG operators are not designed
to have any noise robustness. The FOM performance of both edge detectors for
Gaussian noise is similar, particularly around 12 dB for independent noise and
14.5 dB for correlated noise. Away from these values the FOM for the RCMG is
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Figure 12.9. FOM results for RCMG and MVD color edge detectors: (a) Gaussian independent noise,
(b) impulsive independent noise, (c) Gaussian correlated noise, and (d) impulsive correlated noise.
(Reproduced from Adrian N. Evans and Xin U. Liu, “A morphological gradient approach to color edge
detection,” IEEE Transactions on Image Processing, © 2006 IEEE.)

above that of the MVD. For impulsive noise the RCMG has an FOM that is sig-
nificantly higher than that of the MVD over the entire 0–30 dB range for both
the independent and correlated cases. To illustrate this difference in FOM perfor-
mance, the edge detection results for 8% and 15% of correlated impulsive noise
are shown in Figure 12.10. At a noise level of 8% both edge detectors are able to
find the true edges while effectively suppressing noise. However, the RCMG result
has thinner, better-defined edges and fewer noise responses. When the noise level
is increased to 15% the robustness of the RCMG is clearly demonstrated by the
edge result, which shows little additional degradation above that of the 8% noise
result. This is confirmed by the corresponding FOMs of 0.9933 and 0.9810 for 8%
and 15% noise, respectively. In contrast, the MVD result for 15% noise exhibits
thicker edges, noise points, and missing true edge points, and its FOM is reduced
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(a) (b)

(c) (d)

Figure 12.10. Color edge detector results for simulated image corrupted by correlated (ρ = 0.5) im-
pulsive noise with corresponding FOM values shown bracketed: (a) MVD for 8% noise (0.9202), (b)
RCMG for 8% noise (0.9933), (c) MVD for 15% noise (0.7789), and (d) RCMG for 15% noise (0.9810).
(Figure 12.10(c) and Figure 12.10(d) are reproduced from Adrian N. Evans and Xin U. Liu, “A mor-
phological gradient approach to color edge detection,” IEEE Transactions on Image Processing, © 2006
IEEE.)

to 0.7789. The MVD 15% correlated impulsive noise result also has some instances
where the edge center is missed while its neighboring pixels are marked as edges.

12.7.2. Edge localization

If the nonmaximal suppression stage of the Canny edge detector is to be applied to
produce single-pixel thickness edges, it is important that the peak response occurs
at the edge center. This is investigated for natural images by studying the responses
produced by the color edge detectors for cross-sections across ramp edges. Numer-
ous edges from a variety of test images have been investigated and the results for
an edge position from the Airplane test image shown in Figure 12.11 are represen-
tative of those obtained.

Figure 12.11(b) shows the response of the CMG and VR edge detectors for
the marked portion of column 63 from Figure 12.11(a). This location was chosen
as it is a relatively strong edge and produces a typical response. A 5 × 5 mask was
used for both edge detectors, and to help interpretation the luminance values are
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Figure 12.11. Behavior of color edge detectors at step edges. (a) Airplane with edge position marked,
(b) CMG and VR results, and (c) RCMG and MVD results.

also shown. Away from the edges both edge detectors produce similar responses,
with the magnitude of the CMG above that of the VR as would be expected from
the theory. Both edge detectors show an increased response at the edge. However,
the VR has a local minimum at the edge center showing that, for this mask size, its
noncentered difference does not provide a good estimate of the true gradient. In
contrast, the CMG response across the edge is well behaved, showing a single peak
located at the center of the edge.

The responses of the RCMG and the MVD at the same edge position are
shown in Figure 12.11(c), using the parameters detailed in Section 12.7.1 above.
Compared with Figure 12.11(b), the MVD and RCMG responses away from the
edge are reduced in magnitude and are very similar. This shows that the RCMG
and MVD produce comparable results in homogeneous regions. The response of
both detectors to the edge is also slightly reduced and is more localized. Here, the
RCMG response is well behaved and marks the edge center with its peak response.
In contrast the response of the MVD is still bimodal with a local minimum at the
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Figure 12.12. Variation of edge direction error with s for the edge position marked in Figure 12.11(a).

(a) (b)

Figure 12.13. Color edge results for Airplane image: (a) VR result and (c) CMG result.

edge center, either because the 5× 5 mask used is too small a scale or as a result of
the effect described in Section 12.5, or a combination of both.

