
EU
R

A
SI

P
 B

o
o

k
Se

ri
es

 o
n

 S
ig

n
al

 P
ro

ce
ss

in
g

 a
n

d
 C

o
m

m
u

n
ic

at
io

n
s High-Fidelity

Multichannel
Audio Coding

Dai Tracy Yang, Chris Kyriakakis, and C.-C. Jay Kuo

High-Fidelity Multichannel Audio Coding

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

EURASIP Book Series on Signal Processing and Communications
Editor-in-Chief: K. J. Ray Liu
Editorial Board: Zhi Ding, Moncef Gabbouj, Peter Grant, Ferran Marqués, Marc Moonen,
Hideaki Sakai, Giovanni Sicuranza, Bob Stewart, and Sergios Theodoridis

Hindawi Publishing Corporation
410 Park Avenue, 15th Floor, #287 pmb, New York, NY 10022, USA
Nasr City Free Zone, Cairo 11816, Egypt
Fax: +1-866-HINDAWI (USA toll-free)

© 2006 Hindawi Publishing Corporation

All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording,
or any information storage and retrieval system, without written permission from the publisher.

Cover Image: Mehau Kulyk/Science Photo Library

ISBN 977-5945-24-0

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

EURASIP Book Series on Signal Processing and Communications, Volume 2

High-Fidelity Multichannel Audio Coding
Dai Tracy Yang, Chris Kyriakakis, and C.-C. Jay Kuo

Hindawi Publishing Corporation
http://www.hindawi.com

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Dedication

To Ruhua, Joshua, Junhui, and Zongduo
— Dai Tracy Yang

To Wee Ling, Anthony, and Alexandra
— Chris Kyriakakis

To Terri and Allison
— C.-C. Jay Kuo

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Preface

Audio is one of the fundamental elements in multimedia signals. Audio signal pro-
cessing has attracted attention from researchers and engineers for several decades.
By exploiting unique features of audio signals and common features of all multi-
media signals, researchers and engineers have been able to develop more efficient
technologies to compress audio data. Although books on digital audio have been
available some time, the subject of multichannel audio coding techniques has not
yet been addressed in great detail.

With many years of teaching and research in the field of digital audio signal
processing and digital audio compression, we see a need for an advanced audio
coding book that covers recent developments in this field. When we started this
book project, we had a smaller scope. Our objective was to present several inno-
vative compression techniques for multichannel audio sources and publish it as a
research monograph. However, after the first draft, we received valuable comments
from our colleagues and anonymous reviewers. With their encouragement, we de-
cided to extend the coverage of the book by including more background material
to make it a senior undergraduate or a graduate level textbook on advanced au-
dio coding techniques. Special thanks also go to Dr. Hongmei Ai for her valuable
discussions and suggestions when we developed and tested our new audio coding
algorithms.

This book includes three parts. The first part covers the basic topics on au-
dio compression, such as quantization, entropy coding, psychoacoustic models,
and sound quality assessment. The second part of the book highlights the current
most prevalent low-bit-rate high-performance audio coding standard—MPEG-4
Audio. More emphasis is given to the audio standards that are capable of support-
ing multichannel signals, that is, MPEG Advanced Audio Coding (AAC), includ-
ing the original MPEG-2 AAC specification, additional MPEG-4 toolsets, and the
most recent aacPlus standard. The third part of this book introduces several inno-
vative multichannel audio coding methods, which can further improve the coding
performance and expand the available functionalities of MPEG AAC. This section
is more suitable for graduate students and researchers.

Dai Tracy Yang, Chris Kyriakakis,
and C.-C. Jay Kuo

Los Angeles, CA
August 17, 2005

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Contents

Dedication v

Preface vii

1. Introduction to digital audio 1
1.1. Digital audio coding 1

1.1.1. Representing digital audio signals 1
1.1.2. Building blocks of digital audio codecs 3
1.1.3. Lossy compression and lossless compression 3

1.2. Fundamentals of digital signal processing 4
1.2.1. Fourier transform 4
1.2.2. Sampling operation 5
1.2.3. Sampling theorem and aliasing 7

1.3. Multichannel audio 12
1.3.1. Perceptual cues 13
1.3.2. Surround sound 14
1.3.3. Surround sound standards 15
1.3.4. A future surround sound system 17

1.4. Outline of this book 18

2. Quantization 21
2.1. Scalar quantization 21

2.1.1. Uniform quantization 21
2.1.2. Nonuniform quantization 25

2.2. Vector quantization 26
2.2.1. Nearest-neighbor quantizers 28
2.2.2. Optimality of vector quantizers 29
2.2.3. Vector quantizer design 31

2.3. Bit allocation 32
2.3.1. Problem of bit allocation 33
2.3.2. Optimal bit allocation results 33

3. Entropy coding 35
3.1. Introduction to information theory 35
3.2. Huffman coding 38

3.2.1. Huffman coding algorithm 38
3.2.2. Variance of Huffman codes 39
3.2.3. Huffman decoding 40
3.2.4. Adaptive Huffman coding 41

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

x Contents

3.3. Arithmetic coding 42
3.3.1. Arithmetic coding algorithm 42
3.3.2. Implementation issues 44
3.3.3. Solving underflow problem 47
3.3.4. Adaptive arithmetic coding 48

3.4. QM coding 51
3.4.1. QM encoder 51
3.4.2. QM decoder 55
3.4.3. Probability estimation 55

4. Introduction to psychoacoustics 59
4.1. Perception of loudness 59
4.2. Masking 61

4.2.1. Frequency masking 62
4.2.2. Temporal masking 63
4.2.3. Interaural masking 64

5. Subjective evaluation of audio codecs 65
5.1. Introduction 65
5.2. Listening environment specifications 65
5.3. Testing methodology 68
5.4. Data analysis after subjective listening tests 69

5.4.1. Mean 69
5.4.2. Variance 69
5.4.3. Standard deviation 71
5.4.4. Standard error of the mean 72
5.4.5. Confidence interval 73

6. MPEG-4 audio coding tools 77
6.1. Introduction to MPEG-4 audio 77
6.2. MPEG-4 audio tools 79

6.2.1. MPEG-4 natural sound coding tools 81
6.2.2. MPEG-4 audio synthesis tools 87

7. MPEG advanced audio coding 91
7.1. Introduction to advanced audio coding 91
7.2. MPEG-2 AAC 92

7.2.1. Overview of MPEG-2 AAC 92
7.2.2. Psychoacoustic model 94
7.2.3. Gain control 94
7.2.4. Transform 95
7.2.5. Spectral processing 98
7.2.6. Quantization 102
7.2.7. Entropy coding 103

7.3. New features in MPEG-4 AAC 105
7.3.1. Perceptual noise substitution 106

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Contents xi

7.3.2. Long-term prediction 107
7.3.3. TwinVQ 108
7.3.4. Low-delay AAC 109
7.3.5. Error-resilient tools 111
7.3.6. MPEG-4 scalable audio coding tools 112

7.4. MPEG-4 high-efficiency AAC 118
7.4.1. Background of SBR technology 119
7.4.2. Basic principle of SBR technology 121
7.4.3. More technical details on high-efficiency AAC 122

8. Introduction to new audio coding tools 125
8.1. Motivation and overview 125

8.1.1. Redundancy inherent in multichannel audio 125
8.1.2. Quality-scalable single compressed bitstream 126
8.1.3. Embedded multichannel audio bitstream 126
8.1.4. Error-resilient scalable audio bitstream 127

8.2. Audio coding improvements 127
8.2.1. Interchannel redundancy removal approach 128
8.2.2. Audio concealment and channel transmission strategy

for heterogeneous network 129
8.2.3. Quantization efficiency for adaptive Karhunen-Loève

transform 129
8.2.4. Progressive syntax-rich multichannel audio codec design 130
8.2.5. Error-resilient scalable audio coding 130

9. Interchannel redundancy removal and channel-scalable decoding 133
9.1. Introduction 133
9.2. Interchannel redundancy removal 133

9.2.1. Karhunen-Loève transform 133
9.2.2. Evidence for interchannel decorrelation 135
9.2.3. Energy compaction effect 138
9.2.4. Frequency-domain versus time-domain KLT 141

9.3. Temporal adaptive KLT 143
9.4. Eigen-channel coding and transmission 147

9.4.1. Eigen-channel coding 147
9.4.2. Eigen-channel transmission 149

9.5. Audio concealment for channel-scalable decoding 150
9.6. Compression system overview 152
9.7. Complexity analysis 154
9.8. Experimental results 155

9.8.1. Multichannel audio coding 155
9.8.2. Audio concealment with channel-scalable coding 157
9.8.3. Subjective listening test 160

9.9. Conclusion 162

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

xii Contents

9.10. Appendix: Karhunen-Loève expansion 163
9.10.1. Definition 163
9.10.2. Features and properties 163

10. Adaptive Karhunen-Loève transform and its quantization efficiency 165
10.1. Introduction 165
10.2. Vector quantization 166
10.3. Efficiency of KLT decorrelation 167
10.4. Temporal adaptation effect 172
10.5. Complexity analysis 176
10.6. Experimental results 176
10.7. Conclusion 177

11. Progressive syntax-rich multichannel audio codec 179
11.1. Introduction 179
11.2. Progressive syntax-rich codec design 180
11.3. Scalable quantization and entropy coding 182

11.3.1. Successive approximation quantization 182
11.3.2. Context-based QM coder 186

11.4. Channel and subband transmission strategy 187
11.4.1. Channel selection rule 187
11.4.2. Subband selection rule 188

11.5. Implementation issues 191
11.5.1. Frame, subband, or channel skipping 191
11.5.2. Determination of the MNR threshold 192

11.6. Complete description of PSMAC codec 192
11.7. Experimental results 193

11.7.1. Results using MNR measurement 194
11.7.2. Subjective listening tests 196

11.8. Conclusions 197

12. Error-resilient scalable audio codec design 199
12.1. Introduction 199
12.2. WCDMA characteristics 201
12.3. Layered coding structure 201

12.3.1. Advantages of the layered coding 201
12.3.2. Main features of scalable codec 202

12.4. Error-resilient codec design 203
12.4.1. Unequal error protection 203
12.4.2. Adaptive segmentation 206
12.4.3. Frequency interleaving 207
12.4.4. Bitstream architecture 209
12.4.5. Error control strategy 209

12.5. Experimental results 210
12.6. Conclusions 213

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Contents xiii

12.7. Discussion and future work 213
12.7.1. Discussion 213
12.7.2. Future work 214

Bibliography 215

Index 225

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

1
Introduction to digital audio

Digital audio pushes the development of many diverse engineering and manufac-
turing disciplines. Although the basic underlying concepts of digital audio have
been well understood since the 1920s, mature technology for commercialized dig-
ital audio was not ready for 50 years until the 1970s. Because of the complex prop-
erty of the digital audio, we would like to start our discussion from the basic topics.
Particularly, the information about the digital audio codec, audio signal process-
ing, and multichannel audio will be introduced in this chapter.

1.1. Digital audio coding

Before the introduction of digital audio, audio signals have been represented in
analog form. Analog signals are often stored in audio tapes and disks. As compared
with digital audio, analog audio has several main disadvantages.

(1) Compression. It is much more difficult to compress analog audio effec-
tively, that is, minimizing the file size for storage and/or communication.

(2) Rendering. Analog audio is vulnerable to sound rendering. Each time we
copy or process analog audio signals, we add noise to the original signals so that
the quality of the sound degrades.

(3) Quality enhancement. Analog audio is broadcast by amplitude modula-
tion (AM) and frequency modulation (FM) techniques today. The received audio
quality is usually poor due to transmission channel noise. It is relatively difficult
and expensive to apply sophisticated analog signal processing techniques for audio
quality enhancement.

Representing audio signals in digital form allows us to achieve the above goals
more easily. In this section, we will provide an overview on digital audio represen-
tation and coding.

1.1.1. Representing digital audio signals

The most prevalent audio representation is to store the sound as a set of ampli-
tude samples, that is, to represent the volume of the sound as a changing func-
tion over time. The idea behind digital audio is to use numbers to represent the
physical sound via an analog-to-digital (A/D) conversion process. Figures 1.1(a)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

2 Introduction to digital audio

A
m

pl
it

u
de

Time

(a)

A
m

pl
it

u
de

Time

(b)

Figure 1.1. (a) Analog signal representation and (b) digital signal representation.

and 1.1(b) show a signal represented in analog and digital forms, respectively,
where each diamond in Figure 1.1(b) represents one sample. The A/D conver-
sion process involves sampling and quantization in two main steps as detailed be-
low.

1.1.1.1. Sampling period and frequency

We need to store each sample’s amplitude as a function of a discrete index. Fur-
thermore, we should have the relative time information of these samples so that
we know the proper time for a given amplitude of the sound to occur when digital
signals are reproduced. Typically, the time interval between two adjacent samples
remains constant. We call the rate at which each sample is extracted the sampling
frequency or the sampling rate, which is described in terms of number of sam-
ples per second, or Hertz (Hz). Commonly adopted sampling frequencies include
8 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and 48 kHz. Generally speak-
ing, the higher a sampling frequency is, the better the reproduction of the digital
sound can achieve. Lower sampling rates are usually used in telephone quality
sound or speech signals. Higher sampling rates are widely used in compact disk
(CD) music signals.

1.1.1.2. Quantization and sample resolution

Sample resolution or bit depth determines how precisely the sample’s amplitude is
recorded or stored. An n-bit sample resolution allows 2n different possible ampli-
tude values. Intuitively, the larger a sample resolution is, the closer its digital signal
value approaches that of the analog signal. A resolution of 16 bits per sample is the
most commonly used sample resolution nowadays. However, 8-bit, 24-bit, and
32-bit resolutions are also available. Among all these bit resolutions, the 8-bit per
sample case provides the lowest sound quality and is less popular than other bit
resolutions.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Digital audio coding 3

1.1.1.3. Channels

Sound can be stored in more than one channel. Most of us have the experience
that the same music played back from a home theater setting is more appealing
than that played back from a CD player, let alone from a single speaker. Studies
have shown that increasing the sampling frequency, the sample resolution, and
the number of channels all improve the quality of the reproduced digital sound.
However, increasing the number of channels gives more degree of quality improve-
ment of reconstructed audio. More information about multichannel audio is given
in Section 1.3.

1.1.2. Building blocks of digital audio codecs

Figure 1.2 shows a typical encoding and decoding process for a general digital au-
dio codec. At the encoder side, a recording device first captures the analog signal
from the sound source, then samples and digitizes the signal. The device that per-
forms analog-to-digital conversion is called the analog-to-digital converter or A/D
converter. Signals coming from the A/D converter s(n) are referred to as uncom-
pressed digital signals, which will be then processed by the encoder. The encoder
is the compression engine, which performs digital signal processing and entropy
coding. Depending on the desired compression result, the encoder can be designed
with different complexity ranging from extremely simple to highly sophisticated.
The output from the encoder is called bitstream, which contains compressed sig-
nals and cannot be understood by regular player without a matching decoding
process.

The decoding part of a general digital audio codec is depicted in Figure 1.2(b).
The decoder, which is the decompress engine, performs entropy decoding and dig-
ital signal processing. The output of the decompress engine r(n) is uncompressed
digital signals and can be played back by regular players. In order to listen to un-
compressed signals r(n), a digital-to-analog conversion or D/A conversion need to
be involved to reconstruct the digital signal to physical sound.

1.1.3. Lossy compression and lossless compression

Any compression technique belongs to either lossy compression or lossless com-
pression. The goal of lossless compression is to encode the data in a way such that
the matching decoder is able to reconstruct an exact copy of the original signals
that are input to the encoder. In other words, no information loss is acceptable
when designing a lossless encoder and its decoding process should be an exact in-
verse of the encoding process. On the contrary, the lossy compression allows the
encoder engine to discard unimportant information. Thus the reconstructed sig-
nal is only an approximation of the original signal. Take Figure 1.2 as an example,
with lossless compression, we are able to generate the exact same digital signals
from the decoder, that is, signals input to the encoder s(n) is the same as the signal
output from the decoder r(n); whereas, with lossy compression, the decoded signal
r(n) and the original digital signal s(n) are no longer identical.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

4 Introduction to digital audio

Digital signal
processing &

entropy coding

Analog-to-digital
conversion

Sound
source

Recorder

s(n)

Encoder
Compressed

bitstream

10110 . . . 110 . . .

(a)

Entropy coding
& digital signal

processing

Digital-to-Analog
conversion

Reconstructed
sound

Decoder

r(n)

Player
Compressed

bitstream

10110 . . . 110 . . .

(b)

Figure 1.2. Block diagram of a typical digital audio codec: (a) encoding part and (b) decoding part.

In digital audio coding, a lossy codec is also called a perceptual codec because
the design principle of a lossy audio codec is to remove the perceptually irrelevant
or unimportant information as much as possible so that the decoder can generate
a copy of sound file that is perceived as the identical or similar to the original au-
dio clips by human ears. Most of today’s popular audio coding techniques, such as
mp3, AAC, and so forth, are perceptual audio codecs. Many lossless audio com-
pression algorithms, such as Monkey Audio, DTS, Marian lossless, shorten, and so
forth, are also available either on the market or can be freely distributed. The most
cutting edge digital audio coding technology nowadays can achieve a compression
ratio of 1:32 or higher, while the best lossless compression algorithm can hardly
achieve a compression ratio of 1:3 for most sound source.

Looking back at the digital audio coding history, it is the lossy compression
that dramatically changes the way that people think about the portable music.
Fifty years ago, the only way for us to enjoy music at home is using gramophones,
whose player and disk are both large and bulky. After tapes are introduced, we
are able to carry the portable player and listen to songs while we are on the road.
However, compared to the current start-of-art portable music players, for example
ipod, these analog devices can never meet people’s more and more demanding
expectation. Thanks to the modern lossy audio compression techniques, without
which no one is able to enjoy their music for several hours with a device fit in their
palm.

1.2. Fundamentals of digital signal processing

1.2.1. Fourier transform

The audio signal is usually represented as a function of time when it is originally
generated or recorded. However, during the audio coder design, it is convenient to

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Fundamentals of digital signal processing 5

represent the same signal as a function of frequency. One important tool that al-
lows us to transform functions of time into corresponding functions of frequency
is called the Fourier transform. The analysis and synthesis formula of the Fourier
transform for the continuous signals are given by

X(jΩ) =
∫∞
−∞

x(t)e− j2πΩtdt,

x(t) =
∫∞
−∞

X(jΩ)e j2πΩtdΩ.
(1.1)

For discrete signals, the Fourier transform pair is defined as below:

X
(
e jω

) =
∞∑

n=−∞
x[n]e− jωn,

x[n] = 1
2π

∫ π

−π
X
(
e jω

)
e jωndω.

(1.2)

The Fourier transform pair provides complementary information about an
audio signal and provides more flexibity in audio signal processing. For more
thorough coverage on properties of Fourier transform and general digital signal
processing techniques, we refer to [19, 95].

1.2.2. Sampling operation

The discrete-time representation of a continuous-time signal can be obtained by
performing periodic sampling. That is, we set the value of a sampled signal x[n] to
the value of the continuous-time signal xc(t) at time t = nT :

x[n] = xc(nT), −∞ < n <∞, (1.3)

where T is called the sampling period, and its reciprocal fs = 1/T the sampling
frequency, which is in the unit of samples per second. The system that implement
the above mathematical operation is called an ideal continuous-to-discrete-time
(C/D) converter. It is ideal in the sense that a practical C/D converter cannot sam-
ple a signal at time instance t = nT . However, this mathematical simplification
allows us to focus on the main characteristics of a pure sampling process.