The performance of the edge direction estimation for the RCMG is also stud-
ied. Figure 12.12 shows the variation in edge direction error with s for the edge
marked in Figure 12.11(a). The result shows that for 0 ≤ s ≤ 9 the absolute error
is ≤ 45◦. This conforms with expectations as up to s = 9, at least one vector from
the minority population within a 5×5 mask remains, and a reasonable estimate of
edge direction can be made. When s ≥ 10 the RCMG no longer calculates a cen-
tered difference and the direction estimates are unreliable. A more comprehensive
test of the accuracy of the edge direction estimates is to assess the edge direction
estimates in conjunction with a nonmaximal suppression scheme, and this is eval-
uated in the next section.

12.7.3. Natural images

To provide an illustration of the qualitative performance of the VOS and CMG
edge detectors, they are applied to the Airplane and Peppers color test images,
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(a) (b)

(c) (d)

Figure 12.14. Color edge results for Airplane image: (a) MVD result, (b) RCMG result, (c) and (d)
close-ups of (a) and (b), respectively.

as these images are representative of those evaluated. Figure 12.13 shows the re-
sults produced by the VR and MVD edge detectors for the Airplane image of
Figure 12.11(a) using a 5 × 5 mask. The edge images are normalized to a 0–255
range and show that the CMG has a stronger edge response, while the VR produces
a double response at many of the edge positions. Both edge operators produce
edge responses that are several pixels wide in which it is difficult to identify the
true edge position. This situation is improved by the MVD and RCMG operators,
which produce thinner, better-defined edges, see Figure 12.14. However, close-
ups of a 128 × 128 pixels region towards the rear of the plane in Figure 12.14(c)
show that the MVD operator often produces a low response at the true edge posi-
tion with stronger edge responses on either side. In contrast, the RCMG result in
Figure 12.14(d) shows thinner, more continuous edges.

To study the behavior of the color edge detectors in the presence of noise,
the Airplane image is corrupted with 10% correlated (ρ = 0.5) impulsive noise,
see Figure 12.15(a). Comparison of the MVD and RCMG results, given in Figures
12.15(b) and 12.15(c), respectively, with those of Figure 12.14 shows the perfor-
mance of the RCMG to be only slightly affected by this noise level. In contrast, the
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(a)

(b) (c)

Figure 12.15. Color edge results for Airplane image corrupted by 10% correlated (ρ = 0.5) impulsive
noise: (a) original image, (b) MVD result, and (c) RCMG result.

MVD result shows a degraded response at edges and many spurious edge points
resulting from noise.

Thresholded edge maps are evaluated in application to the Peppers test im-
age. Figure 12.16 shows the original image and the results of the MVD and RCMG
operators, obtained by adjusting a global threshold to produce the best subjective
results. Although both edge detectors produce similar edge maps, the MVD result
in Figure 12.16(b) generally has thicker, less-continuous edges than the RCMG re-
sponse of Figure 12.16(c). The advantages of using the nonmaximal suppression
and thresholding with hysteresis stage of the Canny edge detector are illustrated
for the RCMG edge detector in Figure 12.17, using the definition of edge direction
described in Section 12.6. The RCMG edge result in Figure 12.17(a) shows the op-
erator to perform well at the majority of edges in the image. The only exception
is in the low-intensity regions, for example, the bottom left of the central green
pepper. When the combined distance measure of (12.4) is used with the RCMG
the edge map is improved to that shown in Figure 12.17(b). Here, the challenging
edge points at the bottom of the central green pepper have been detected with little
adverse impact elsewhere in the image. The continuity of the edges in Figure 12.17
confirms that the method of estimating edge direction described in Section 12.6
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(a)

(b) (c)

Figure 12.16. Thresholded color edge results for Peppers image: (a) original image, (b) MVD result,
and (c) RCMG result. (Figure 12.16(c) is reproduced from Adrian N. Evans and Xin U. Liu, “A mor-
phological gradient approach to color edge detection,” IEEE Transactions on Image Processing, © 2006
IEEE.)

produces results that are sufficiently accurate to allow the nonmaximal suppres-
sion stage to work successfully.

12.8. Summary

A review of nonlinear edge detection techniques for application to color images
has been presented. Compared with the large volume of work addressing the prob-
lem of edge detection in gray-scale images, color edge detection has received lim-
ited attention. This review has focussed on vector methods of color edge detection
that treat color images as two-dimensional vector fields and thus avoid the prob-
lems associated with combining the results from individual channels after the gra-
dient finding or thresholding stages. In particular, techniques that assess the color
gradient by applying a metric or distance measure to vectors contained within a
local window have been examined.