The ideal C/D converter can be decomposed into two stages as depicted in
Figure 1.3(a), where the first stage is an impulse train modulator and the second
stage is the conversion of the impulse train to a sequence. The effects of these
two operations are shown in Figures 1.3(b) and 1.3(c). Figure 1.3(b) illustrates
a continuous signal xc(t) being modulated by two impulse trains with different
sampling periods. The corresponding output sequences of Figure 1.3(b) are shown
in Figure 1.3(c).

To derive the frequency-domain relation between the input and output sig-
nals of an ideal C/D converter, let us first examine the relationship between xc(t)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

6 Introduction to digital audio

Conversion from
impulse train to

discrete-time
sequence

xc(t) xs(t) x[n] = xc(nT)
×

s(t)
C/D converter

(a)

xc(t)
xs(t)

−2T −T 0 T 2T

t

(b)

xc(t)
xs(t)

−2T −T 0 T 2T

t

(c)

x[n]

−2 −1 0 1 2

t

(d)

x[n]

−2 −1 0 1 2

n

(e)

Figure 1.3. Sampling with a periodic impulse train followed by conversion to a discrete-time se-
quence: (a) the block diagram of the overall system, (b) xs(t) with two sampling rates T1 and 2T1,
where the envelope of the continuous signal xc(t) is represented by the dashed line, and (c) the output
sequence with two different sampling rates.

and xs(t), where xs(t) is the impulse train modulated signal of xc(t). Since the
modulation signal s(t) is a periodic impulse train, that is

s(t) =
∞∑

n=−∞
δ(t − nT), (1.4)

where δ(t) is the unit impulse function or the Dirac delta function, we have

xs(t) = xc(t)s(t) = xc(t)
∞∑

n=−∞
δ(t − nT). (1.5)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Fundamentals of digital signal processing 7

With the “shifting property” of the impulse function, we can express xs(t) as

xs(t) =
∞∑

n=−∞
xc(nT)δ(t − nT). (1.6)

Next, let us determine the Fourier transform of xs(t). From (1.5), we know that
xs(t) is the product of xc(t) and s(t). Therefore, the Fourier transform of xs(t)
should be the convolution of the Fourier transforms of xc(t) and s(t), that is,

Xs(jΩ) = 1
2π

Xc(jΩ)∗ S(jΩ), (1.7)

where∗ denotes the convolution operation. It is known that the Fourier transform
of a periodic impulse train is a periodic impulse train,

S(jΩ) = 2π
T

∞∑
k=−∞

δ
(
Ω− kΩs

)
, (1.8)

where Ωs = 2π/T is the sampling frequency in radians/s. Thus, we have

Xs(jΩ) = 1
T

∞∑
k=−∞

Xc
(
jΩ− k jΩs

)
. (1.9)

The above equation describes the relationship between the Fourier transforms of
the original input signal xc(t) and the impulse train modulated signal xs(t) in the
frequency domain.

1.2.3. Sampling theorem and aliasing

As indicated in (1.9), the Fourier transform of xs(t) is actually proportional to
the summation of periodically repeated copies of Fourier transform of xc(t). The
copies of Xc(jΩ) are first shifted by integer multiples of the sampling frequency
before they are added together to produce the Fourier transform of xs(t). To shed
light on the meaning of this important equation, let us consider an example where
the input signal has a finite bandwidth. In Figure 1.4, we illustrate the frequency-
domain effect after the time-domain sampling for a bandlimited input signal. The
spectrum of the input signal is depicted in Figure 1.4(a), which has the highest
nonzero frequency component ΩN . The periodic impulse train S(jΩ) and the re-
sulting modulated signal Xs(jΩ) are shown in Figures 1.4(b) and 1.4(c), respec-
tively.

The sampling frequency is larger than twice of the signal’s bandwidth in Figure
1.4(c). In Figure 1.4(d), we show the corresponding output signal Xs(jΩ) when
the sampling frequency is less than twice of the signal’s bandwidth. By comparing
Figures 1.4(c) and 1.4(d), we see clearly that when

Ωs −ΩN > ΩN or Ωs > 2ΩN , (1.10)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

8 Introduction to digital audio

Xc(jΩ)

1

−ΩN ΩN

Ω

(a)

S(jΩ)

2π/T

−2Ωs −Ωs 0 Ωs 2Ωs

Ω

(b)

Xs(jΩ)
1/T

−ΩN ΩN Ωs

Ω

(Ωs−ΩN)

(c)

Xs(jΩ)
1/T

Ω

(Ωs−ΩN)

(d)

Figure 1.4. The effect in the frequency domain after sampling in the time domain: (a) the spectrum of
a bandlimited input signal, (b) the spectrum of the sampling function, (c) the spectrum of the sampled
signal with Ωs > 2ΩN , and (d) the spectrum of the sampled signal with Ωs < 2ΩN .

the shifted versions of Xc(jΩ) do not overlap with each other. Thus, by adding
them to get the Fourier transform of xs(t), signals within the range of [−ΩN ,ΩN]
is simply a 1/T scaled version of the original Fourier transformed signal Xc(jΩ).
Consequently, the original continuous signal xc(t) can be recovered from xs(t)
with an ideal lowpass filter.

The system to reconstruct the original signal from xs(t) is shown in Figure
1.5(a), where Hr(jΩ) is an ideal lowpass filter with gain T and cutoff frequency Ωc

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Fundamentals of digital signal processing 9

such that

ΩN < Ωc <
(
Ωs −ΩN

)
. (1.11)

Figures 1.5(b) and 1.5(c) show the frequency-domain signal of xc(t) and xs(t)
when Ωs > 2ΩN . Since

Xr(jΩ) = Hr(jΩ)Xs(jΩ), (1.12)

it follows that

Xr(jΩ) = Xc(jΩ), (1.13)

as depicted in Figure 1.5(e).
However, if inequality (1.10) does not hold, that is, Ωs ≤ 2ΩN , shifted copies

of Xc(jΩ) overlap with each other. By adding them together, there exists some
interference between adjacent copies so that the spectrum of the original signal
is modified. Consequently, the resulting signal Xs(jΩ) can no longer be used to
recover the original signal xc(t) as illustrated in Figure 1.4(d). In this case, the
reconstructed output xr(t) after passing xs(t) into the lowpass filter is a distorted
version of the original input signal. This distorted version is called the aliasing of
the original signal.

An example of aliasing is illustrated in Figure 1.6. The original signal

xc(t) = cosΩ0t, (1.14)

as shown in Figure 1.6(a), is sampled with sampling frequency Ωs. Figures 1.6(b)
and 1.6(c) depict the Fourier transform of xs(t) when Ω0 < Ωs/2 and Ω0 > Ωs/2.
The corresponding Fourier transform of the lowpass filtered output for Ω0 <
Ωs/2 = π/T and Ω0 > π/T are shown in parts (d) and (e), respectively, where
the cutoff frequency of the lowpass filter Ωc is equal to Ωs/2. In the nonaliasing
case, as shown in parts (b) and (d), the reconstructed output xr(t) is

xr(t) = cosΩ0t. (1.15)

When aliasing happens as shown in parts (c) and (e), the reconstructed output is

xr(t) = cos
(
Ωs −Ω0

)
t. (1.16)

In other words, the higher-frequency signal cosΩ0t is aliased to the lower-
frequency signal cos (Ωs −Ω0)t after sampling and lowpass filtering.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

10 Introduction to digital audio

Hr(jΩ)
xc(t) xs(t) xr(t)

×

s(t) =
∞∑

n=−∞
δ(t − nT)

(a)

Xc(jΩ)

1

−ΩN ΩN

Ω

(b)

Xs(jΩ)

1/T

Ωs > 2ΩN

−Ωs −ΩN ΩN Ωs

Ω

(c)

Hr(jΩ)

T

ΩN < Ωc < (Ωs −ΩN)

−Ωc Ωc

Ω

(d)

Xr(jΩ)

1

−ΩN ΩN

Ω

(e)

Figure 1.5. Reconstruction of a continuous-time signal from its samples using an ideal lowpass filter.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Fundamentals of digital signal processing 11

Xc(jΩ)

π π

−Ω0 0 Ω0

Ω

(a)

Xs(jΩ)T
Ω0 < π/T = Ωs/2

Ωs −Ω0 0 Ω0 Ωs

Ω

Ωs/2

π/T π/T

(b)

Xs(jΩ)
T

Ω0 > π/T = Ωs/2

Ωs −Ω0 0

Ω

Ω0 Ωs

Ωs/2

π/T π/T

(c)

Xr(jΩ)

π π

Ω0 < π/T

−Ω0 0 Ω0

Ω

No aliasing

(d)

Xr(jΩ)

π π

Ω0 > π/T

−(Ωs −Ω0) 0 (Ωs −Ω0)

Ω

Aliasing

(e)

Figure 1.6. The effect of aliasing when sampling a cosine signal.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

12 Introduction to digital audio

ITD

Sound arrives first
at the closest ear

(a)

ILD

Head shadow reduces
sound level at

the farthest ear

(b)

Figure 1.7. For low frequencies (typically below 1 kHz), the primary localization mechanism in the
azimuth plane is ITD. The listener perceives small changes in the time of arrival of sound at the two
ears and maps those changes into an angle of incidence. For higher frequencies, as the wavelength of
sound becomes smaller than the head, localization is achieved through detection of level differences at
the two ears caused by head shadowing.

The above discussion leads to the famous Nyquist sampling theorem as stated
below.

Nyquist sampling theorem. Let xc(t) be a bandlimited signal with

Xc(jΩ) = 0, for |Ω| > ΩN . (1.17)

Then, xc(t) can be uniquely determined by its samples x[n] = xc(nT),n = 0,±1,
±2, . . . , if

Ωs = 2π
T

> 2ΩN . (1.18)

The frequency ΩN is called the Nyquist frequency, and the sampling frequency must
exceed 2ΩN that is referred to as the Nyquist rate.

1.3. Multichannel audio

Audio technology has already reached the limits of human hearing for dynamic
range with current digital audio systems operating at word lengths of up to 24 bits.
The requirements for frequency response have been surpassed by moving to sam-
pling rates past 48 kHz to 96 kHz and beyond. Future growth will inevitably come
in the number of audio channels as human perception can hear many more di-
rections than what current 5.1 channel surround sound systems provide. In this

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Multichannel audio 13

section, we provide a review of the development of audio rendering from mono,
to stereo, to 5.1 channel surround sound, and to 10.2 channel immersive audio. A
great deal of the historical information is drawn from personal communications
with Professor Tomlinson Holman and his presentations on “The history and fu-
ture of surround sound” [54].

1.3.1. Perceptual cues

The reproduction of sound that is convincing enough to be indistinguishable from
“the real thing” requires the audio rendering system to be capable of synthe-
sizing as many of the necessary perceptual cues as possible. These cues include
information about the location of each sound source in the recording space, as
well as the interaction of each sound source with the acoustical elements of the
environment.

The human sound localization process relies on analysis of signals presented
at the two ears. Differences in intensity, time of arrival, and direction-dependent
spectral changes caused by the outer ear and upper torso are the main elements
that provide localization cues. The study of these cues started as early as 1882 [125]
and identified two basic mechanisms that are responsible for source localization:
(1) interaural time differences (ITDs) and (2) interaural level differences (ILDs).
A later theory by Lord Rayleigh [122] proposed that ITD and ILD cues each op-
erate in different wavelength regimes. For high frequencies (short wavelengths),
the listener’s head casts an acoustical shadow giving rise to a reduced sound level
at the ear farthest from the sound source ILD (Figure 1.7(a)). For low frequen-
cies (long wavelengths), the head is very small compared to the wavelength and
localization is based on differences in the time of arrival of sound at the two ears
ITD (Figure 1.7(b)). The two mechanisms of interaural time and level differences
formed the basis of what became known as the duplex theory of sound localiza-
tion.

These two basic principles for sound localization formed the basis of stereo-
phony. It started with the work of Blumlein [14] who was the first to recognize
that it was possible to locate a sound within a range of azimuth angles by using
an appropriate combination of time and level differences. His work focused on
the development of corresponding microphone techniques that would allow the
recording of the amplitude and phase differences necessary for stereo reproduc-
tion. Fletcher, Snow, and Steinberg at Bell Laboratories [33, 119, 121] took a dif-
ferent approach. They examined the question “how many loudspeaker channels
are required to create an exact representation of a sound scene?” Their theoretical
findings showed that if an infinite number of microphones are used to capture a
sound scene, then one can achieve perfect reproduction using an infinite number
of loudspeakers, similar to the Huygens principle of secondary wavelets in optics.
While this made for an interesting theoretical result, the Bell Labs researchers real-
ized that practical implementations would require a significantly smaller number
of channels. They showed that a three-channel system consisting of left, center, and
right channels in the azimuth plane could represent the lateralization and depth of

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

14 Introduction to digital audio

the desired sound field with acceptable accuracy. Thus, stereo was born as a three-
channel system. The first such stereophonic system was demonstrated in 1934 with
the Philadelphia Orchestra conducted by Leopold Stokowski performing from the
Academy of Music in Philadelphia for an audience in Washington, DC Constitu-
tion Hall over telephone lines.

Although the reproduction of localization cues is a critical component of au-
dio rendering, it is by no means the only cue. When listening to a real sound source
in a physical space, the listener perceives not only the direction of the source, but
also its interaction with the acoustics of the space. One does not need visual ref-
erence to be able to tell that a violin is being reproduced on the stage of a large
concert hall or in a small studio. In addition to the direct sound from the source,
sound arrives at the listener’s ears from an infinite number of directions as it in-
teracts with complex acoustical surfaces in the room. The role of these reflections
in the perception of the sound source depends on their direction of arrival and the
amount of time they are delayed relative to the direct sound from the sound source.
For example, in a concert hall, reflections arriving from the side walls at angles in
the range of 40◦ to 80◦ and with a delay of 30 to 50 milliseconds are responsible
for cues on the width of the space and the perceived width of the source in that
space. Other reflections in the same time frame, but from the surfaces above the
stage, provide cues about the depth of the stage. As reflections continue to bounce
from different surfaces, progressively they longer paths to the listener. Once the
arrival time exceeds a certain limit, the reflections are no longer discrete events,
but rather become a statistical continuum with no perceived directionality. This
component of the sound field (called the reverberant field) provides cues about
the reverberation characteristics of the space.

From the description above, it is evident that a realistic rendering of sound
sources in a physical space must contain not only the required localization cues
provided by time and level differences of the direct sound, but also temporally and
spatially distributed cues that are created by the interactions with the space. The
limited number of channels in stereo and even 5.1 channel surround systems are
not sufficient to reproduce all of these complex cues. This can only be achieved by
increasing the number of audio channels.

1.3.2. Surround sound

The evolution of surround sound followed different paths in the consumer elec-
tronics and film industries. Film sound was historically where most of the innova-
tions organized. The Fantasound system created by the Walt Disney company in
the late 1930s used three screen channels, two side channels, a ceiling, and a back
channel (played over two loudspeakers). It was the first multichannel system ever
created, but it was only used in one film, “Fantasia.”

In the 1950s, almost 20 years after Fantasia, another multichannel sound for-
mat was developed for Cinerama and later for Cinemascope. Film sound was
already being reproduced over three front loudspeakers, but these new formats
included an additional monophonic channel that was split to two loudspeakers

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Multichannel audio 15

behind the audience and was known as the effects channel. This channel increased
the sense of envelopment for the audience, but it also suffered from a serious limi-
tation. Listeners seated on the center line with respect to the rear loudspeakers per-
ceived “inside-the-head” localization similar to the effect of stereo images repro-
duced over headphones. Listeners seated off-center localized the channel to the ef-
fects loudspeaker that was closest to them as dictated by the law of the first-arriving
wavefront, thus destroying the sense of envelopment desired [53]. The solution to
these problems was found shortly after that by moving two effects channels repro-
duced over an array of loudspeakers along the sides of the theater to create a more
diffuse sound field.

In the 1960s, home Hi-Fi systems began to spread, but they took a step back
by using initially one and eventually two channels. This was due to the limita-
tion of the delivery medium, the LP record, that was only capable of encoding
two channels on its groove walls. The first attempt at consumer surround sound
came in the early 1970s with Quad [113, 112]. In order to deliver the four channels
in quadraphonic recordings over a two-channel phonograph record, an encoding
and decoding scheme was developed that used 4:2:4 matrix encoding/decoding
and relied on phase manipulation of the original stereo signals [88]. However the
system did not take into account psychoacoustic considerations and instead used
a loudspeaker placement that was symmetrical around the listener (two channels
in front and two channels in the back). Later research [23] showed that human
listeners can localize sounds very precisely in the front hemisphere and less pre-
cisely to the sides and in the rear hemisphere. As a result, for a given number of
loudspeakers, it is always better to place more in the front and fewer in the back
of the listener. These limitations and the presence of several competing formats in
the consumer marketplace contributed to the demise of quadraphonic systems.

In the mid 1970s, Dolby introduced Dolby Stereo. It was based on the same
quad matrix method for encoding four channels into two channels, but it used
three front and one mono surround channels (split over two loudspeakers). In
1992, further enhancements were introduced through a new format that elimi-
nated matrix-based encoding and decoding and provided five discrete channels
(left, center, right, and two independent left and right surround channels) in a con-
figuration known as stereo surround. A sixth, low-frequency enhancement (LFE)
channel was introduced to add more headroom and to prevent the main speakers
from overloading at low frequencies. The LFE channel was limited in bandwidth
from 20120 Hz and so the system was named “5.1” by Tomlinson Holman (the
LFE channel bandwidth is actually 0.005 of the full audio bandwidth of 20 Hz to
20 kHz). In 1995, this system was selected by the ATSC as the standard for HDTV
in the US and shortly after that it also became the standard for DVD video.

1.3.3. Surround sound standards

In 1994, the Radiocommunication Assembly of the International Telecommunica-
tion Union (ITU) released a standards document entitled ITU-R BS.775-1 “Mul-
tichannel stereophonic sound with and without accompanying picture.” In the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

16 Introduction to digital audio

opening paragraph, the document states, the following: “Considering that it is
widely recognized that a two-channel sound system has serious limitations and
improved presentation is necessary”

The ITU document (http://www.itu.int/ITU-R/publications/index.html) went
on to recommend one universal multichannel stereophonic sound system that is
hierarchical and compatible with all broadcasting and recording standards. These
include

(1) mono;
(2) mono with mono surround with the surround channel played over two

loudspeakers (preferably decorrelated);
(3) two-channel stereo;
(4) two-channel stereo with one surround channel (split over two loud-

speakers);
(5) two-channel stereo with two surround channels;
(6) three-channel stereo;
(7) three-channel stereo with one surround channel (split over two loud-

speakers);
(8) three-channel stereo with two surround channels.

The requirements for each of the above systems include (i) control of the di-
rectional stability of the frontal sound image over a listening area larger than what
is possible with two-channel stereo; (ii) the ambient sensation should be signifi-
cantly enhanced over that provided by two-channel stereo; (iii) downward com-
patibility with sound systems that have a lower number of channels; (iv) upward
compatibility with sound systems that have more loudspeakers than available sig-
nal channels; and (v) the audio quality after decoding must be “subjectively indis-
tinguishable” from the reference for most types of program material.