One class of approaches selects the vectors to be differenced according to their
positions within the mask, either calculating a centered or noncentered difference
according to whether the center pixel is included or not. This approach has the
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(a) (b)

Figure 12.17. RCMG edge maps for Peppers image after nonmaximal suppression and thresholding
with hysteresis: (a) using Euclidean distance and (b) using combined distance metric of (12.4). (Re-
produced from Adrian N. Evans and Xin U. Liu, “A morphological gradient approach to color edge
detection,” IEEE Transactions on Image Processing, © 2006 IEEE.)

advantage of also being able to provide an estimate of edge direction. Alterna-
tively, the vectors can be ordered and their difference can be assessed according
to their rank. Here, the most widely reported techniques are those based on VOS.
Section 12.5 describes the VOS operators and also includes a new analysis that
attempts to explain the undesirable tendency of the operators to produce a double
response to a single edge.

A new approach to ranking vectors, termed pairwise ordering, has been intro-
duced and its use in the development of color edge detectors has been described.
The resultant CMG operators identify the maximum and minimum vectors but
do not distinguish between them. However, as a measure of gradient is given by
the difference between maximum and minimum values, the inability to unam-
biguously identify the maximum and minimum vectors is not important; in edge
detection it is the difference between them that matters. The RCMG edge detec-
tor based on this ordering has been demonstrated to be robust to Gaussian and
impulsive noise and also has the advantage of being able to estimate edge direc-
tion. CMG operators can be applied in the RGB color space and have good edge
localization properties. As such, they offer good performance with relatively low
computation cost.

With the increased importance of color imagery and image analysis, the re-
quirement for high-performance, computationally efficient color edge detection
algorithms is undoubtedly on the increase. The techniques presented in this
chapter provide a snapshot of the current state of development and may well prove
to be the starting point for future research effort.
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active noise control, 171

feedback, 173, 187
feedforward, 173, 187
multichannel, 171, 174, 176, 180, 192
single-channel, 171, 174, 175, 177, 192

adaptive algorithms, 173
filtered-U, 173
filtered-X, 173

affine projection (AP), 177, 180, 182
least mean square (LMS), 175, 176
normalized least mean square

(NLMS), 180
additive watermark embedding, 210
antichain, 55, 56
aperture configuration, 19
aperture operator, 18
assessing evolution state, 258
autocorrelation functions, 2, 9, 57–59,

210, 211, 213, 215–217, 222, 224, 225,
241, 242, 248

B
bag, 55

see multiset, 55
Bernoulli shift, 210
Blackman-Tukey spectral estimator, 57
bleeding, 307
blurring, 311
Boolean algebra, 54, 245
Boolean function, 16, 24, 84, 85, 87, 91, 95, 96
Boolean model, 256
Boolean point process model, 254
Boolean predictor, 83, 85, 87
Boolean process, 239
Boolean regression, 80, 98
Bray measure, 67–69
Brownian motion, 1

C
cascade interconnection, 73
categorical variable, 50

see nominal variable, 50, 56, 63, 64, 73
chain, 55, 56
chaos, 105, 106, 119

chaotic mixing, 229
chaotic sequence, 206

chaotic systems, 205
chaotic watermark sequence, 209
characteristic function, 18
classification, 239, 258
classification error, 82, 255, 256
classification of color edge detectors, 330
classification of corrosion, 253
classification of evolving textures, 249
classification process, 251
classifier, 257
clone (universal algebra), 73, 74
color bleeding, 302, 304, 306–309, 312
color edge detection, 330
color filtering, 305, 306
color image processing, 301
color morphological gradient, 330, 334, 340
color spaces, 331
combined distance measures, 333
complex weighted median, 285, 286
constraint, 21
continuous evolutionary process, 239
continuum model, 316–320
convolution, 98, 145, 148, 173, 175, 181,

303, 304
kernel, 24, 31
mask, 304
operator, 304

copyright protection, 205
corner detection, 303
correlation detector, 208
corroding metal, 244
corrosion, 239–241, 244, 253–255, 258,

260, 266
detection, 253
images, 241, 244, 252, 253, 260, 261
model parameter, 255
process, 243

D
decision trees, 24
decision-based filters, 71
Dedekind groupoid, 55, 56, 72
Dedekind majority filter, 72, 75
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DESA, 109, 111

detectors, 303
corner, 303
edge, 303
line segment, 303

difference vector operators, 335
differential chaos shift keying, 235
directional operators for color edge

detection, 334
discrete model, 319, 320, 322
dissimilarity measure, 58
double-cone structure of color space, 323
dynamic texture, 239

E
edge detection, 303, 329
edge shifts, 317–322
effective arity, 54
enhancement, 206, 310, 315

property, 310–312
envelope, 26, 27
envelope constraint, 26–28
error measures, 258
error rates, 262
ESA, 108, 109
Euclidean granulometry, 247
evolution, 249, 253–255

function, 249, 263
model, 266
parameters, 249–252, 255, 258, 260,

263, 265
process, 249, 260
status, 263
time, 251, 255, 257
time scale, 249

evolutionary state of corrosion, 253
evolving process, 249
evolving texture, 243, 244, 249, 263
externally categorized variable, 66, 67

F
filters, 302

adjustable parameters, 315, 316
hybrid median, 322
matched, 303
mean, 305
median, 305
mode, 302, 310–313, 318, 319
switched, 302, 313–315
trained, 322
vector directional, 325
vector median, 324
weighted median, 315

fractals, 105, 106, 111, 135

fricative, 104, 105, 109, 111, 112, 136

Frobenius-Perron (FP) operator, 215
fuzzy systems, 187

G
Gaussian noise, 305, 309
Gaussian smoothing, 304
gene expression, 80, 81, 83
generalization, 22, 23
Gini (mean difference) measure, 67–69
granulometric, 249

analysis, 239, 248, 263
approach, 248, 263
features, 248
information, 263
moments, 247, 249, 254, 265, 266
pattern spectrum, 249, 263
pattern spectrum moments, 249
size distribution, 248

granulometry, 245, 247–249, 253, 263, 266
gray-scale granulometry, 253
group, 52
groupoid, 53, 74
growth functions, 266
growth model equations, 251
growth process, 244

H
homoclinic, 118, 121
human skin tones, 323
hybrid median filter, 322

I
illumination, 324
image distortions, 302, 316–322
image features, 249
impulse noise, 305
incomplete data partial order, 56, 72
indels, 60

see random deletion, 60
industrial inspection, 239, 252
inspection of fruits, 302
instantaneous spectrum, 2, 3
interestingness measures, 63–69
intermodulation distortion (IMD), 148–150,

153, 163–165
internally categorized variable, 66, 67
invariant by vertical translation, 19
irregular texture, 241, 253

K
kernel, 23
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L
label, 20, 21
lag window, 57, 59
Langevin equation, 1
Langevin equation with time-dependent

coefficients, 2
least-squares, 251
lexicographic ordering, 324, 325
limited numbers of observations, 239
limited training samples, 259
line segment detection, 303
linear prediction, 104, 107, 116, 119, 126, 129
linearization, 142, 156, 165
locally defined, 19
logistic map, 205
Lyapunov exponents, 135

M
MAE, 21, 97, 291
Markov maps, 209
matched filter, 303
mathematical morphology, 241, 244, 324, 325
maximum likelihood, 244, 257, 264
mean filter, 305
median filter, 305
memory effects, 147–150, 164, 165
memory polynomial, 150, 161, 163–165
minimum description length

(MDL), 79, 86, 100
minimum distance, 257, 264
minimum vector dispersion (MVD) color

edge detector, 338
minimum vector range (MVR) color edge

detector, 338
missing data, 56
mode filter, 302, 310–313, 319
model selection, 86
modulation, 104, 106, 108–112, 135, 136
monoid, 53, 55, 56
morphological, 245, 249

analysis, 239, 244, 253
approach, 241
gradient, 340
methods, 245, 263
operations, 245
tools, 245, 248

morphology operators, 263
MSE, 21, 128, 186
multichannel filtering, 275
multiple linear regression, 265, 266
multiple regression model, 249
multiplicative watermark embedding, 221
multiresolution, 33, 36, 37

design, 36

multiresolution (continued)
estimator, 37

operator, 41
multiset, 55

N
neural networks, 23, 83, 126, 150, 187, 322

functional-link artificial neural
networks (FLANN), 191
trigonometric expansion, 191, 197

NML, 98, 100
NMSE, 316
noise, 184

chaotic, 184
Gaussian, 6, 186, 195, 305, 336,

339, 342, 344
logistic, 184, 195

noise adaptive soft-switching median
(NASM), 314, 315

noise operator, 9
nominal variable, 49, 55, 70–72, 75
nonlinear dynamics, 205
nonlinear image filtering, 244
nonmaximum suppression, 304
nonstationary processes, 1
nonstationary stochastic systems, 1
normalization factor, 97
normalized maximum likelihood, 80, 92