For the case of five-channel surround sound, the standard recommends three
front loudspeakers and two rear loudspeakers (Figure 1.8). The left (L) and right
(R) front loudspeakers are to be placed at±30◦ relative to the central listening po-
sition. The center (C) loudspeaker is to be at 0◦ and the surround loudspeakers
(LS, RS) at an angle between 100◦ to 120◦. All loudspeakers should be equidistant
from the center listening position or compensated with time delay if that is not
possible. The number of audio channels used for playback in this format is five
with an optional low-frequency extension (LFE) signal channel that may be repro-
duced by a subwoofer loudspeaker.

This is an important standard that is widely adopted by the broadcast and
recording industries. However, although in the title the document states that the
standard is intended for program material with or without picture, it contains a
recommendation that would seem to contradict that claim following: “It is not
required that the side/rear loudspeakers should be capable of the prescribed image
locations outside the range of the front loudspeakers.” While this may be “rule”
for film sound, future surround sound formats may be used to place sound at
precise angular locations well outside the range of the front loudspeakers. In the
next section, we describe such a future format that uses several more channels than
the five prescribed in the ITU document.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Multichannel audio 17

10.2 enhancement

ITU-R BS 775-1

BS

LS RS

L SUB R SUB

LW RW

L

C

R
LH

elevation: 45◦
RH

elevation: 45◦

120◦

100◦ 100◦

120◦

30◦ 30◦55◦ 55◦

45◦ 45◦

Figure 1.8. In the 10.2 channel surround sound system, additional wide, rear surround, and height
loudspeakers are added to the standard five channels in the ITU recommendation. Also, two subwoofer
channels are used on either side of the listening area. In addition to the bass from the main channels
on the same side as each subwoofer, they also reproduce LFE information included in the program
material.

1.3.4. A future surround sound system

Rebscher and Theile [105] examined the relationship between listening area width
and the number of loudspeakers in the front plane. They showed that in order to
keep the imaging distortion associated with shifts in the phantom images to less
than 10%, the number of loudspeakers must increase as the width of the listening
area increases. For example, at a listening distance of three picture heights, the lis-
tening area width is 0.25 m for two loudspeakers, 0.5 m for three loudspeakers, and
1.5 m for four loudspeakers. This work implies that the three front loudspeakers in
today’s 5.1 channel surround sound systems are barely adequate to produce accu-
rate images. A listener that sits outside the 0.5 m listening area is subjected to high
imaging distortion. Furthermore, the placement of the surround loudspeakers at
±110◦ was a compromise in order to make the system more universal for different
types of program material. Theile showed in [105] that placing the surround loud-
speakers directly to the side of the listener (at±90◦) produced better envelopment,
while placing them at ±135◦ allowed for better imaging in the back.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

18 Introduction to digital audio

The only way around these problems is to increase the number of loudspeak-
ers. A new multichannel audio system was developed in the Immersive Audio
Laboratory of the Integrated Media Systems Center at the University of Southern
California jointly with Professor Tomlinson Holman. The purpose of this system,
called “10.2,” was to go one step further in filling the perceptual gaps left by the 5.1
channel system.

In a monograph on subjective preferences and acoustical design, Ando [10]
showed that controlling the direction, level, spectrum, and time of arrival of side-
wall reflections in a concert hall is a key factor in a good hall design. He found that
the preferred parameters over a wide range of listeners are 55◦ ± 20◦ for the direc-
tion of the first sidewall reflection, while the level and spectrum are preferred to
be the same as the direct sound. Based on these findings and on Theile’s imaging
distortion recommendations, we designed the 10.2 system to have a pair of “wide”
channels (left wide (LW) and right wide (RW)) at ±60◦ relative to the central lis-
tening position (Figure 1.8).

In the 10.2 system, the surround loudspeaker compromise discussed above
was addressed by adding a back surround loudspeaker at 180◦ directly behind the
central listening position. This fills the envelopment gap between the two loud-
speakers at ±110◦ and also allows for more precise placement of discrete sources
in the rear hemisphere.

With eight loudspeaker channels in the horizontal plane, this system provides
a significantly larger area over which imaging distortion is minimized. The re-
maining two channels are placed at a±45◦ azimuth angle and are elevated to a 45◦

angle in the median plane. These height channels (left high (LH) and right high
(RH)) are used to reproduce reflected sound from surfaces above the sound stage.

Content for this 10.2 channel immersive audio system is captured (or syn-
thesized) using various microphone techniques depending on the venue and type
of program material [92]. Classical music, for example, has been recorded in halls
with very good acoustical characteristics using a combination of main microphone
pairs, widely spaced outrigger microphones, choral or soloist microphones. In ad-
dition, microphones were placed in the back to capture the reflections in the hall
and also in the proscenium above the orchestra to capture the information neces-
sary for the height channels.

This new format and others that may come will inevitably utilize more chan-
nels than what current systems provide. Multichannel audio compression tech-
nology will have to be highly scalable in order to efficiently code the information
in such program material. The novel compression methods described in the third
part of this book are applicable not only to past mono, stereo, and surround for-
mats, but also to future surround sound systems.

1.4. Outline of this book

This book consists of three parts and thirteen chapters. The first part of this book
focuses on the basic knowledge of digital audio compression. Fundamental tech-
nologies on quantization, entropy coding, and psychoacoustics are covered from

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Outline of this book 19

Chapter 2 through Chapter 4. The second part of this book introduces the state-
of-the-art MPEG4 audio coding standards. More space is devoted to the MPEG’s
multichannel audio coding standard, that is, advanced audio coding. The last part
of this book discusses several new multichannel audio coding tools and is more
suitable for readers in the advanced level.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

2
Quantization

Quantization plays an important role in analog-to-digital conversion . It is usually
achieved by approximating an input number with its nearest approximate value
from a finite set of allowed values. The input value can be analog, that is, it may
be of any value in a continuous range of possible amplitudes. The output value
is always digital, that is, it is a uniquely specified value in the set {1, 2, 3, . . . ,N},
where N is the size of the set of output values. This chapter will present basic ideas
of scalar quantization, vector quantization, and bit allocation theory. For more
information about quantization, please refer to [38].

2.1. Scalar quantization

Scalar quantization maps an input value x into a finite set of output values y, that
is, Q : x → y. Figure 2.1 illustrates a scalar quantization by partitioning the real
line into cells, where boundaries of these cells are called decision levels. If the input
value x belongs to the ith cell, the output value of x is reconstruction value yi. In
other words, yi is the only representative for all values that fall in the ith cell and
yi is called the ith codeword.

The sizes of cells can be the same or different as indicated in Figure 2.1. If all
cells are of the same size, the resultant scheme is called the uniform quantization.
Otherwise, it is called the nonuniform quantization. The uniform quantization is
simple to implement. However, it may sacrifice the approximation performance if
the probability distribution of the input value deviates from the uniform distribu-
tion significantly.

2.1.1. Uniform quantization

The uniform quantizer is the most commonly used scalar quantizer due to its sim-
plicity. It is also known as a linear quantizer since its staircase input-output re-
sponse lies along a straight line (with a unit slope). Two commonly used linear
staircase quantizers are shown in Figure 2.2. They are called the midtread and the
midrise staircase quantizers. In this figure, the horizontal axes represent the input
value and the vertical axes represent the discrete output value. To design a uniform

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

22 Quantization

x1 x2 x3 · · · xN−2 xN−1

y1 y2 y3 · · · yN−1 yN

(a)

x1 x2 x3 · · · xN−2 xN−1

y1 y2 y3 · · · yN−1 yN

(b)

Figure 2.1. Illustration of a scalar quantizer by partitioning the real line.

x1 x9

y1

y8

(a)

x1 x8

y1

y9

(b)

Figure 2.2. Linear staircase quantizers: (a) midrise staircase quantizer, (b) midtread staircase quan-
tizer

quantizer, we have to find out the dynamic range of the input, determine the de-
sired resolution of the output (in terms of the number of quantization levels), and
select the proper type of quantizers (e.g., midtread or midrise).

From Figure 2.2, we have the following observation. The midrise quantizer
does not have the zero output level and any input signal will be quantized into an
even number of output steps. In contrast, the midtread quantizer is able to yield
the zero output and has an odd number of output steps. If the output is repre-
sented by R bits, the midrise quantizer and the midtread quantizer will have 2R

and 2R − 1 different codes, respectively. Although the midtread quantizers output
a smaller number of codewords, they generally generate a better quantization re-
sult for a given distribution of audio signal amplitudes by accommodating the zero
output value.

It is difficult to handle an input of a very wide dynamic range. If the majority
of input signal values are bounded by a range, say, from −Xmax to −Xmax, we may
want to clip values outside this range into this range. That is, any value smaller than
−Xmax is mapped to −Xmax while any value larger than Xmax is mapped to Xmax.
The quantization error caused by clipping is often larger than the quantization
error occurring in the regular cell, which may result in some noticeable artifact in

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Scalar quantization 23

−1 −3/4 −1/4 0 1/4 3/4 1

−1 0 1

11 10 00 01

Figure 2.3. A two-bit uniform midrise quantizer.

high fidelity audio signal representation. Thus, there is a tradeoff between signal
quality and the bit rate required for signal representation.

Once the bounded value Xmax and the number of bits per codeword, R, are
determined, the resolution Δ of the output can be computed accordingly: Δ =
2×Xmax/2R and Δ = 2×Xmax/(2R − 1) for the midrise quantizer and the midtread
quantizer, respectively.

In the following two examples, we explain the quantization procedure of the
midrise and the midtread quantizers when they are applied to input signals of
amplitude between −1 and 1.

Example (midrise quantizer). Let us consider a two-bit uniform midrise
quantizer as illustrated in Figure 2.3. The amplitude of the input signal is shown
at the left-hand side, which ranges from −1 to 1. For the two-bit quantizer, we can
split the input range into 4 equal intervals with assigned codewords 01, 00, 10, and
11 as shown in Figure 2.3. Note that the first bit of the codeword is the same for in-
put numbers with the same sign. In other words, the first bit is used to denote the
sign while the remaining bits are used for the magnitude. At the decoder side, we
should convert the 2-bit codes back to the signal sign and magnitude. This process
is called dequantization. The dequantization process is often implemented by a
simple table lookup. In this two-bit example, codes 01, 00, 10, and 11 are mapped
to values of 0.75, 0.25, −0.25, and −0.75, respectively. Following the same prin-
ciple, we can design midrise quantizers with more than two bits easily. A general
procedure to map input signals onto R-bit uniform midrise quantizer codes and
dequantize these codes back to signal amplitudes is shown in Algorithm 2.1.

Example (midtread quantizer). A two-bit midtread uniform quantizer is il-
lustrated in Figure 2.4, where the input range is divided into three parts. They are
quantized in values of 01, 00 (or 10), and 11, respectively. At the decoder end,
the dequantizer reconstructs codes 01, 00 (or 10), and 11 to 2/3, 0, and −2/3, re-
spectively. The quantization and dequantization procedure for an R-bit uniform
midtread quantizer is shown in Algorithm 2.2.

Quantization errors can be classified into two types: the round-off error and
the clipping (or the overload) error. The round-off error occurs when the in-
put signal with amplitudes within an interval is mapped into a single codeword.
The wider this interval, the larger is the corresponding round-off error. We can
estimate the round-off error if the probability distribution of the input signal is

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

24 Quantization

Quantize:
(s,m) = quantize (n,R)

Input:
n: a number to be quantized
R: number of bits to be output

Output:
s: sign bit (1 bit)
m: magnitude bits (R− 1 bits)

s =
⎧⎨
⎩

0, n ≥ 0,

1, n < 0.

m =
⎧⎨
⎩

2R−1 − 1, when |n| ≥ 1,

�2R−1 × |n|	, elsewhere.

Inverse-quantize:

n = inverse-quantize (s,m)

Input:

s: sign bit (1 bit)

m: magnitude bits (R− 1 bits)

Output:

n: output number

sign =
⎧⎨
⎩

1, if s = 0,

−1, if s = 1.

|n| = (m + 0.5)/(2R−1)

n = sign× |n|

Algorithm 2.1. Quantization/inverse-quantization procedure for an R-bit uniform midrise quan-
tizer.

−1 −2/3 0 2/3 1

−1 0 1

11 00/10 01

Figure 2.4. A two-bit uniform midtread quantizer.

available. The overload error is caused by input signals with an amplitude that is
either too big or too small for the quantizer. The magnitude of this kind of input
signals has to be clipped to the highest quantizer step. The overload error is asso-
ciated with input signals with an amplitude greater than the quantizer’s maximum
amplitudeXmax. Thus, if we can find the probability distribution of the input signal
amplitude, we can characterize the amount of overload error for a given quantizer.

Comparing the two-bit midrise quantizer and midtread quantizer examples
given above, we see that the subinterval size of the midtread quantizer is larger
than that of the midrise quantizer. Thus, if the input signal is uniformly dis-
tributed, the average quantization error of the midtread quantizer is larger than
that of the midrise quantizer. However, when audio signals are being quantized,
we often have quiet portions. Thus, the uniform distribution does not hold. It is
observed in audio coding system design that a quantizer that can represent signals
with zero amplitude perform better than the one that cannot. Due to this reason,
the midtread quantizer is preferred.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Scalar quantization 25

Quantize:
(s,m) = quantize (n,R)
Input:
n: a number to be quantized
R: number of bits to be output

Output:
s: sign bit (1 bit)
m: magnitude bits (R− 1 bits)

s =
⎧⎨
⎩

0, n ≥ 0,

1, n < 0.

m =⎧⎪⎨
⎪⎩

2R−1 − 1, when|n|≥1,⌊
((2R−1)×|n|+1)

2

⌋
, elsewhere.

Inverse-quantize:

n = inverse-quantize (s,m)

Input:

s: sign bit (1 bit)

m: magnitude bits (R− 1 bits)

Output:

n: output number

sign =
⎧⎨
⎩

1, if s = 0,

−1, if s = 1.

|n| = 2×m

(2R − 1)

n = sign× |n|

Algorithm 2.2. Quantization/inverse-quantization procedure for an R-bit uniform midtread quan-
tizer.

2.1.2. Nonuniform quantization

In contrast to uniform quantizers, we can design quantizers that divide the input
range into unequal intervals, which are called nonuniform quantizers. If the input
signal has a uniform distribution over the full dynamic range, the simple uniform
quantization scheme offers the best performance. However, the probability of the
input signal may not be uniform. Then, by dividing the full dynamic range into
nonuniform spacing properly, we may either reduce the number of output bits
with the same quantization error or reduce the amount of quantization errors with
the same number of output bits. Two types of nonuniform quantizers that achieve
robust performance for signals of a wide dynamic range are discussed below.

Example (compandor design). Figure 2.5 depicts a general approach to de-
sign a nonuniform quantizer. In the first stage, the input x is transformed by a
nonlinear monotonically increasing function. The output of the first stage, that is,
y = G(x), is then uniformly quantized to ŷ. Finally, the inverse transform of the
first stage is carried out in the last stage to produce the output x̂ = G−1(ŷ). The
nonlinear transform G is called a compressor and its inverse transform G−1 is called
an expandor. These names come from the fact that G usually has a small slope for
large amplitude inputs and therefore compresses (reduces the spread) large am-
plitude values while G−1 reverses this process and expands the large amplitudes.
Combining the words “compressor” and “expandor,” we get the name compandor.

One of the most important applications of this structure can be found in digi-
tal transmission of speech signals, where the compandor is implemented by simple
diode resistor circuits. In digital speech telephony, two modified logarithmic com-
pressor functions, the A-law and the μ-law, are widely adopted. The compressor

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

26 Quantization

Uniform
quantizer

x

G

y ŷ

G−1

x̂

Figure 2.5. Design of nonuniform quantizers using the compandor approach.

function of the A-law is

GA(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A|x|
1 + lnA

sgn(x) for 0 ≤ |x| ≤ V

A

V
[
1 + ln

(
A|x|/V)]

1 + lnA
sgn(x) for

V

A
≤ |x| ≤ V ,

(2.1)

and the compressor function of the μ-law is

Gμ(x) = V
ln
(
1 + μ|x|/V)
ln(1 + μ)

sgn(x); |x| ≤ V. (2.2)

In the above compressor functions, A and μ are parameters that control the degree
of compression by determining the ratio of the smallest to the largest step sizes.
The widely adopted values of A and μ in practice are 87.6 and 255, respectively.

Example (piecewise uniform quantization). Although the logarithmic com-
pandors can be easily mathematically manipulated, they are difficult to implement
due to their nonlinearities. Instead, uniform quantizers can be more accurately im-
plemented using today’s technology. Thus, we can design a piecewise linear com-
pressor to approximate the smooth curves of the logarithmic or other compres-
sors. A piecewise uniform quantizer is defined over several segments, each of which
is a uniform quantizer. The quantization step size of different segments may be
different. Similarly, the number of output levels can be different for different seg-
ments.

2.2. Vector quantization

Vector quantization (VQ) quantizes a vector of k dimension. Scalar quantization
is a special and the simplest case of vector quantization, and only quantizes sig-
nals of one dimension. Unlike scalar quantization, VQ is usually only applied to
signals that have already been digitized. In VQ, an input vector is compared to a
set of predefined representative vectors. The index of the representative vector that
minimizes a certain criterion will be used to represent the input vector. Since the
amount of data needed for indices is much smaller than that of input vectors, a
high compression rate can be achieved by VQ.

Mathematically, a vector quantizer Q that has size N and dimension k maps
a vector in k-dimensional Euclidean space, Rk, into a finite set C containing N

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Vector quantization 27

Cell

Cell wall

Centroid

Figure 2.6. Example of 2D vector quantization.

representative points, which are called code vectors or codewords. In other words,

Q : Rk �→ C, (2.3)

where C = (y1, y2, . . . , yN) is the codebook with codewords yi ∈ Rk for each i ∈
I ≡ {1, 2, . . . ,N}. The code rate of a vector quantizer is defined as r = (log2 N)/k.
The code rate, which is also known as resolution or rate, measures how many bits
per vector component are needed to represent an input vector. If the codebook is
well designed, the rate of a vector quantizer gives an indication on how accurately
this vector quantizer can achieve.

A size N vector quantizer partitions the k-dimensional space Rk into N re-
gions or cells, Ri for i ∈ I . The ith region Ri defined by

Ri =
{
x ∈ Rk : Q(x) = yi

}
, (2.4)

is called the inverse image or preimage of yi based on mapping Q, and can also be
denoted by Ri = Q−1(yi). Since Ri is a partition of space Rk, we have

⋃
i

Ri = Rk, Ri

⋂
Rj = ∅ for i = j. (2.5)

An unbounded cell is called an overload cell, while a bounded cell, that is, one
having a finite k-dimensional volume, is called a granular cell. An example of how
a 2D vector space is partitioned into cells is illustrated in Figure 2.6. The centroids
of each region are depicted as black dots in the figure, and they may be used as
codewords for input vectors that fall into the region.

A complete vector quantization/dequantization pair consists of two basic op-
erations: the encoder and the decoder. The encoder E maps a vector in space Rk

to an index in the set of I while the decoder D maps an index in the set I to a

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

28 Quantization

x VQ encoder

Vector quantizer

I
VQ decoder x̂ = Q(x)

I

Figure 2.7. A vector quantizer as the cascade of an encoder and a decoder.

codeword in set C, that is,

E : Rk �→ I , D : I �→ Rk. (2.6)

It is important to point out that it is the partition of the space that determines how
the encoder should match an index to a given input vector. On the other hand, it is
the given codebook that determines how the decoder should reconstruct the out-
put vector from a given index. Therefore, the encoder’s task is to identify which of
the N regions of the k-dimensional space the input vector falls in and the decoder’s
task is simply doing a table lookup to find out which codeword corresponds to the
index. The codebook of most practical vector quantizers contains sufficient infor-
mation to characterize the partition so that the codebook is the only necessary
data set in performing encoding and decoding since the encoder can implicitly
determine the partition via the codebook.

The overall operation of VQ is a cascade of the encoding and the decoding
operations as illustrated in Figure 2.7, that is,

Q(x) =D • E(x) =D
(
E(x)

)
. (2.7)

In some cases, it is convenient to let the encoder generate both the index, i, and the
corresponding codeword, Q(x).

2.2.1. Nearest-neighbor quantizers

The nearest-neighbor vector quantizer, which is also called the Voronoi quantizer,
is an important special class of vector quantizers that is of particular interest. Its
special feature is that the partition is completely determined by the codebook and
a distortion measure. The nearest-neighbor vector encoder is optimal in the sense
of minimizing the average distortion for a given codebook. Such an encoder has
an attractive advantage that no explicit storage of the geometrical description of
cells is needed in the encoding process.

Let d(x, y) be a distortion measure on the input and output vector space. The
simplest and most commonly used measure is the squared error distortion measure,

d(x, y) = ‖x − y‖2 =
k∑
i=1

(
xi − yi

)2
, (2.8)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Vector quantization 29

which is the squared Euclidean distance between vectors x and y. The nearest-
neighbor (NN) or Voronoi-vector quantizer is defined as one whose partition cells
are given by

Ri =
{
x : d

(
x, yi

) ≤ d
(
x, yj

)
all j ∈ J

}
. (2.9)

In other words, with a nearest-neighbor vector encoder, each representative code
vector yi in cell Ri produces less distortion to any points x in cell Ri than any other
code vector in other cells.

For a codebook containingN codewords, the encoding algorithm of the nearest-
neighbor vector quantization is given below.

Nearest-neighbor encoding algorithm.
(1) Set d = d0, j = 1, and i = 1.
(2) Compute Dj = d(x, yj).
(3) If Dj < d, set Dj → d. Set j → i.
(4) If j < N , set j + 1→ j and go to step 2.
(5) Stop. Result is index i.

The index i obtained from the nearest-neighbor vector encoder is associated
with the desired codeword C(x). The distortion generated by this encoder is
d(x, yi). The above nearest-neighbor encoding algorithm performs an exhaustive
search of the codebook to find the codeword that generates the smallest distortion.
Such a search scheme is time consuming since we need to compare every codeword
with the input vector. To accelerate the encoding process, some fast search tech-
niques, which only search a subset of codewords, can be adopted. These fast search
techniques generate results that have little performance loss as compared with that
of the exhaustive search method.

2.2.2. Optimality of vector quantizers

Compared with scalar quantizers, vector quantizers may be able to improve the
coding performance substantially. This is because the vector quantization has less
geometric restrictions than the scale quantization. Taking the 2D space as an ex-
ample, scale quantizers can quantize a 2D vector one dimension at a time so that
the corresponding cells associated with scale quantizers are rectangular. Partition-
ing the 2D space into rectangles is generally not optimum. On the contrary, vector
quantizers can partition the 2D space into cells of any shape, including the shape
that optimizes performance.

Consider a two-dimensional random variable X = (X1,X2), whose probabil-
ity density function is a uniform distribution over the shaded regions within the
unit square as shown in Figure 2.8(a), and the marginal distribution of X1 and X2

itself is also uniform over interval (0, 1). However, the two random variables X1

and X2 are not statistically independent since the probability that X1 < 0.5 given
X2 = α depends on whether α is less than or greater than 0.5. By using scalar
quantization, an optimal partition method that uniformly quantize the space into

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

30 Quantization

0

1

1

(a)

0

1

1

(b)

0

1

1

(c)

0

1

1

(d)

Figure 2.8. Comparison of several 2D quantization schemes: (a) 2D pdf, (b) scalar quantization, (c)
VQ, (d) alternative VQ.

16 cells is shown in Figure 2.8(b) based on the fact that each component of the ran-
dom variable X is uniformly distributed. On the other hand, using vector quan-
tization, we can partition the space into 16 cells as shown in Figure 2.8(c). The
worst-case quantization error between X and Q(X) measured by Euclidean dis-
tance is

√
2/8 ≈ 0.18 in case (b) and is

√
5/16 ≈ 0.13 in case (c). In fact, the par-

tition given by Figure 2.8(c) is superior to Figure 2.8(b) by any reasonable choice
of performance measure. Therefore, in this example, vector quantizers can achieve
smaller distortion than scale quantizers if the same numbers of bits are assigned
for the index. Figure 2.8(d) shows an alternative partition by vector quantizers.
It is clear that the average quantization error for case (d) is the same as for case
(b). However, only 8 different codewords are assigned in case (d). This indicates
that vector quantizers can achieve the same quantization error as scalar quantizers
using a codebook of a smaller size.

Even for random variables that have components statistically independent of
each other, vector quantization can still achieves better results than scalar quan-
tization. Suppose that a 2D vector X is uniformly distributed on the square do-
main shown in Figure 2.9(a). A rectangular partition corresponding to the scalar
quantization of each component is shown in Figure 2.9(b). Figure 2.9(c) shows a
hexagonal partition by a vector quantizer. It is easy to verify that the worst-case
error calculated by the Euclidean distance for the hexagonal partition is smaller

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Vector quantization 31

(a) (b) (c)

Figure 2.9. Comparison of two 2D partition schemes.

than for the square partition with the same number of partition cells. Since scale
quantizers are restricted special cases of vector quantizers, vector quantization can
always achieve better performance than or at least the same performance as scalar
quantization.

2.2.3. Vector quantizer design

A VQ codebook is iteratively designed by choosing an initial codebook and then
updating the partition based on the nearest-neighbor condition. The partition is
continuously modified until an optimal codebook is obtained. This iteration pro-
cess uses a set of training vectors which are representative of the actual vectors that
the vector quantizer will work on.

The first important component in vector quantizer design is to select an ini-
tial codebook. If the initial codebook is properly chosen, the number of iterations
for codebook refinement can be greatly reduced. A variety of techniques that gen-
erate initial codebook have been developed. One such technique is the splitting
algorithm. It grows a large codebook from a small one and can produce increas-
ingly larger codebooks of a fixed dimension. The splitting algorithm is given be-
low. First, let us use only one vector to represent the whole training sequence. The
centroid of the entire sequence would be the globally optimal solution. Thus, the
optimal codebook of size 1 should have the only codeword equal to this centroid,
denoted by y0. The codebook of size 2 can be obtained from the codebook of size
1 by splitting y0 into two codewords, y0 and y0 + ε, where ε is a vector of a small
Euclidean norm. One choice of ε is to make it proportional to the eigenvector cor-
responding to the largest eigenvalue of the covariance matrix of training vectors.
Alternatively, we can choose ε to be proportional to the vector whose ith compo-
nent is the standard deviation of the ith component of the training vectors. This
codebook of size 2 can be refined iteratively to lead to two codewords that represent
the entire training set with a good resolution. Suppose we have a good resolution
codebook of size M. By splitting each of the M codewords into two codewords, we
have 2M vectors. Starting from these 2M initial vectors, we can do some codebook
refinement to produce a good resolution codebook of size 2M.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

32 Quantization

The second important component in VQ codebook design is the codebook it-
erative refinement process. This is usually achieved by the generalized Lloyd algo-
rithm, which is also known as the k-means algorithm in the field of pattern recog-
nition or the LBG algorithm in the data compression literature1. Procedures of the
generalized Lloyd algorithm and Lloyd iteration for codebook improvement are
summarized below.

The generalized Lloyd algorithm.
(1) Start with an initial codebook C1. Set m = 1 and set a threshold to be a

small value.
(2) Use the codebook Cm and perform the Lloyd iteration to generate the

improved codebook Cm+1.
(3) Compute the average distortion between Cm and Cm+1. If the distortion

is smaller than the threshold, stop. Otherwise set m + 1 → m and go to
Step 2.

The Lloyd iteration for codebook improvement.
(a) Given a codebook Cm = {yi : i = 1, . . . ,N}, find the optimal partition

of quantization cells using the nearest-neighbor condition, that is, find
the nearest-neighbor cells

Ri =
{
x : d

(
x, yi

)
< d

(
x, yj

)
; all j = i

}
. (2.10)

If x yields a tie for distortion, for example, if d(x, yi) = d(x, yj) for one
or more j = i, then assign x to set Rj for which j is the smallest.

(b) Compute the centroid for each cell. The optimal codewords for these
cells form the new codebook Cm+1, that is,

Cm+1 =
{

cent
(
Ri
)
; i = 1, . . . ,N

}
. (2.11)

Various stopping criteria can be adopted to terminate the generalized Lloyd
algorithm. One of the most common and effective criteria is to check if (Dm −
Dm+1)/Dm is below a suitable threshold, where Dm represents the distortion be-
tween codebook Cm and Cm−1.

2.3. Bit allocation

An audio coding system usually consists of multiple quantizers, each of which is
used to encode the audio signal within a short time interval. Different audio seg-
ments tend to have different characteristics and may require different accuracy of
reproduction to achieve the best overall quality of the reconstructed audio with a
given bit budget. The problem of distributing a proper number of bits into each
quantizer is called the bit allocation problem.

1The name of LBG algorithm is more suitable to describe the splitting algorithm variation of the
Lloyd algorithm.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Bit allocation 33

2.3.1. Problem of bit allocation

Without loss of generality, let us consider a set of k random variables, X1,X2, . . . ,
Xk, each of which has a zero mean and variance σ2

i . We seek for a set of optimal
quantizers Qi (i = 1, 2, . . . , k), each of which uses bi bits to quantize Xi. Suppose
that Wi(bi) represent the error produced by quantizing Xi with bi bits of resolu-
tion. The overall distortion of the whole system, D, can be defined as a function of
the bit allocation vector b = (b1, b2, . . . , bk) as

D = D(b) =
k∑
i=1

Wi
(
bi
)
. (2.12)

Then, the bit allocation problem is to determine a set of optimal values for b1, b2,
. . . , bk subject to the condition that the sum of bi is no larger than a fixed quota, B,
of available bits. It is stated below.

The bit allocation problem. Find bi for i = 1, 2, . . . , k to minimize D(b) =∑k
i=1 Wi(bi) subject to the constrain that

∑k
i=1 bi ≤ B.

Two basic approaches are available to find an optimal or near-optimal bit al-
location. The first one is to find an algorithm that minimizes equation (2.12) over
all possible choices of b. However, this method is seldom used since it is compu-
tationally exhausted and the optimal distortion functions Wi(bi) are usually un-
known. The second approach to minimize equation (2.12) is realized by invoking
the high resolution quantization approximations2. Then, we can minimize D(b)
and generate the desired result, b1, b2, . . . , bk, using the Lagrangian technique.

2.3.2. Optimal bit allocation results

The goal of optimal bit allocation is to distribute available bits into quantizers such
that the overall distortion is minimized. One of the pioneering solutions to the op-
timal bit allocation problem was proposed by Huang and Schultheiss [55]. In their
algorithm, the correlated variables are first decorrelated using the Karhunen-Loève
transform. The transformed random variables are then normalized by the corre-
sponding variance so that the Max-Lloyd quantizer [84, 90], which is designed for
unit variance Gaussian random variables, can be used for quantization. We discuss
the classical optimal bit allocation solution to identically distributed normalized
random variables. More information about other bit allocation methods can be
found in [38, 114].

Optimal bit allocation for identically distributed normalized random variables. For
a given set of identically distributed normalized random variables, the optimal bit

2High resolution refers to the case of quantization when the average distortion is much less than
the input variance.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

34 Quantization

assignment using the high rate approximations is given by

bi = b̄ +
1
2

log2
σ2
i

ρ2
, (2.13)

where

b̄ = B

k
(2.14)

is the average number of bits per component, k is the number of components, and

ρ2 =
(k∏

i=1

σ2
i

)1/k

(2.15)

is the geometric mean of the variances of the random variables.
The optimal bit numbers calculated by (2.13) may contain zeros and negative

values. In practice, this bit allocation rule is modified by replacing negative values
by zeros. If an integer valued allocation is required, then we can adjust each non-
integer allocation bi to its nearest integer. However, these modifications can make
the total number of assigned bit-exceeds the allocation quota, B. Then, further ad-
justment is needed to achieve an allocation result satisfying all requirements. The
final integer-valued bit allocation vector b can be determined heuristically.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

3
Entropy coding

Entropy coding has been studied extensively in the literature. Detailed discussions
may be found in many books and papers. In this chapter, we will introduce three
commonly used lossless coding algorithms, that is, Huffman coding, arithmetic
coding, and QM coding. For further reading on entropy coding and data compres-
sion, we recommend [109, 110]. Before going to the detail of these algorithms, we
go over some basic information theory concepts.

3.1. Introduction to information theory

The importance of information theory is that it provides a way to measure in-
formation quantitatively. With information theory, we can answer the question
“how much information is included in this piece of data?” with a precise number!
Quantifying information can be done based on the observation that a message’s
information content is equivalent to how surprising the message is. If I tell you
something that you already know (e.g., “I had dinner yesterday”), I probably have
not given you any information because usually everybody has dinner everyday. If
I tell you something new (e.g., “I had dinner in a restaurant yesterday”), I have
given you some information (the place where I had my dinner yesterday). If I tell
you something that really surprises you (e.g., “I did not have dinner yesterday”),
I have given you more information. Shannon [115] defined a quantity called self-
information, which is defined as follows.

Suppose event E is a set of outcomes of a random experiment. Let P(E) denote
the probability that the event E will occur, then the self-information associated
with E is given by

i(E) = logx
1

P(E)
= − logx P(E). (3.1)

Since log(1) = 0 and − log x increases as x decreases from one to zero, if the prob-
ability of an event is small, then its associated self-information is big; if the proba-
bility of an event is big, then the associated self-information is small.

Another important property of this mathematical definition of information
is that the information obtained from the occurrence of two independent events

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

36 Entropy coding

is equivalent to the sum of the information obtained from these two individual
events. In other words, suppose E1 and E2 are two independent events. The self-
information associated with the occurrence of both event E1 and event E2 is

i
(
E1E2

) = logx
1

P
(
E1E2

) . (3.2)

Since E1 and E2 are independent, that is,

P
(
E1E2

) = P
(
E1
)
P
(
E2
)
, (3.3)

so

i
(
E1E2

) = logx
1

P
(
E1
)
P
(
E2
) = logx

1
P
(
E1
) + logx

1
P
(
E2
) = i

(
E1
)

+ i
(
E2
)
. (3.4)

The unit of information depends on the base of the log. The most commonly used
unit is base 2 and the unit is called bits. Other units, such as nats and hertleys, use
log-based e and 10, respectively.

Example. Let H and T be the outcomes of tossing a coin, and let P(H), P(T)
be the probability of getting the head and tail. If the coin is fair, we have

i(H) = i(T) = 1 bit, (3.5)

because

P(H) = P(T) = 1
2
. (3.6)

If the coin is not fair, then the information expected is different from the previous
case. Suppose

P(H) = 1
4

, P(T) = 3
4
. (3.7)

Then, we have

i(H) = 2 bits, i(T) = 0.415 bits. (3.8)

From the mathematical point of view, the occurrence of a head conveys more in-
formation than the occurrence of a tail. As we will see later, this has certain conse-
quences for how the information conveyed by these outcomes should be encoded.

Now let us look at another important definition in information theory, that is,
entropy. Suppose there is a set of independent events Ei, which are sets of outcomes
of some experiment S, such that

⋃
Ei = S, (3.9)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Introduction to information theory 37

where S is the sample space, then the average self-information associated with the
random experiment is given by

H =
∑

P
(
Ei
)
i
(
Ei
) = −∑

P
(
Ei
)

logx P
(
Ei
)
. (3.10)

The quantity given by H in the above equation is called the entropy. It was shown
by Shannon that if the experiment is a source that outputs symbols E from a set
E , then the entropy gives the average number of binary symbols needed to encode
the output of the source. Shannon also claimed that the upper limit that a lossless
compression algorithm scheme can achieve is to encode the output of a source with
an average number of bits (nats or hartleys) that are equal to the source entropy.

The symbol set E is often called the source alphabet while symbols are called
letters. For a source S with alphabet E = {1, 2, . . . , k} that generates sequence
{X1,X2, . . .}, the entropy of S can be computed by

H(S) = lim
n→∞

1
n
Hn, (3.11)

where

Hn = −
i1=k∑
i1=1

i2=k∑
i2=1

· · ·
in=k∑
in=1

P
(
X1 = i1,X2 = i2, . . . ,Xn = in

)

× logP
(
X1 = i1,X2 = i2, . . . ,Xn = in

)
,

(3.12)

and where {X1,X2, . . .} is a sequence of length n from the source. If all elements in
the sequence are independent and identically distributed, then we have

Hn = −n
i1=k∑
i1=1

P
(
X1 = i1

)
logP

(
X1 = i1

)
, (3.13)

and the equation for the entropy becomes

H(S) = −
∑

P
(
X1
)

logP
(
X1
)
. (3.14)

We call the quantity computed in (3.11) the real entropy of the source, while the
quantity given by (3.14) as the first-order entropy of the source. Generally speak-
ing, (3.11) and (3.14) are not identical for most sources.

Since the entropy for a physical source is normally unknown, it has to be es-
timated in most cases. The estimation of the entropy will be different if we adopt
different assumptions about the structure of the source sequence. These assump-
tions are called the model. A static model is the one whose parameters do not
change, while an adaptive model is the one whose parameters change or adapt
to the changing characteristics of the input data.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

38 Entropy coding

x1 0.4 x2 0.2 x3 0.2 x4 0.1 x5 0.1

1 0

1 0

1 0

1 0

x45 0.2

x345 0.4

x2345 0.6

x12345 1.0

Figure 3.1. An example on how to build a Huffman tree and assign a Huffman code to each symbol.

3.2. Huffman coding

3.2.1. Huffman coding algorithm

Huffman coding is a commonly used data compression method, which was de-
veloped by Huffman [56]. Huffman codes belong to the set of prefix codes, which
means that that no word in the entire codeword set is a prefix of another word
from the same set.

The first step of building a Huffman code is to sort the probabilities of all
alphabet symbols in a descending order and then construct a list of them. With
this list, we can build a tree that has a symbol at every leaf, from the bottom up.
This kind of tree is called Huffman tree. Now, we look at an example on how to
build a Huffman tree.

Example. Suppose there are five symbols x1, x2, x3, x4, and x5. Their proba-
bilities are shown in Figure 3.1 beside each symbol. We can build a Huffman tree
by pairing them in the following order.

(1) Symbols x4 and x5 with the smallest probabilities are combined together
and then replaced by a combined auxiliary symbol x45, whose probability is equal
to 0.2.

(2) Now, we have four symbols left, x1, x2, x3, and x45. Except for x1 which has
probability 0.4, all the other three symbols have probabilities equal to 0.2. We can
just arbitrarily select two of them. Suppose x3 and x45 are combined, then they can
be replaced by another auxiliary symbol x345 with probability equal to 0.4.

(3) Now, we have three symbols left, x1, x2, and x345. Their probabilities are
0.4, 0.2, and 0.4, respectively. Again, we have more than one choice to combine two
of three symbols. We select x2 and x345, which are then combined and replaced by
an auxiliary symbol x2345 with probability equal to 0.6.