O
observed moments, 251
opening, 245, 247, 249, 260
opening the background, 247
opening the foreground, 247
opening-granulometry, 245, 248
operator, 17
optimal filtering, 279, 283
ordinal variable, 50, 55, 70
outliers, 305

P
pairwise vector ordering, 340
parallel evolution, 239, 253
parallel interconnection, 74
parameter evolution, 255
partial update, 198

block partial update, 198
partial errors, 198
set membership filtering, 198

partially ordered set, 54
pattern, 21
pattern spectrum, 245–248, 256, 257
pattern spectrum moments, 247, 253, 257, 263
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PEF, 239, 249, 259, 260, 262–266
approach, 239, 249
method, 253, 262–264
modeling, 265
robustness, 260

perceptron predictor, 79, 85, 86, 88
Poincaré, 113, 114
point process, 254, 255, 266
polynomial filters, 188
poset, 54

see partially ordered set, 54, 55
power amplifier, 141–149, 151–153, 156–160,

162–165
Pratt’s figure of merit, 344
predict texture class membership, 239
predict time, 255
predict time state, 239
prediction of time state, 265, 266
predistortion, 155, 156, 160, 162–165
principal components analysis

(PCA), 303, 324
PSOLA, 108

Q
quality control applications, 265
quantization, 34, 83, 99, 160, 233, 331
quantum Langevin equation, 9
quasiclassical Langevin equation, 9

R
radial basis function, 125–127, 134, 187
random deletion, 61, 62
random growth process, 264
random insertion, 62
random permutation, 60
random substitution, 60, 61
receiver operating characteristic

(ROC) curve, 208
recurrence time, 230
regression, 251

equation, 250, 256
model, 250–252, 254, 263
modeling, 239, 252

robust color morphological gradient, 340

S
semigroup, 53, 55
shadow elimination, 324
shadows, 324
Shannon (entropy) measure, 66–69
shape and size information, 263
shape information, 245
shape-based textures, 263

signal-to-noise-and-distortion ratio, 153, 154,
156, 165

Simpson measure, 66–69
size and shape information, 244, 246
size distribution, 245–247
skew tent map, 210
smaller training sets, 244
sparse structure, 83
spatial point pattern, 254
spatial random processes, 245
spatially resolution constrained, 35
spectral regrowth, 151–153, 164, 165
state of evolution, 244
state of evolution or severity of corrosion, 254
static textures, 263
stationary solution, 8
stationary spectrum, 8
statistical moments, 246
statistical texture, 239–241
statistical texture characteristics, 244
stochastic differential equation, 3
stochastic textures, 261
structural opening, 245
structural texture, 239, 240
subsampling, 33
subwindow, 34
supgenerating function, 23
switched filter, 302, 313–315

T
Teager-Kaiser operator, 108
template matching, 303
ternary predictor, 79, 85, 86, 88
testing example, 21
texture, 239

analysis, 239–241, 243, 263
classes, 240
classification, 240, 242, 243, 248, 263
classifier, 240, 244
elements, 244, 263
evolution, 239, 244, 253
feature descriptors, 246
features, 239
growth, 255
image, 239, 241, 242, 246, 248, 249, 263
process, 245, 253
synthesis and analysis, 249

thresholding, 304
time classes, 249
time status of the image, 250
time-dependent Brownian motion, 11
time-dependent power spectrum, 2
time-dependent stochastic spatial

point pattern, 253

A print edition of this book can be purchased at
http://www.hindawi.com/spc.6.html

http://www.amazon.com/dp/9775945372

http://www.hindawi.com/spc.6.html
http://www.amazon.com/dp/9775945372


Index 361

tolerance, 258, 260, 262

trained filter, 322
training example, 21
transient behavior, 5
transient spectrum, 7
translation, 18–20, 240, 245
turbulence, 104–106, 109, 111, 113

U
UCI mushroom dataset, 63–69
underlying mode, 310–312
underlying model parameters, 254

V
vector angle, 333
vector directional filter, 325
vector gradient (VG) edge detector, 336
vector median, 274, 306, 308, 324
vector order statistics color edge detectors, 337
vector range, 337
vertical translation, 18, 19
Volterra, 149, 150, 157, 161
Volterra filters, 186–188

higher-order, 189, 195
homogeneous, 189, 194
quadratic, 189, 190, 193, 196, 197
simplified, 192

vortex, 105, 106

W
watermark, 207

detection, 207
embedding, 207
embedding factor, 211
generation, 207
key, 207

watermarking, 205
weighted median filter, 315
weighted vector median, 274
Wiener process, 5
Wigner distribution, 3
Wigner spectrum, 3
window, 17
window configuration, 17
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