(4) Finally, there are only two symbols left, x1 and x2345. We combine and
replace them with x12345, whose probability is equal to 1.

After the above four steps, we now have a complete Huffman tree as shown in
Figure 3.1. To assign the codes, we arbitrarily assign a bit of 1 to the left branch,
and a bit of 0 to the right branch, of every pair of branches and resulting codes
1, 01, 001, 0001, and 0000 to represent symbols x1, x2, x3, x4, and x5, respectively.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Huffman coding 39

x1 0.4 x2 0.2 x3 0.2 x4 0.1 x5 0.1

1 0

1 0

1 0

1 0

x45 0.2

x345 0.4

x12345 1.0

x12 0.4

Figure 3.2. Another example of Huffman tree and Huffman codes.

The average size of this code is

l̄ = 0.4× 1 + 0.2× 2 + 0.2× 3 + 0.1× 4 + 0.1× 4 = 2.2 bits/symbol. (3.15)

With this example, we can summarize how to build a Huffman tree. At each
stage, two symbols with the smallest probabilities should be selected, combined,
and replaced by an auxiliary symbol, whose probability is equal to the sum of the
two combined symbols. After the combination of two symbols, we have a symbol
set with size equal to the size of the previous symbol set minus one. Treat the aux-
iliary symbol as a normal symbol and continue the selection, combination, and
replacement as stated before until only one auxiliary symbol is left. The Huffman
tree is now complete with the root representing the whole symbol set and proba-
bility equal to 1. We can then assign bits to each branch of the tree. Note that the
assignment of bits to branches can be arbitrary and a different assignment gives a
different Huffman code. However, the average size of the code will be the same for
a given Huffman tree.

3.2.2. Variance of Huffman codes

In the previous example, there is some arbitrary selection when we build the Huff-
man tree. A different selection will end up with a different Huffman tree. There-
fore, the Huffman tree is not unique. In the Huffman tree shown in Figure 3.1,
we arbitrarily combined x2 with x345, since there were more than two symbols
with the smallest probabilities. Figure 3.2 shows another selection and combina-
tion method using the same five-symbol set. With the Huffman tree and code as-
signment shown in Figure 3.2, we have a different Huffman code (11, 10, 01, 001,
and 000). The average size of this code is

l̄ = 0.4× 2 + 0.2× 2 + 0.2× 2 + 0.1× 3 + 0.1× 3 = 2.2 bits/symbol, (3.16)

which is the same as the previous code.
It seems that the arbitrary decisions made in constructing the Huffman tree

affect the individual codes but not the average size of the code. How about the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

40 Entropy coding

variance of the length of the codewords? The variance of code shown in Figure 3.1
is

v1 = 0.4(1− 2.2)2 + 0.2(2− 2.2)2 + 0.2(3− 2.2)2

+ 0.1(4− 2.2)2 + 0.1(4− 2.2)2 = 1.36,
(3.17)

while that of the code shown in Figure 3.2 is

v2 = 0.4(2− 2.2)2 + 0.2(2− 2.2)2 + 0.2(2− 2.2)2

+ 0.1(3− 2.2)2 + 0.1(3− 2.2)2 = 0.16.
(3.18)

v2 is much smaller than v1.
A code with smaller average length generates a smaller compressed bitstream.

A code with smaller variance performs better when the encoder transmits the com-
pressed stream as the code is being generated. Because, in such a case, although a
variable length code is commonly used, the available transmission rate is gener-
ally fixed. Which means that the bits which can be transmitted in a given amount
of time are constant. Since the output bit rate from an encoder using a variable
length code varies all the time, a buffer needs to be used before bits of the com-
pressed stream are entered into the real communication line. Thus, a code with
smaller variance is preferable in this kind of situation, because it requires only a
small buffer when doing the transmission. If the buffer cannot hold all output bits
at a certain time, some bits will be lost and resulting in a corrupted bitstream at
the receiver side.

Then, how can we construct a Huffman code that has smaller variance? We
look at the Huffman tree in Figures 3.1 and 3.2 again. In the tree shown in Figure
3.1, symbol x345 is selected to be combined with x2, whereas in the tree shown
in Figure 3.2, x1 is selected and combined with x2. Therefore, we conclude that
when there are more than one possible combination of two smallest-probability
nodes, select the one that is closer to the beginning of the list and the one that has
the lowest probability and combine them. By doing this, we combine symbols of
low probability with ones of high probability resulting in a code with smaller total
variance.

3.2.3. Huffman decoding

The Huffman codes have to be known before the decoder can start to do the de-
coding. The encoder can either directly write the Huffman code or the Huffman
tree into the compressed stream, or just send the probabilities (or frequencies) of
the symbol in the bitstream and let the decoder construct the Huffman code in the
same way as the encoder does.

Once the Huffman codes are available, the decoding process is simple. Just
start from the root of the Huffman tree and read bit by bit from the compressed
stream. If the bit is one, follow the right branch, if it is zero, follow the left branch.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Huffman coding 41

x1 x2 x3 x4 x5

1 0 1 0

1 0

1 0

Figure 3.3. An example of Huffman decoding.

When a leaf of the tree is reached, the original symbol can be recovered by look-
ing up the Huffman table.1 After decoding one symbol, we should start from the
root again and read the next bit. Continue this process until all the bitstreams are
decoded.

Figure 3.3 is a Huffman tree with five-symbol alphabet. Suppose we now have
a bitstream of 1001100111. Let us use this Huffman tree to decode the given bit-
stream. We should first start from the root, the first bit 1 indicates that we should
follow the left branch. The second bit is 0, we then follow the right branch. With
the third bit 0, we reach a leaf of the tree. And by looking up the Huffman table, we
know that the code 100 corresponds to symbol x4. So the decoder recovers the first
symbol x4 and then it starts from the root again. By following the same rule, we
then decode symbols x2, x5, and x1. After x1 is reconstructed, we meet the end of
the bitstream. Therefore, we know that the encoder has sent four symbols x4x2x5x1

to the decoder.

3.2.4. Adaptive Huffman coding

Both the encoder and the decoder need to know Huffman codes in order to pro-
ceed the Huffman coding. Thus, the first step of constructing Huffman codes is to
sort the probabilities of symbols in the alphabet. When the probabilities of symbols
are not available beforehand at the encoder side, we need to collect the statistics of
the entire alphabet first. This means that we need to go over the string two times
in performing the coding task. The first pass is to collect the symbol statistics by
counting the frequencies of symbols while the second pass is to encode symbols
with their associated codewords.

To simplify this procedure, Faller [30] and Gallager [37] developed an adap-
tive Huffman coding independently. With adaptive Huffman coding, we can build
a Huffman tree based on the statistics of symbols that are already encountered,
and then update the Huffman tree after each symbol entering the encoder or being

1A Huffman table is a table that shows the correspondence of the original symbol and its Huffman
code.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

42 Entropy coding

decoded. Faller’s and Gallager’s algorithm was later improved by Knuth [77] and
Vitter [129].

3.3. Arithmetic coding

3.3.1. Arithmetic coding algorithm

In [37], it has been shown that the code generated by Huffman coding has a rate
smaller than pmax + 0.086 of the entropy, where pmax is the maximum probability
of all symbols. When the alphabet size is large, the value of pmax is generally small,
so the code rate achieved by Huffman coding only has a small deviation from the
entropy. However, when the alphabet size is small, pmax can be quite large and the
coding efficiency of Huffman algorithm can become rather poor when compared
with the entropy.

One of the reasons that prevent Huffman coding from further improving its
performance is that it only assigns an integer number of bits to each symbol in
the alphabet. One method to reduce the coding rate of Huffman algorithm is to
combine two or more symbols as one auxiliary symbol then assign Huffman codes
to these auxiliary symbols. However, a good symbol combination method is hard
to determine and its performance is still not satisfactory in some cases. The arith-
metic coding, which is different from Huffman algorithm, assigns only one (usu-
ally very long) code to the entire input stream. Whenever an input symbol is input
and processed, it outputs one or more bits to the bitstream. The final number
output from the arithmetic encoder can be viewed as the probability of the input
stream.

The first step of arithmetic algorithm is to calculate or estimate the occurrence
frequencies of symbols if the probabilities of each symbol in the alphabet are not
known in advance. To achieve the best frequency estimation, we can read the entire
input stream once before the real compression takes place.

Suppose we have three symbols x1, x2, and x3, and their probabilities are
P1 = 0.3, P2 = 0.5, and P3 = 0.2, respectively. As shown in Figure 3.4, we di-
vide the interval [0, 1) into three subintervals whose sizes are proportional to the
three probabilities. In this figure, subintervals assigned to x1, x2, and x3 are [0,0.3),
[0.3,0.8), and [0.8,1.0), respectively. To encode a string “x2x2x1x3,” we start from
the initial interval [0.0, 1.0). The first symbol x2 reduces the initial interval to
the range [0.3, 0.8). Then again we divide the new interval into three subinter-
vals whose size is proportional to its probability. After the second symbol x2 is
processed, the range reduces to [0.45, 0.7).2 Similarly, we calculate the new subin-
terval and input symbol x1 which makes the new interval [0.45, 0.525). Apply the
same method after x3 is processed: the final interval produced is [0.51, 0.525),
which means that the probability of getting the stream of “x2x2x1x3” is between
0.51 and 0.525.

2The subinterval [0.45, 0.7) is obtained from the interval [0.3, 0.8) by 0.3+(0.8−0.3)×0.3 = 0.45
and 0.3 + (0.8− 0.3)× 0.8 = 0.7.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Arithmetic coding 43

x1

x2

x3

0.51

0.5145

0.522

0.525

x1

x2

x3

0.45

0.4725

0.51

0.525

x1

x2

x3

0.45

0.525

0.65

0.7

x1

x2

x3

0.3

0.45

0.7

0.8

x1

x2

x3

0.0

0.3

0.8

1.0

Figure 3.4. An example of arithmetic encoding.

Note that the final code output from the arithmetic encoder can be any num-
ber within the final range. Also, when the original interval is being divided into
subintervals, the order of subintervals is immaterial. Different subinterval assign-
ments will result in different final ranges. As long as the encoder and decoder have
the same subinterval assignment, the decoder can always successfully decode the
input stream.

With this example, we can easily understand the main steps of arithmetic cod-
ing.

Main steps of arithmetic coding.
(1) Define the initial range to be [0,1).
(2) For each symbol x in the input stream,

(2.1) divide the interval into subintervals whose sizes are proportional
to symbols’ probabilities;

(2.2) find the subinterval for symbol x and define it as the new interval.
(3) When all symbols in the input stream have been processed, output any

number that is inside the final interval.
Below is a pseudocode to calculate the new interval after symbol x is pro-

cessed:

Range = High− Low;

High = Low + Range×HighLimit(s);

Low = Low + Range× LowLimit(s);

(3.19)

where LowLimit(x) and HighLimit(x) are the low and high limits of the original
range of symbol x. For instance, the LowLimit(x2) and HighLimit(x2) in the previ-
ous example are 0.3 and 0.8. We start the encoding process by defining Low = 0.0
and High = 1.0. After processing each symbol, the interval becomes smaller. The
output of the encoding is just a number representing the probability of the input
stream. The average code size, which is calculated by dividing the size of the output
(in bits) by the size of the input (in symbols), can be very small.

The principle of the arithmetic decoder is simple. Suppose the final code in
the previous example is 0.52. The decoder first checks which original subinterval
0.52 lies in. Since it is within [0.3,0.8), the decoder knows that the first symbol
is x2. Then the decoder decodes the symbol x2 and calculates the new number to

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

44 Entropy coding

decode the second symbol by subtracting LowLimit(x2) = 0.3 and then dividing by
HighLimit(x2)−LowLimit(x2) = 0.8−0.3 = 0.5. The new number after the above
operation is 0.44, which again falls into the range of [0.3, 0.8). So the decoder
knows that the second symbol is x2 as well. The decoder works on in the same
manner and decodes symbol by symbol until all of them are recovered.

Below is the pseudocode to calculate the new number after symbol x is de-
coded:

Number = Number− LowLimit(x)
HighLimit(x)− LowLimit(x)

. (3.20)

Unlike Huffman code, which can just stop decoding when all bits are read
from the bitstream, sometimes, it is hard for the arithmetic decoder to determine
when to stop. One possibility is to ask the decoder to stop when the new calcu-
lated number becomes zero. However, book [109] gives an example to illustrate
that this criterion could make the decoder stop decoding earlier than expected in
some cases. One common method to solve the decoder’s terminating problem is
to let the encoder send the size of input stream at the beginning of the bitstream.
Another solution is to add one special symbol EOF into the alphabet, and allocate
a considerable small probability to EOF. By appending EOF at the end of the input
stream, the decoder can stop decoding when it decodes an EOF symbol.

3.3.2. Implementation issues

The encoding and decoding process described in the previous section uses floating-
point calculation and assumes that unlimited precision can be stored when doing
the calculation. However, in real applications, this assumption is untrue and the
floating-point arithmetic is slow and may have precision lost. Any practical imple-
mentation should only use integers, which should not be too long.

We consider using two four-decimal-digit long integers Low and High3 to im-
plement the arithmetic coder. Variables Low and High have the same meaning as
described in the previous section, that is, they are the lower and higher limits of
the current interval. Since we can only store four decimal digits, whenever the left-
most digits of Low and High become identical, we output the leftmost digit and
update the new Low and High values by left shifting one digit and adding one
more digit at the right. For the variable Low, a zero is added at the right. While for
the variable High, a nine is added at the right. This process can be easier to under-
stand if we think these two variables have the following format. Low is a number of
xxxx00, . . . , 0 and High is a number of xxxx99, . . . , 9. Initially, Low contains 0000
and High contains 9999.

Now we look at an example to encode a sentence of “I�AM�A�MAN” prac-
tically. The statistical model of all symbols in this example is listed in Table 3.1.
When the symbols’ frequency information is available, we divide the range [0,1)

3In practice, Low and High may be 16- or 32-bit long.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Arithmetic coding 45

Table 3.1. Statistical model of five symbols (total CumFreq = 10).

Symbol Freq. Prob. Range CumFreq

A 5 5/10 = 0.5 [0.5, 1.0) 5

I 1 1/10 = 0.1 [0.4, 0.5) 4

M 2 2/10 = 0.2 [0.2, 0.4) 2

N 1 1/10 = 0.1 [0.1,0.2) 1

� 1 1/10 = 0.1 [0.0, 0.1) 0

Table 3.2. Practical implementation of encoding “I�AM�A�MAN.”

Input Float Integer Output New integer
symbol Low & High Low & High bit(s) Low & High

I Low = 0 + (1− 0)× 0.4 = 0.4 4000 4 0000

High = 0 + (1− 0)× 0.5 = 0.5 4999 4 9999
� Low = 0 + (1− 0)× 0.0 = 0.0 0000 0 0000

High = 0 + (1− 0)× 0.1 = 0.1 0999 0 9999
A Low = 0 + (1− 0)× 0.5 = 0.5 5000 — 5000

High = 0 + (1− 0)× 1.0 = 1.0 9999 — 9999
M Low = 0.5 + (1− 0.5)× 0.2 = 0.6 6000 6 0000

High = 0.5 + (1− 0.5)× 0.4 = 0.7 6999 6 9999
� Low = 0 + (1− 0)× 0.0 = 0 0000 0 0000

High = 0 + (1− 0)× 0.1 = 0.1 0999 0 9999
A Low = 0 + (1− 0)× 0.5 = 0.5 5000 — 5000

High = 0 + (1− 0)× 1.0 = 1 9999 — 9999
� Low = 0.5 + (1− 0.5)× 0.0 = 0.5 5000 5 0000

High = 0.5 + (1− 0.5)× 0.1 = 0.55 5499 5 4999
M Low = 0 + (0.5− 0)× 0.2 = 0.1 1000 1 0000

High = 0 + (0.5− 0)× 0.4 = 0.2 1999 1 9999
A Low = 0 + (1− 0)× 0.5 = 0.5 5000 — 5000

High = 0 + (1− 0)× 1.0 = 1 9999 — 9999
N Low = 0.5 + (1− 0.5)× 0.1 = 0.55 5500 5500 —

High = 0.5 + (1− 0.5)× 0.2 = 0.6 5999 — 5999

into five subintervals as shown in the fourth column of Table 3.1. Table 3.2 de-
scribes all details of the implementation process. Column 1 indicates the symbol
to be processed. Column 2 shows the floating-point value of Low and High vari-
ables. Column 3 shows the actual digits stored to represent Low and High. Column
4 lists the digit(s) output to the bitstream. If the leftmost digits of Low and high
are identical, we output this identical digit. If all symbols have been processed, we
output the four digits representing the current variable Low. Column 5 shows the
updated four digits of Low and High to be used in coding the next symbol. The
final output of this example is 4060515500.

The decoder starts with Low = 0000, High = 9999, and works in the opposite
way. Initially, only the highest four digits of the compressed stream is read in, that

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

46 Entropy coding

is, Number = 4060. Variables Low, High, and Number are updated at each step of
the decoding process. Once the most significant digits of Low and High become the
same, they are shifted out. At the same time, Number is also left shifted one digit.
At each step, the index of the symbol is calculated. By searching the statistics model
and comparing the index with the cumulative frequencies shown in Table 3.1, we
can decode the current symbol.

Each time a symbol is decoded, we perform the following four steps.
(1) Calculate the symbol index:

index = �((Code− Low + 1)× 10− 1)/(High− Low + 1)	.
(2) Compare the index with the cumulative frequencies’ column in Table

3.1. Suppose the index calculated in step 1 is 3. Since 3 is between the
cumulative frequency 2 and 4 in the table, so symbol ‘M’ is decoded.

(3) Update variables Low and High according to

Low = Low + (High− Low + 1)LowCumFreq[x]
10

;

High = Low + (High− Low + 1)HighCumFreq[x]
10

− 1,
(3.21)

where LowCumFreq[x] and HighCumFreq[x] are the cumulative fre-
quencies of symbol x and of the symbol above x in Table 3.1.

(4) If the leftmost digits of Low and High are identical, left shift Low, High,
and Number one digit. Set 0 as the lowest digit of Low, set 9 as the low-
est digit of High, and let Number read in one more digit from the com-
pressed stream.

The decoding steps for the previous example is listed below.
0. Initially set Low = 0000, High = 9999, and Number = 4060.
1. Index = �[(4060− 0 + 1)× 10− 1]/(9999− 0 + 1)	 = 4. Decode sym-

bol ‘I.’
Low = 0 + (9999− 0 + 1)× 4/10 = 4000.
High = 0 + (9999− 0 + 1)× 5/10− 1 = 4999.
Shift 4 out, and update variables Low = 0000, High = 9999, and
Number = 0605.

2. Index = �[(0605− 0 + 1)× 10− 1]/(9999− 0 + 1)	 = 0. Decode sym-
bol ‘�.’
Low = 0 + (9999− 0 + 1)× 0/10 = 0000.
High = 0 + (9999− 0 + 1)× 1/10− 1 = 0999.
Shift 0 out, and update variables Low = 0000, High = 9999, and
Number = 6051.

3. Index = �[(6051− 0 + 1)× 10− 1]/(9999− 0 + 1)	 = 6. Decode sym-
bol ‘A.’
Low = 0 + (9999− 0 + 1)× 5/10 = 5000.
High = 0 + (9999− 0 + 1)× 10/10− 1 = 9999.

4. Index = �[(6051− 5000 + 1)× 10− 1]/(9999− 5000 + 1)	 = 2. De-
code symbol ‘M.’
Low = 5000 + (9999− 5000 + 1)× 2/10 = 6000.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Arithmetic coding 47

High = 5000 + (9999− 5000 + 1)× 4/10− 1 = 6999.
Shift 6 out, and update variables Low = 0000, High = 9999, and
Number = 0515.

5. Index = �[(0515− 0 + 1)× 10− 1]/(9999− 0 + 1)	 = 0. Decode sym-
bol ‘�.’
Low = 0 + (9999− 0 + 1)× 0/10 = 0000.
High = 0 + (9999− 0 + 1)× 1/10− 1 = 0999.
Shift 0 out, and update variables Low = 0000, High = 9999, and
Number = 5155.

6. Index = �[(5155− 0 + 1)× 10− 1]/(9999− 0 + 1)	 = 5. Decode sym-
bol ‘A.’
Low = 0 + (9999− 0 + 1)× 5/10 = 5000.
High = 0 + (9999− 0 + 1)× 10/10− 1 = 9999.

7. Index = �[(5155− 5000 + 1)× 10− 1]/(9999− 5000 + 1)	 = 0. De-
code symbol ‘�.’
Low = 5000 + (9999− 5000 + 1)× 0/10 = 5000.
High = 5000 + (9999− 5000 + 1)× 1/10− 1 = 5499.
Shift 5 out, and update variables Low = 0000, High = 4999, and
Number = 1550.

8. Index = �[(1550− 0 + 1)× 10− 1]/(4999− 0 + 1)	 = 3. Decode sym-
bol ‘M.’
Low = 0 + (4999− 0 + 1)× 2/10 = 1000.
High = 0 + (4999− 0 + 1)× 4/10− 1 = 1999.
Shift 1 out, and update variables Low = 0000, High = 9999, and
Number = 5500.

9. Index = �[(5500− 0 + 1)× 10− 1]/(9999− 0 + 1)	 = 5. Decode sym-
bol ‘A.’
Low = 0 + (9999− 0 + 1)× 5/10 = 5000.
High = 0 + (9999− 0 + 1)× 10/10− 1 = 9999.

10. Index = �[(5500− 5000 + 1)× 10− 1]/(9999− 5000 + 1)	 = 1. De-
code symbol ‘N.’
Low = 5000 + (9999− 5000 + 1)× 1/10 = 5500.
High = 5000 + (9999− 5000 + 1)× 2/10− 1 = 5999.
Shift 5 out, and update variables Low = 5000, High = 9999. Since no
more digits are available in the compressed stream, the decoding process
is terminated.

3.3.3. Solving underflow problem

One problem may appear in the above arithmetic implementation. In the case
when variables Low and High converge closely, they may not converge to num-
bers with identical most-significant digits. For example, Low and High may reach
values 7999 and 8000. Since the leftmost digits are not the same, the previous algo-
rithm will not shift, and operations afterwards will not be able to make the most
significant digits identical. Thus no output digits will be generated until the last
symbol is being processed. This kind of problem is called underflow.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

48 Entropy coding

Table 3.3. A ten-symbol alphabet and their counts.

Symbol x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Count 12 14 14 2 5 1 2 20 14 9

(a)

Symbol x8 x2 x3 x9 x1 x10 x5 x4 x7 x6

Count 20 14 14 14 12 9 5 2 2 1

(b)

Symbol a8 a9 a3 a2 a1 a10 a5 a4 a7 a6

Count 20 15 14 14 12 9 5 2 2 1
LowCumFreq 74 59 45 31 19 10 5 3 1 0

(c)

To solve the underflow problem, we can rescale variables Low and High de-
scribed below. If Low and High become 79xx and 80yy, respectively, rescaling
should be done by squeezing out the second highest digits and adding a zero and
nine at the lowest digit. In other words, Low and High will be set to 7xx0 and 8yy9.
The algorithm may need to rescale several times before the most-significant digits
become identical. The number of times rescaling is performed should be counted.
Once the most significant digits of Low and High become equal, we should output
this digit followed by a series of zeros (if they converged to 7) or nines (if they
converged to 8). The number of zeros or nines should be the same as the number
of rescaling occurrences.

3.3.4. Adaptive arithmetic coding

Same as Huffman coding, arithmetic coding can also be extended to an adap-
tive algorithm. We can easily understand how adaptive arithmetic coding works
after looking at the following two features.

(1) In the encoding part, the Low and High variables are updated each time
using the cumulative frequencies of the current symbol and the symbol above the
current symbol. This suggests, as long as the encoder and decoder follow the same
rule, that the symbol’s frequency can be updated each time a previous symbol is
processed.

(2) Similarly, the order of symbols’ subinterval is not important. Even a re-
ordering can be done, as long as the decoder agrees to do the same as what the
encoder does.

With the nonadaptive arithmetic coding, we need to build the statistical model
for the entire alphabet before the real encoding is performed. With the adaptive

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Arithmetic coding 49

x6 (1)x7 (2)

x1 (12) x10 (9) x5 (5)

x3 (14)

x8 (20)

x2 (14)

x9 (14)

x4 (2)

(a)

x6 (1)x7 (2)

x1 (12) x10 (9) x5 (5)

x3 (14)

x8 (20)

x9 (15)

x2 (14)

x4 (2)

(b)

Figure 3.5. An example of adaptive arithmetic coding.

algorithm, we can calculate the symbols’ frequencies and their accumulated fre-
quencies on the run and complete the encoding and decoding based on the cur-
rent statistical information. One important thing needs to be borne in mind when
adaptive arithmetic encoding is performed and that is the frequencies of symbols
should only be updated after, not before, each symbol has been processed. This is
because the decoder needs to update the frequency information in exactly the same
way as the encoder, and it will not be able to know the new symbol’s occurrence
before it has been processed.

A commonly adopted adaptive arithmetic model uses an array to keep track
of the count of each symbol (occurrence frequency) and the corresponding cu-
mulative frequencies. This array should be sorted in the order of symbol’s count.
Whenever a symbol is processed, after incrementing this symbol’s occurrence fre-
quency and updating the affected cumulative frequency, we should check the array
and always make sure that the updated occurrences frequency are in the sorted or-
der.

By using a balanced binary tree,4 we can efficiently perform the search and
update procedure. From the knowledge of data structure, if the alphabet has size
n, we know that the height of the balanced binary tree is �log2 n�. The tree can

4A balanced binary tree is a complete binary tree where only some of the bottom-right nodes may
be missing.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

50 Entropy coding

be arranged in a way such that any given node has its occurrence frequency larger
than that of its children. A binary tree with the above property is called a heap.

We look at an example to see how the adaptive arithmetic coding works. Sup-
pose we have ten-symbol alphabet, and their counts are listed in Table 3.3(a).
Table 3.3(b) shows the same symbols set sorted by their counts.

Figure 3.5(a) illustrates a heap containing all symbols in the alphabet. In prac-
tice, this tree can be implemented by an array with the following rule:

(1) the first element of the array represents the root of the tree;
(2) the children of the ith element of the array are the 2ith and (2i + 1)th

elements in the array;
(3) the parent of the ith element of the array is the �i/2	th element in the

array.
The ith element of the array contains the symbol with the ith largest count. With
a heap, the location of any array element in a tree can also be easily found. Below
is an example that shows how to find the location of the tenth array element from
the root.

(1) Dividing 10 by 2, we get the quotient equal to 5 and the remainder equal
to 0. The quotient 5 means that the parent of the tenth element is the fifth element.
The remainder 0 means that the tenth element is the left child of its parent.

(2) Now we need to find the location of the fifth element. So we divide 5 by
2, and get the quotient equal to 1 and the remainder equal to 1. The quotient 1
means that the parent of the fifth element is the second element. The remainder 1
means that the fifth element is the right child of its parent.

(3) Continue in this fashion. We divide 2 by 2 and get the quotient equal to 1
and the remainder equal to 0. The quotient 1 means that the parent of the second
element is the first element, that is, the root, and the remainder 1 means that the
second element is the right child of the root. When the root is found, the process
stops.

Now we look at an example to illustrate how the tree and the array change
when the next symbol comes in. Suppose x9 is the next symbol to be processed.
The count of symbol x9 should be increased from 14 to 15. In order to keep the
array in the sorted order, we check if the count of the parent of x9 is still larger
than that of x9, if not, switch them. In our example, node x2 should be switched
with node x9. Then after switching, we check again if the x9’s parent count is larger.
We continue doing this until we reach the root of the tree. And we now have an
updated tree as shown in Figure 3.5(b).

The array with each symbol’s updated count and accumulative frequency are
shown in Table 3.3(c). The LowCumFreq[xi] can be calculated by

LowCumFreq[xn−i] =
⎧⎨
⎩

0, i = 0,

LowCumFreq[xn−i+1] + count[xn−i+1], 1 ≤ i < n.
(3.22)

And the HighCumFreq[xi] is equal to LowCumFreq[xi−1], with HighCumFreq[x0]
equal to the sum of LowCumFreq[x0] and count[x0].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

QM coding 51

3.4. QM coding

3.4.1. QM encoder

QM coding is a successor of arithmetic coding and is also an adaptive algorithm.
The most important feature of QM coder is that it only deals with binary symbols,
that is, 0 and 1. Since there are only two different symbols in the alphabet, we
can distinguish them by identifying one of them as the more probable symbol
(MPS) and the other to be the less probable symbol (LPS). Each time the next bit
is read in, the QM encoder determines whether or not it is an MPS in the current
statistical model and then compresses it accordingly. To be more precise, the QM
coder does not really code symbol 0 or 1, rather, it only codes whether the symbol
is MPS or LPS. The decoder uses the same statistical model and tries to determine
whether the next symbol is MPS or LPS. Each time a symbol is processed, we
update the model and this update should be kept synchronized at both the encoder
and decoder sides.

In QM coder, Qe is defined as the probability of the LPS. Therefore, the prob-
ability of the MPS is (1−Qe). From this definition, we expect Qe to be in the range
of [0, 0.5], and (1 − Qe) to be in the range of [0.5, 1]. Let A be the initial proba-
bility interval. LPS and MPS divide the interval A into two subintervals with the
width of LPS’s subinterval equal to A×Qe and that of MPS’s subinterval equal to
A× (1−Qe). This is shown in Figure 3.6.

The QM coder operates in a similar way as the conventional arithmetic cod-
ing. The output of QM encoder denoted by C can be considered as the bottom
of the new interval each time a symbol is processed. In other words, whenever an
MPS is input into the encoder, C is modified to be the bottom of the MPS subin-
terval, while if an LPS is input into the encoder, C is modified to be the bottom
of the LPS subinterval. Accordingly, A is shrunk to the size of the corresponding
subinterval. The probability of the input stream is within the range of [C,C + A).
And the width of the interval A becomes smaller and smaller as more and more
bits are processed. Using the subinterval division method shown in Figure 3.6, we
should update C and A according to the following rules:

(1) after MPS: C is unchanged, A→ A(1−Qe),
(2) after LPS: C → C + A(1−Qe),A→ A×Qe.

With these rules, C is set to a point at the bottom of the MPS or the LPS subinterval
and A is set to the new size of the subinterval.

Table 3.4 lists the values of A and C when four symbols (MPS, LPS, LPS, and
MPS) are processed. In this simple example, we assume that Qe remains to be
0.5. In the real case, Qe may be changed each time a new bit is processed. After
coding these four bits, C and A are updated to 0.625 and 0.0625, respectively. The
probability of receiving a sequence containing these four bits is within the range
of [0.625, 0.625 + 0.0625).

The above example operates in the same way as a conventional arithmetic
coder with a binary symbol set. QM coder actually works in a slightly differ-
ent way so that a faster computation can be achieved. What makes the previous
method inefficient is that it involves many multiplications and divisions. If these

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

52 Entropy coding

LPS
subinterval
A×Qe

MPS
subinterval
A(1−Qe)

A

A(1−Qe)

0

Figure 3.6. The probability interval of QM coder.

Table 3.4. Encoding four symbols with Qe = 0.5.

Symbol C A

Initially 0 1
s1 (MPS) Unchanged (0) 1× 0.5 = 0.5
s2 (LPS) 0 + 1× (1− 0.5) = 0.5 0.5× 0.5 = 0.25
s3 (LPS) 0.5 + 0.25× (1− 0.5) = 0.625 0.25× 0.5 = 0.125
s4 (MPS) Unchanged 0.125× (1− 0.5) = 0.0625

multiplications and divisions can be replaced by additions, subtractions, and shifts,
then the whole coding process can be much more efficient.

The QM coder initialized A to be the value of 1 and maintained it to be a
number close to 1. This is done by doing renormalization. Whenever A becomes
too small, we double its value. At the same time, C should be doubled too. In the
real implementation, the doubling operation only involves a logical left shift, thus
can be done fast. Now we need to find the criterion on when the renormalization
should be performed. If A is doubled when it is just a little smaller than 1, say
0.9, then renormalizing A yields 1.8, which is closer to 2 than to 1. If the value
of A is not normalized until it is below 0.5, then doubling it once still results in a
value less than 1. A reasonable threshold to perform the renormalization is 0.75.
Therefore, when A becomes 0.75 at a certain step, it will be renormalized to 1.5.
If A reaches a value a little smaller than 0.75, it will be doubled to a number even
closer to 1. However, if A reaches a value that is close to 0, it has to be renormalized
several times. Consequently, renormalization makes A a number close to 1 and
never larger than 1.5.

Since A is a value close to 1, then A × Qe, which is a main multiplication
involved in each update procedure, can be estimated simply by Qe itself. This ap-
proximation process changes the main rules of the QM encoder to

(1) after MPS: C is unchanged, A→ A(1−Qe) ≈ A−Qe,
(2) after LPS: C → C + A(1−Qe) ≈ C + A−Qe,A→ A×Qe ≈ Qe.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

QM coding 53

Table 3.5. Renormalization added to Table 3.4.

Symbol C A Renor. A Renor. C

Initially 0 1 — —
s1 (MPS) 0 1− 0.5 = 0.5 1 0
s2 (LPS) 0 + 1 + 0.5 = 1.5 0.5 1 3
s3 (LPS) 3 + 1 + 0.5 = 4.5 0.5 1 9
s4 (MPS) 9 1− 0.5 = 0.5 1 18

In the real implementation of QM coder, we need to choose an integer repre-
sentation for A so that any value in the range of [0, 1.5) can be represented as an
integer. Suppose we are using a computer such that any integer can be stored in 16
bits. We can choose 16 zero bits to represent 0 and

216 = 6553610 = 1000016 = 1 0 . . . 0︸ ︷︷ ︸
16

2 (3.23)

to represent 1.5. The hexadecimal representations of several important values in
QM coding are listed below:

0.25 = 21845
2

= 1092310 = 2AAB16,

0.5 = 43690
2

= 2184510 = 555516,

0.75 = 1.5
2
= 215 = 3276810 = 800016,

1 = 0.75
4
3
= 4369010 = AAAA16.

(3.24)

Note that the choice of associating 1.5 with 216 is arbitrary. As long as we can
achieve accurate interval subdivision, different integer representations can be cho-
sen.

If we include the renormalization, the main rules of the QM encoder is
changed to

(1) after MPS: C is unchanged, A ← A − Qe, if A < 800016 renormalize A
and C,

(2) after LPS: C ← C + A + Qe,A← Qe, renormalize A and C.
Table 3.5 lists results of applying the new rules to the examples shown in

Table 3.4.
Another important problem in need to be taken care of in the design of

the QM coder is called interval inversion. This needs to be done when the subin-
terval allocated to the LPS becomes larger than that of MPS. This problem is a
result of the approximation and may happen when Qe is close to 0.5. Table 3.6
illustrates an example of interval inversion. After three MPSs are encoded, the in-
terval becomes 0.78. Since it is larger than the renormalization threshold 0.75,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

54 Entropy coding

Table 3.6. An example of interval inversion (Qe = 0.46).

Symbol C A Renor. A Renor. C

Initially 0 1 — —
s1 (MPS) 0 1− 0.46 = 0.54 1.08 0
s2 (MPS) 0 1.08− 0.46 = 0.62 1.24 0
s3 (MPS) 0 1.24− 0.46 = 0.78 — —
s4 (MPS) 0 0.78− 0.46 = 0.32 0.64 0

After MPS:

C is unchanged;

A = A−Qe; (A is set to be the MPS’s subinterval)

if A < 800016 (check if reorganization needs to be done)

if A < Qe (check if inversion is needed)

C = C + A; (C updates to the bottom of LPS)

A = Qe; (A is set to be the LPS’s subinterval)

endif;

renormalize A and C

endif;

After LPS:

A = A−Qe; (A is set to be the MPS’s subinterval)

if A ≥ Qe (if no interval exchange needs to be performed)

C = C + A; (C updates to the bottom of LPS)

A = Qe; (A is set to be the LPS’s subinterval)

endif;

renormalize A and C;

Algorithm 3.1. The pseudocode for QM encoder.

no renormalization is performed. Then the subinterval allocated to MPS becomes
A−Qe = 0.78−0.46 = 0.32, which is not as large as that of LPS, which isQe = 0.46.

Whenever an interval inversion occurs, we need to swap the LPS and MPS so
that the old MPS becomes LPS and the old LPS becomes MPS. This operation is
called conditional exchange. Clearly, a conditional exchange needs to be performed
when A−Qe < Qe. Since Qe ≤ 0.5, A−Qe < Qe ≤ 0.5 < 0.75, which means that
the interval inversion only happens when a renormalization is needed. The pseu-
docode that combined all steps stated in this section is shown in Algorithm 3.1.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

QM coding 55

A = A−Qe;
if A > C

if A ≥ 800016

Decode: MPS;
else

if A ≥ Qe
Decode: MPS;

else
Decode: LPS;

endif;
renormalize A and

C;
endif;

else
if A ≥ Qe

C = C − A;
A = Qe;
Decode: LPS;

else
C = C − A;
A = Qe;
Decode: MPS;

endif;
renormalize A and C;

endif;

Algorithm 3.2. The pseudocode for QM decoder.

3.4.2. QM decoder

The QM decoder is a reverse process of the QM encoder. The rules to update C
and A in QM decoder are given by

after MPS: C is unchanged, A←� A(1−Qe) ≈ A−Qe,

after LPS: C ←� C − A(1−Qe) ≈ C − A + Qe, A←� A×Qe ≈ Qe.
(3.25)

And the pseudocode for the QM decoder is shown in Algorithm 3.2.

3.4.3. Probability estimation

As mentioned before, QM coder is an adaptive binary arithmetic coder. The sta-
tistical model of QM coder needs to be updated in order to reflect the up-to-date
probability estimation. The intuitive method to estimate symbols’ frequencies is

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

56 Entropy coding

Table 3.7. An example of QM coder’s probability estimation.

Qe Hex Dec Decr Incr MPS Qe Hex Dec Decr Incr MPS
state Qe Qe LPS MPS exch state Qe Qe LPS MPS exch

0 0AC1 0.50409 0 1 1 15 0181 0.07050 2 1 0

1 0A81 0.49237 1 1 0 16 0121 0.05295 2 1 0

2 0A01 0.46893 1 1 0 17 00E1 0.04120 2 1 0

3 0901 0.42206 1 1 0 18 00A1 0.02948 2 1 0

4 0701 0.32831 1 1 0 19 0071 0.02069 2 1 0

5 0681 0.30487 1 1 0 20 0059 0.01630 2 1 0

6 0601 0.28143 1 1 0 21 0053 0.01520 2 1 0

7 0501 0.23456 2 1 0 22 0027 0.00714 2 1 0

8 0481 0.21112 2 1 0 23 0017 0.00421 2 1 0

9 0441 0.19940 2 1 0 24 0013 0.00348 3 1 0

10 0381 0.16425 2 1 0 25 000B 0.00201 2 1 0

11 0301 0.14081 2 1 0 26 0007 0.00128 3 1 0

12 02C1 0.12909 2 1 0 27 0005 0.00092 2 1 0

13 0281 0.11737 2 1 0 28 0003 0.00055 3 1 0

14 0241 0.10565 2 1 0 29 0001 0.00018 2 0 0

to initialize Qe to 0.5 and update it by counting the number of bits 0 and 1 that
have been processed so far. For instance, if 100 bits have been processed so far, and
among them 80 are ones and 20 are zeros, then 1 is the current MPS with estimated
probability equal to 0.8 and 0 is the current LPS with estimated probability equal
to 0.2. Note that at the encoder side, the statistical model should be updated after,
not before, a symbol has been encoded. Because, otherwise, the decoder would
not be able to mirror the same probability estimation as the encoder and it could
not correctly decode the symbols thereafter. Although this method produces good
results, it is inefficient and is never used in real implementation since Qe has to be
updated frequently (ideally after each processed symbol) and there are divisions
involved in the calculation.

The method adopted by the QM coder to do the probability estimation is
based on a table of preset Qe values. Initially, Qe is set to 0.5 and is only modified
after renormalization, not after processing each symbol. Table 3.7 gives an exam-
ple on how to perform this process. (Note that this is just an illustration. In real
compression, QM coder may use a much more complex table. For example, the
probability estimation of JPEG is prepared based on Nayesian statistics.) The ini-
tial state of Qe, that is, state 0, set Qe to be 0AC116, which is close to 0.5. Suppose,
at state k, we have “Decr LPS” and “Incr MPS” values equal to d and i. This means,
at the Qe’s current state k, that if an LPS renormalization occurs first, we should
update the Qe to state k − d; while if an MPS renormalization occurs first, we
should update the Qe to state k+ i. Notice that there is also a column labeled “MPS
exch” in Table 3.7. This column shows the conditional exchange information of
the MPS and LPS.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

QM coding 57

Compared with the intuitive probability estimation method, this table lookup
approach is much simpler and faster: the Qe value can be found in the table by in-
crementing or decrementing the current state and no division is needed. Moreover,
the statistical model does not have to be updated frequently.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

4
Introduction to psychoacoustics

One of the key elements in the development of reduced bit rate audio is the under-
standing and application of psychoacoustics. All of the current perceptual audio
coders achieve high compression rates by exploiting the fact that signal informa-
tion that cannot be detected by even a well-trained listener can be discarded. Sev-
eral psychoacoustic principles, such as the absolute hearing threshold and mask-
ing, have been incorporated in codec design. In this chapter, we discuss some of
the basic principles of psychoacoustics that are commonly used in perceptual au-
dio coding.

4.1. Perception of loudness

While it is a relatively simple task to measure the sound pressure level of a sound
source, it is quite a challenging task to relate the measured level to a perceived level
by human listeners. The perceptual quantity that describes the magnitude of the
source as experienced by a listener is called loudness. The difficulty in making a di-
rect correlation between measured sound pressure level (SPL) and perceived loud-
ness lies in the fact that there are multiple mechanisms responsible for producing
the sensation. For example, it is common for people listening to reproduced mu-
sic to observe changes in loudness when equalization is applied to the signal thus
altering the balance between low and high frequencies.

There are several aspects of loudness that relate to perceptual audio codecs.
One has to deal with the minimum threshold of hearing and how that varies with
frequency. Another deals with how the hearing mechanism determines differences
in loudness level when other parameters (e.g., spectrum or duration) are kept con-
stant.

First, let us begin by defining the sound pressure level (SPL)

L = 20 log
(
p

p0

)
dB(SPL), (4.1)

in which p is the pressure produced by a sound source and p0 is the reference
pressure of 20 μPa that corresponds to the minimum audible threshold of human

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

60 Introduction to psychoacoustics

hearing for a 1 kHz tone. It is also useful to describe SPL in terms of sound in-
tensity. Following the notation in [44] we can write the instantaneous intensity of
sound as

I(t) = p(t)u(t), (4.2)

in which p(t) is the instantaneous sound pressure and u(t) is the fluid velocity. For
a plane wave, the fluid velocity is related to pressure by

u(t) = p(t)
(ρc)

, (4.3)

in which ρ is the density (in the case of air ρ = 1.29 kg/m3) and c is the speed
of sound in air. From the above two equations, the intensity can be written as a
function of pressure as:

I(t) = p2(t)
(ρc)

. (4.4)

Using equation (4.4) we can calculate the reference intensity corresponding to the
reference pressure of 20 μPa.

I0 = p2
0

(ρc)
= p2

0[(
1.29 kg/m3)(343.6 m/s)

] = 0.93× 10−12 W/m2, (4.5)

which is often approximated (to account for temperature variations in the speed
of sound) to I0 = 10−12 W/m2. The sound pressure level of a sound source with
intensity I , is then given by:

L = 10 log
(
I

I0

)
dB(SPL). (4.6)

The dependence of loudness on SPL has been studied and is now an inter-
national standard [57]. It was found to relate the perceptual magnitude H to the
physical sound intensity I by a power law

H = kI0.6, (4.7)

which holds over a range of SPL levels from about 40 dB SPL to 120 dB SPL and
shows a slight deviation at lower SPL levels. Note that the power law exponent of
0.6 corresponds to a loudness doubling for every 10 dB increase in intensity. So a
perceptual “doubling” is not the same as an electrical signal doubling.

Perhaps the most important characteristic of loudness perception for the de-
sign of audio codecs is this dependence of loudness on frequency. This relationship
was investigated by Fletcher and Munson [34] over headphones and later Robin-
son and Dadson [106] for a free field (Figure 4.1). A different sound intensity is

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Masking 61

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20

Frequency (kHz)

0

20

40

60

80

100

So
u

n
d

pr
es

su
re

le
ve

l(
dB

)

LN = 100 phon

80

60

40

20

3
Threshold

Figure 4.1. Equal loudness contours for pure tones. The curves show the sound pressure level required
at each frequency to achieve a perceived loudness equal to a 1 kHz tone. Note that the curves tend to
become flatter across frequency as the absolute loudness level is raised [148].

required at each frequency in order to produce the same level of perceived loud-
ness. Human listeners are much less sensitive to low frequencies and thus a much
higher SPL level is required to produce the same perceived loudness as that of a
sound at high frequencies. The frequency-dependent intensity (or SPL) levels that
give rise to the same perceived loudness are known as equal loudness levels. In fact,
because these levels also depend on the absolute intensity, they form a family of
curves known as the equal loudness contours (Figure 4.1). Each curve corresponds
to the SPL at which a 1 kHz tone is perceived to be equally loud as a tone at an-
other frequency. For example, on the 20 phon curve, a sound at 50 Hz must be
30 dB louder in sound pressure level in order to be perceived as having the same
loudness as the reference tone at 1 kHz. Although the loudness level is measured in
dB, it is distinguished from SPL and it is designated by a unit called the phon. The
lowest curve in the figure is called the minimum audible field (MAF) and represents
the hearing threshold averaged over a large population sample.

At low levels, the equal loudness curves resemble the shape of the MAF curve,
but as the absolute loudness level increases the curves become flatter. This shows
that the difference in balance between low and high frequencies decreases at high
levels.

4.2. Masking

Another basic characteristic of human hearing that is exploited in perceptual au-
dio coding is that of masking. It is relatively simple to observe this phenomenon
in everyday life by simply noticing that a very loud sound (the masker signal) can
prevent another sound (the maskee signal) from being heard. For example, a per-
son near running water has difficulty hearing another person talking to them be-
cause the water acts as the masker signal. From studies of the ear physiology, it
is known that the physical mechanism for producing sound cues in the brain be-
gins with electrical discharges at nerve endings on the basilar membrane. While

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

62 Introduction to psychoacoustics

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20

Frequency (kHz)

0

20

40

60

80

L
(d

B
)

Threshold
in quiet

Masking
threshold

Inaudible
signal

Masker

Masked
sound

Figure 4.2. The masker signal causes a threshold shift that locally raises the minimum audible thresh-
old. Any other signal with frequency components within the raised threshold range will not be audible
and will therefore be ignored by a perceptual codec.

this discharge is occurring, the nerves involved cannot be stimulated by another
sound. Thus if another sound happens to require some subset of the same nerves,
it will be masked. The first published observation of this phenomenon is by Mayer
[91] in 1876. As described by Fletcher [34], Mayer observed that low-frequency
sounds had a very different masking effect from high-frequency sounds. A more
general definition of masking includes not just the case when the maskee signal
is not audible, but also when the masker produces a reduction in the perceived
loudness of the maskee. This phenomenon is called partial masking [111].

The first systematic experiments to determine the effects of masking and the
role of parameters such as spectrum, level, and duration of the masking signal
were conducted by Fletcher (for a complete review see [34]). Starting with pure
tones, a masker tone was generated and kept at a constant level while signal tones
of different frequencies were increased in intensity from their threshold of audi-
bility level until they just became perceptible in the presence of the masker. The
level difference from the audibility threshold without the masker represents the
threshold shift (Figure 4.2). This effect of masking is particularly relevant to per-
ceptual audio codecs particularly because the threshold shift varies linearly with
the masker level [45].

Fletcher’s experiments verified Mayer’s observations that high frequencies are
masked more than low frequencies. This implies that for complex sounds that
contain multiple tones, masking will be manifest as an apparent “boost” in low
frequencies because the high frequencies are more easily masked (and thus not
perceived as intense). What is interesting about this low-frequency boost is that it
only occurs in monaural masking experiments. If the masker and maskee signals
are presented to each ear separately, this apparent interference does not occur.

4.2.1. Frequency masking

The masking of complex sounds that consist of multiple pure tones can be ex-
plained by “complex addition” of the effects produced by individual tones. That is

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Masking 63

Masker
Tone

Critical band

Frequency

Figure 4.3. With a broadband masker, only the energy in the critical band around the pure tone gives
rise to masking.

to say, the masking not only combines the effects of each tone, but also presents
the effects of the sum and difference of the individual tones.

The spectrum of the masker signal also plays a critical role in masking. A
pure tone (single line spectrum) can act as a masker. As Mayer showed [91], low
frequency tones can mask higher frequencies; however, high frequencies are not
good maskers of lower frequencies. Later studies by Wegel and Lane [133] verified
this and went further to show that as the intensity of the masker signal is raised,
masking spreads in the direction of higher frequencies, but not towards lower fre-
quencies. The effect is called upward spread of masking. Furthermore, the width
of the masking pattern at low frequencies is much wider than the width at higher
frequencies. This implies that low frequency maskers have an effect over a much
wider range of frequencies.

The human ear has the ability to act as a spectrum analyzer and analyze the
frequency content in a signal using filter banks known as the auditory filters. The
width of these auditory filters varies with the frequency around which they are
centered. In Fletcher’s work [28], it was shown that the masking threshold of a tone
increased with the bandwidth of the masking noise. However, after a certain width
of the masking noise there was no further increase in the masking effect. This
suggested that each auditory filter has a certain critical bandwidth and Fletcher
theorized at the threshold and the signal power and noise power would be equal
within the critical bandwidth range. He defined a critical band as the ratio of signal
to noise power, which when expressed in dB corresponds to the difference between
the signal and the masking noise (Figure 4.3).

4.2.2. Temporal masking

So far we have discussed masking that arises due to the audibility threshold shift
that a human perceives when a masking sound is present at the same time. It is also
possible to create a masking effect when the masker and signal have occurred at
different times. This is called temporal masking and can manifest itself as backward
masking in which the signal is generated before the masker, or forward masking in
which the signal comes after the masker (Figure 4.4).

In backward masking, the masker causes a rise in the threshold for signals that
arrived before it. This may seem counterintuitive, but it has been demonstrated for
time gaps on the order of 25 ms [31]. The level of the masker must be significantly
higher than the signal for backward masking. Although the signal arrives at the ear

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

64 Introduction to psychoacoustics

Masker
Signal

Gap

Time

Backward masking

(a)

Masker
Signal

Gap

Time

Forward masking

(b)

Figure 4.4. Temporal masking can occur in both the forward and backward directions.

earlier, the higher loudness masker is processed first thus giving rise to backward
masking.

The most common type of temporal masking is forward masking. This effect
happens over much longer time intervals between the signal and the masker that
can reach 200 ms [31]. The amount of masking as well as the decay of the masking
effect are directly proportional to the time gap between the masker and the signal.

4.2.3. Interaural masking

Most of the early masking experiments were monaural in nature with both the
masker and the signal rendered in the same ear. Masking is also produced in a
binaural situation with the masker in one ear and the signal in the other. As the
intensity of the masker is raised it reaches a level at which it can mask a signal at
the opposite (contralateral) ear. Although the reasons are not fully understood, it
is hypothesized that the masker interacts with the signal much later in the hearing
signal path, within the central nervous system at a point where binaural signal
representation is maintained [149].

Interaural masking is a much weaker effect compared to monaural masking.
It rises by a fraction of a dB as the masker level rises and decreases when there is a
gap between the masker and the signal. Contrary to monaural masking, however,
the effect is stronger for higher frequencies than lower frequencies. Zwislocki [149]
showed that this type of masking correlates highly with the firing rate of neurons
of the lower auditory nervous system.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

5
Subjective evaluation of audio codecs

5.1. Introduction

Advances in audio codec performance can be evaluated and compared by using
certain objective measures such as signal-to-noise ratio or the mask-to-noise ratio
(MNR) [4] that is defined as the ratio of the masking threshold with respect to the
energy of the coding error. Although these measures can give some indication of
the relative performance among coding schemes, none are capable of accurately
representing the preferences and sensitivities of the human ear to artifacts or the
ability to judge the “transparency” of a codec. Because all low-bit-rate audio codecs
discard audio signal data by definition, subjective evaluation is the only accepted
method to evaluate both the audibility and “level of annoyance” of the inevitable
artifacts that occur as the encoding bit rates are reduced.

In order to systematically assess the quality of compressed audio program ma-
terial, it is critical to establish a methodology that removes as many variables from
the subjective listening experiments as possible. This allows only those differences
or artifacts that are due to the compression algorithms to present themselves to
human listeners that must also be trained in the tasks they are to perform.

In this chapter, we describe the basic elements of the methodologies used in
subjective listening evaluations, many of which have been codified in international
standards. These elements include very precise specifications of the listening room
environment, the type of program material, the methods of sound reproduction,
the selection and training of listening panels, and the statistical analysis models
that will yield meaningful results.

5.2. Listening environment specifications

It is critical to perform subjective evaluations in an environment in which the ef-
fects of room acoustics and distortions from the playback system have been min-
imized. This permits the listeners to attribute any audible artifacts to the coding
algorithms rather than other unknown and uncontrolled parameters. For exam-
ple, reproduction of program material over loudspeakers in a highly reverberant
room will give rise to low intelligibility and masking from the multiple reflections
that will arrive at the listeners ears after the desired signal from the loudspeakers.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

66 Subjective evaluation of audio codecs

One way to address the issue of room acoustics is to specify the use of head-
phones for sound reproduction. In a study conducted by the Consultative Com-
mittee for International Radio (CCIR), it was found that the proper conditions
for headphone reproduction were achieved when the headphones were equalized
for a flat response in a diffuse field [4, 7]. The headphone requirements are also
further specified by the findings of Professor Gunther Theile which later led to an
ITU standard (ITU-R BS.708) [20] and have also been specified by the IEC [6].

For listening evaluations using loudspeakers, a set of guidelines has been put
forth by the European Broadcasting Union (EBU) [27] and also by the ITU (ITU-
R BS.1116). The ITU requirements have been described in detail in other publica-
tions (see, e.g., [16]), so here we will provide an overview of the EBU recommen-
dations.

The placement of listeners and loudspeakers should be such that the acous-
tical center of each loudspeaker in the reproduction system is at least 1.2 m from
the floor. Furthermore, the height of the acoustical center from each loudspeaker
should coincide with the seated ear height. This should be achieved by raising or
lowering the loudspeakers rather than by tilting. If tilting is necessary, it should
not exceed 10◦ in order to avoid off-axis effects in the loudspeaker frequency re-
sponse particularly in the region of the crossover frequencies. In order to mini-
mize boundary effects from nearby walls, the loudspeakers should be placed at a
1 m minimum distance from the surrounding walls. There also should not be any
obstructing objects or surfaces between the loudspeakers and the listening area.
The loudspeakers must be placed in a circle centered at the main listening position
within the listening area. For experiments that involve the evaluation of sound
imaging, the time-delay differences among loudspeakers must not exceed 100 mi-
croseconds.

The recommended listening room physical characteristics specified by the
EBU begin with a minimum floor area of 40 m2 (30 m2 for a sound control room).
The volume should not exceed 300 m3. Even more important than the floor area
and the volume are the required room dimension ratios that will give rise to an
even distribution of normal modes. The range of recommended room dimension
ratios are given below:

1.1
(
w

h

)
≤ l

h
≤ 4.5

w

h
− 4,

l < 3h,

w < 3h,

(5.1)

in which l is length (largest floor dimension, regardless of orientation), w is width
(shortest floor dimension, regardless of orientation), and h is height. Finally, ratios
of l, w, and h that are ±5% of an integer number should be avoided.

The quality of the direct sound from the loudspeakers to the listening area
is influenced by the characteristics of the loudspeakers. A set of minimum

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Listening environment specifications 67

requirements has been set forth by the EBU, but it is important to note that not
all loudspeakers that meet these minimum requirements will be suitable for all
types of subjective evaluations. A separate evaluation of the loudspeakers should
be performed before conducting the listening tests.

This evaluation begins with a measurement of the loudspeaker free-field re-
sponse that is usually taken in an anechoic chamber. The frequency response
should be measured using a pink noise (constant energy per octave) test signal.
The amplitude envelope of this signal decays as 1/ f , where f is the frequency in
Hz. Measurements are to be taken in 1/3-octave bands on the main axis. The ac-
ceptable variation of the loudspeaker frequency response is ±2 dB in the range
from 40 Hz to 16 kHz. In addition to the on-axis measurements, frequency re-
sponse must also be measured at ±10◦ and ±30◦ and the response at these angles
must not vary from the on-axis response by more than ±3 dB and ±4 dB, respec-
tively.

The directional radiation pattern of the loudspeakers must also be properly
designed. In the horizontal plane, the polar pattern is measured with pink noise
in standard octave spacing in the range from 250 Hz to 16 kHz. The maximum
radiation must always be in the on-axis direction for all frequencies. The directivity
index D of the loudspeaker is defined as the ratio of the on-axis power divided
by the power delivered on-axis for a pure omnidirectional source. The allowable
values for the directivity index are 4 ≤ D ≤ 12 dB.

The EBU further specifies the allowable harmonic distortion in the system.
This is typically measured with a sinusoidal signal that produces a sound pressure
level of 90 dB in the range from 250 Hz to 2 kHz. The harmonic distortion lev-
els within this range cannot be above 3% for the frequency range from 40 Hz to
250 Hz and 1% for the frequency range from 250 Hz to 16 kHz.

During the presentation of the program material, the maximum sound pres-
sure level for continuous operation (defined as a minimum of 10 minutes) must
not exceed 108 dB when measured with a sound level meter set to flat, RMS (slow)
at a distance of 1 m from the sound source. The maximum system noise level is
measured with a shortened input and must not exceed 10 dB (A-weighted) at a
distance of 1 m.

With regard to the acoustical characteristics of the listening room, there are
requirements for early reflections and the reverberant field. For early reflections
that arrive at the main listening position within 15 milliseconds after the direct
sound, the levels of the reflected sound should be at least −10 dB below those of
the direct sound. These are spectral levels for the frequency range from 1 kHz to
8 kHz. Stricter requirements were found by Olive and Toole [94] who showed that
the level of reflected sound must be below −15 dB for reflections to be inaudible
relative to the direct sound.

The requirement for the reverberation field that arrives after the first 15 mil-
liseconds is that it is diffuse in nature in order to avoid effects such as flutter echoes
that would interfere with the listening evaluation of the program material. The re-
verberation time T60 of the listening room is defined as the time required for the
direct sound from the source to decay to a level of −60 dB. The reverberation time

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

68 Subjective evaluation of audio codecs

is a function of frequency and is typically reported for frequencies between 125 Hz
and 4 kHz. The EBU recommendation is for T60, to be in the range of 0.2–0.4 sec-
onds.

The calibration of the sound rendering system must be performed to a pre-
specified frequency-response target curve. The EBU recommendation is that the
1/3-octave mean level must lie within a band that is bounded by±3 dB from 50 Hz
to 2 kHz and is allowed to decay by 1 dB per octave from 2 kHz to 16 kHz.

The listening levels must be set using pink noise at a level of −18 dBFS. The
system gain is then adjusted so that the sound pressure level at the listening posi-
tion is 85–10 log(n) dB (A-weighted), where n is the number of loudspeaker chan-
nels in the playback system. Level differences among channels must not exceed
1 dB.

The room background noise must not exceed the curve for noise rating (NR)
of 10. Noise rating curves were developed by the International Standards Orga-
nization to specify the acceptable noise levels in indoor environments. At 500 Hz,
the NR-10 allowable noise level is 15 dB SPL (A-weighted).

5.3. Testing methodology

The prevailing notion among psychophysicists is that the most reliable subjective
evaluation results come from trained listeners. Although it was earlier thought
by some that better statistics are obtained by randomly selecting listeners, the lit-
erature has shown that this is not the case. Listeners can be trained very effec-
tively and the evaluations performed after training are more statistically mean-
ingful [21, 81, 150]. Furthermore, it is much more efficient to process data from
a smaller group of trained listeners that will give the same (or better) statistical
confidence in the results.

A systematic study of listeners’ ability to discriminate was performed by the
Communications Research Center [43]. The results of that study showed that a
triple-stimulus method in which a listener is allowed to select from three condi-
tions was the most effective. Condition A is called the “uncoded reference” and
conditions “B” and “C” are the hidden reference and coded versions randomly
ordered so that the listener does not know which among “B” and “C” is which.

The evaluation procedure typically involves an initial training phase and a
subsequent blind rating phase. During the training phase, listeners are given am-
ple opportunity to explore and identify the possible types of artifacts that can arise
in audio coding. This process can take several hours and it includes examples with
specific coding artifacts that will later be included in the blind testing phase. The
training phase presents listeners with a similar sequence of “A,” “B,” and “C” stim-
uli like what they will later experience in the formal evaluation phase. In this se-
quence, “A” is always the reference sound and “B” is always the coded version. This
is done in order to provide listeners with an immediate and direct comparison. In
the training phase, “B” will be chosen randomly to be either the coded version or
the hidden reference.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Data analysis after subjective listening tests 69

The blind rating phase follows the training phase. Here the goal is to have
listeners delivering numerical scores under double-blind conditions that prevent
both the person administering the trials and the listeners from knowing the order-
ing of sounds and the placement of the hidden references in each trial. It is im-
portant during this phase to provide the listeners with the ability to freely switch
among the three conditions with a simple interface that does not introduce any
bias or artifacts due to switching. There are no time limits on making a decision
and the listeners can repeat the samples as many times as they wish.

The rating scale most commonly used is the CCIR 5-grade impairment scale
[5] that breaks down the scores into 5 categories: 5 “imperceptible”; 4 “perceptible
but not annoying”; 3 “slightly annoying”; 2 “annoying”; 1 “very annoying.” During
the training phase, the listeners are explicitly exposed to all of these conditions that
are described in detail. Listeners are also instructed to provide continuous decimal
scores ranging between these categories based on their perception of the severity
of the artifacts.

5.4. Data analysis after subjective listening tests

5.4.1. Mean

A measure of the central or the representative overall value is one of several items
of interest in a set of observations. Although values such as the median, the mode,
and the midpoint of the range of values are occasionally considered, the most
widely used measure is the average, which is also known as the arithmetic mean,
or simply the mean. The mean value can be obtained by dividing the total value of
all observations by the number of observations as

ȳ =
∑

i Yi

n
= Y.

n
, (5.2)

where ȳ represents the mean value of variable y, and n is the total number of
observations in the sample, and Y. represents the sum of the observations. Some
sample data of a population is listed in Table 5.1. The mean of the data in this table
is

ȳ = Y.

n
= 1795

4
= 448.75, (5.3)

and is an estimation of the unknown mean of the population μ.

5.4.2. Variance

When data are obtained via experiments, we are continually confronted with vari-
ability among observations. Among various available measures of this variability,
one of the primary interest in statistical analysis is known as the variance. The

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

70 Subjective evaluation of audio codecs

Table 5.1. A sample data in an experiment. (Sum = 1795 =∑
i Yi = Y.)

Number Data

1 415 = Y1

2 485 = Y2

3 435 = Y3

4 460 = Y4

Table 5.2. Variance calculation using deviations from the mean. (Y. = 1795,
∑

i Yi − ȳ = 0.00,∑
i Yi − ȳ2 = 2768.7500 = ∑

i y
2
i , ȳ = Y./n = 1795/4 = 448.75, s2 = ∑

i Yi − ȳ2/n− 1 = ∑
y2
i /n− 1 =

2768.7500/3 = 922.92.)

Yi Yi − ȳ (Yi − ȳ)2 = y2
i

415 −33.75 1139.0625

485 36.25 1314.0625

435 −13.75 189.0625

460 11.25 126.5625

variance in a sample or a group of observations is equal to the sum of the squares
of mean-removed values divided by the number of observations minus one. It has
been shown that the variance calculated in this way is an unbiased estimation,
while the division by the total number of the observation results in a biased esti-
mate of the population variance. The formula that calculates the variance in any
sample set of data is given by

s2 =
∑

i Yi − ȳ2

n− 1
, (5.4)

where s2 represents the variance of the observations in the sample and n is the
number of observations. The value s2 is an estimate of the population variance σ2.
The mean-removed sample value Yi − ȳ is often written as yi. And symbol Ȳ is
frequently used to represent the mean since

∑
i yi = 0.

Based on sample values shown in Table 5.1, Table 5.2 lists operations involved
in calculating the variance using (5.4). The estimate of the population variance σ2

is equal to 922.92. The calculation of the variance using (5.4) is relatively easy if
only a few observations are involved. However, if the experiment contains a large
number of observations, this calculation is quite cumbersome. Equation (5.4) can
be simplified by

∑
i

(
Yi − ȳ

)2

n− 1
=

∑
i Yi

2 − Y.2/n

n− 1
. (5.5)

The right-hand side of the equation is much easier to be used with a large num-
ber of observations. By using (5.5), we obtain the same value for the variance of

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Data analysis after subjective listening tests 71

μ− 3σ μ− 2σ μ− 1σ μ μ + 1σ μ + 2σ μ + 3σ

Figure 5.1. Areas of the normal curve.

observations as calculated in Table 5.2:

s2 =
∑

i Yi
2 − Y.2/n

n− 1
l = 808, 275− (1795)2/4

4− 1

= 808, 275.00− 805, 506.25
3

= 2768.75
3

= 922.92.
(5.6)

5.4.3. Standard deviation

From the notation of s2 or σ2, we know that the variance is the square value of
another variable, which is referred to as the standard deviation. The standard de-
viation is simply the square root of the variance, and can be expressed as

s =
√∑

i Yi
2 − Y.2/n

n− 1
, (5.7)

where s represents the standard deviation of a sample from the population and is
an estimation of parameter σ . For the example under discussion, we have

s = √2464.58 = 49.64. (5.8)

If the data of interest follow a normal distribution, then the probability func-
tion of population observations should have the shape as shown in Figure 5.1.
In other words, if one were able to plot the values of all individuals in a popula-
tion, their frequency distribution would have the shape of a bell. This means that a
larger portion of the observations would have values close to mean; and the num-
ber of observations would continuously decrease as their values get further away
from the mean value. Statistical theory tells us that 68.26% of the variates or ob-
servations would have values within μ±1σ , 95.46% of the variates or observations
would have values within μ±2σ , and 99.73% of the variates or observations would

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

72 Subjective evaluation of audio codecs

have values within μ±3σ . This can be stated in a different way. That is, the area un-
der the curve between μ±0.674σ would include 50% of the observations, between
μ±1.965σ would include 95% of the observations, and between μ±2.576σ would
include 99% of the observations. Supposing that the estimate of the population’s
mean and standard deviation equals 448.75 and 49.64, respectively (μ = 448.75
and σ = 49.64), we would expect that 50% of the observations fall between 415.29
and 482.21, 95% of the observations fall between 351.21 and 546.29, and 99% of
the observations fall between 320.88 and 576.62.

5.4.4. Standard error of the mean

When data samples of a population are available, we can calculate the mean of each
sample and we would find that there is variability among these sample means just
as we had variability among individual observations in a single sample. If a large
number of sample means were calculated, the mean of these sample means can be
used to estimate the population’s parameter μ. Similar to the distribution of the
original population, the mean of samples would also be distributed in a normal
curve. However, the variation among the means would be smaller than σy because
the mean of a sample deviates less from the overall mean than some members of
the sample. The variance among a group of sample means can be calculated by

sȳ
2 =

∑k
i=1

(
ȳi − ȳ.

)2

k − 1
, (5.9)

where sȳ2 represents the variance of a group of sample means, ȳi represents an
individual sample mean, ȳ. represents the mean of all sample means, and k is the
number of means included. The value of sȳ2 can be used as an estimation of σȳ2.

When we have only one sample mean and wish to estimate the variance to be
expected in a distribution of several means, we will have

σȳ
2 = s2

n
, (5.10)

where s2 is the variance calculated from the observations within the sample, and n
is the number of observations in this sample. The standard deviation of the mean
sȳ is the square root of the variance of the means. The standard deviation of a sta-
tistics value such as a mean, whether calculated as the square root of sȳ2 in (5.9) or
estimated as σȳ2 in (5.10), is usually referred to as the standard error of the statis-
tics (standard error of the mean in our case). The term standard deviation provides
information on the variation among individual observations. In our sample, the
standard error of the mean is equal to

sȳ = s√
n
= 28.39√

4
= 14.20. (5.11)

From the above equation, we find that the standard error of the mean is in-
versely proportional to the square root of the sample size. The standard error of

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Data analysis after subjective listening tests 73

the mean decreases as the sample size increases. In a similar way as the standard
deviation for a distribution of individual observations, the standard error of the
mean serves the same purpose for the distribution of sample means. The standard
error of the mean is an estimation of the σȳ . And within range of μ±1σȳ , there are
68.26% of a population of means and within range of μ± 1.96σȳ , there are 95% of
a population of means. In statistics, the standard error of the mean is frequently
adopted to indicate the amount of expected variation with continued sampling of
a population of means.

5.4.5. Confidence interval

The confidence interval of a statistic can be developed by using the standard error.
It is a range between upper and lower limits, which are referred to as confidence
limits. The confidence interval is commonly associated with a parameter at a se-
lected level of probability. Also, confidence limits are functions of a t value for a
given level of probability and the standard error of the statistics value.

Table 5.3 lists some t values. These values are derived from the t distribution,
which was originally developed by William S. Gossett (Student, 1908) and later
modified by R. A. Fisher (1926).1 Value t is defined as

t = ȳ − μ

sȳ
, (5.12)

where ȳ, sȳ , and μ are the sample mean, the standard deviation, and the pop-
ulation’s parameter, respectively. The t distribution has a symmetric curve and
becomes closer to the normal curve in form as the degrees of freedom increase.
Normal distribution produces the same value as t distribution when the degree of
freedom is equal to∞.

The t distribution can be used as a utility in many statistical procedures. Its
application with regard to statistics other than the mean, and their standard errors,
can be found in [104].

Supposing that we wish to find the 95% confidence interval about the mean
of a set of observations, we need to first calculate the confidence limits by the
following equations:

Lower confidence limit = −t0.05sȳ ,

Upper confidence limit = +t0.05sȳ ,
(5.13)

where values of t can be found in the table of the t distribution, that is, Table 5.3.
If the number of observations in the sample is n, then value T0.05 can be found
under the column headed 0.05 and in the (n − 1)th row. Then the confidence

1W. S. Gossett (1876–1937) was a brewer and statistician who published under the name of Stu-
dent. R. A. Fisher (1890–1962) made outstanding contributions in many areas of statistical theory and
application and was considered as one of the pioneers in the field of statistics.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

74 Subjective evaluation of audio codecs

Table 5.3. Distribution of t: two-tailed tests.

Probability of a larger value of t, sign is ignored

df 0.500 0.400 0.300 0.200 0.100 0.050 0.020 0.010 0.001

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.598

3 0.765 0.978 1.250 1.638 2.353 3.182 3.541 5.841 12.941

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.859

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 5.405

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.437

12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 4.318

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 4.221

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 4.140

15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 4.073

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 4.015

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.965

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.922

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.883

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.850

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.819

22 0.686 0.858 1.061 1.321 1.717 2.074 2.408 2.819 3.792

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.767

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.745

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.725

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.690

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.659

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Data analysis after subjective listening tests 75

interval about the population mean is

ȳ − t0.05sȳ ≤ μ ≤ ȳ + t0.05sȳ . (5.14)

If there are only four observations, then the 95% confidence interval for the mean
would be from

448.75− (3.182)× (24.82) to 448.75 + (3.182)× (24.82), (5.15)

or from

369.77 to 527.73. (5.16)

With the above calculation, we can claim that we feel 95% confident that the pop-
ulation mean μ lies between 369.77 and 527.73. The interval is commonly written
as

ȳ ± t0.05sȳ . (5.17)

In our example, this would be

448.75± 78.98. (5.18)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

6
MPEG-4 audio coding tools

6.1. Introduction to MPEG-4 audio

MPEG-4 audio [58] is currently one of the most prevalent audio coding standards.
It combines many different types of audio coding into one integrated system. The
following integration has been provided in MPEG-4 audio:

(1) low bit rate with high quality compression,
(2) synthetic with natural sound processing,
(3) speech with audio coding,
(4) single-channel with multichannel audio configuration,
(5) traditional with interactive and virtual-reality content analysis.

By putting those sophisticated coding tools and the novel flexible framework for
audio processing into standard, researchers and developers of the MPEG-4 audio
have provided the world with new technologies for digital audio management.

MPEG-4 audio distinguishes itself from any other audio standards previously
created by ISO/IEC or other groups by the fact that it standardized audio tools for
every application that requires the use of advanced sound compression, synthesis,
manipulation, or playback instead of any single application. As a single set of tools,
MPEG-4 audio has the nature of interoperability. Different systems can easily share
data and development tools if the same MPEG-4 audio toolset has been used. For
example, a real-time voice communication system and a voicemail indexing and
retrieval system can share data and development tools without any difficulties if
the same MPEG-4 speech coding toolset is used in both systems.

MPEG-4 audio includes several subparts, each of which specifies a state-of-
the-art coding tools in a certain domain. However, MPEG-4 audio is not a simple
summation of its subparts. By integrating audio tools with the rest of MPEG-4
standards, MPEG-4 audio enables new opportunities in object-based audio cod-
ing, interactive presentation, dynamic soundtracks, and other sorts of new media.

MPEG-4 audio provides many different concepts than other previous MPEG
audio standards. A brief overview that highlights the difference between MPEG-4
audio and MPEG-1, and MPEG-2 audio and MPEG-AAC is listed below.

(1) Low bit rate coding. Audio standards defined in MPEG-1 and MPEG-
2 were focused on developing the perceptually lossless or near-lossless
coding of high-quality audio without making much constrain on the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

78 MPEG-4 audio coding tools

bit rate budget. MPEG-4 provides new and the state-of-the-art tools for
low-bit-rate audio and speech coding. It has tested and standardized
tools that have the ability to achieve the same high-quality sound at a
much lower bit rate that is suitable for transmitting audio via Internet,
digital radio, or other bandwidth-limited delivery.

(2) Coarse-grain and fine-grain scalability. In order to meet the requirements
of different channels and applications, MPEG-4 provides bit rate and
bandwidth scalability options within a single bitstream. Both coarse-
grain scalability and fine-grain scalability are available in speech and
audio coding.

(3) Robustness to channel errors. Error resilient tools are added for some
MPEG-4 audio/speech codecs. With these tools, the error-resilient bit-
stream can be reconstructed with improved perceived quality when it
is corrupted during transmission. Error protection tools are provided
in MPEG-4 to work together with error resilient tools to improve the
bitstream’s error robustness. These tools can be used in various speech
and audio coding systems operating over error-prone channels such as
wireless network or digital audio broadcasting.

(4) No standard for transport. In all of the MPEG-4 tools for audio and visual
coding, constructing a sequence of access units that contain the com-
pressed data is the last step in the coding standard. How to convert the
individually coded objects into a bitstream that contains a number of
multiplexed substreams is specified in MPEG-4 systems.

Because MPEG-4 audio targets a broad range of applications, whose
delivery requirements are too wide to be easily characterized with a sin-
gle solution, it is hard to standardize a single interface (the delivery mul-
timedia interface format, or DMIF) that describes the transport layer ca-
pabilities and how the transport, multiplex, and demultiplex functions
communicate and work with each other in the encoders and decoders.
Therefore, MPEG-4 audio does not set a standard mechanism for the
transport of its stream over a channel. The MPEG-4 system bitstream
specification together with the use of DMIF allows MPEG-4 transmis-
sion functions to work in a much more sophisticated way than previ-
ous MPEG standards. Besides the sophisticated transport functionality,
a single MPEG-4 audio stream is provided as a private, not normative
transport mechanism for applications with less delivery requirements,
such as object-based coding and some other functions in MPEG-4 sys-
tems.

(5) Object-based coding standard with multiple tools. In previous MPEG au-
dio standards, a single toolset is provided to be used for various applica-
tions when different configurations are set. Whereas in MPEG-4, several
toolsets are defined, each of which targets a different function. Although
these toolsets have no particular relationship to each other, they can be
used together for various applications. How to configure these toolsets
is specified in different MPEG-4 audio profiles.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 audio tools 79

Another advantage of using MPEG-4 audio over previous MPEG
audio standard is that the concept of soundtrack is much more flexible
in MPEG-4. This is because MPEG-4 can transmit more than one audio
object when using multiple tools, while previous MPEG standards only
transmit one single piece of content. In MPEG-4, when multiple tools
are used together, MPEG-4 audio composition system will be adopted
to create a single soundtrack from the audio substreams. During this
process, several components, such as the speaker configuration, the user
interaction, the terminal capability, and so forth need to be adjusted to
produce the final soundtrack.

(6) Synthetic sound capability. When natural sound is being coded, existing
signals are first compressed by a server, then transmitted in the chan-
nel and finally decompressed at the receiver. This kind of sound cod-
ing called natural speech and audio coding is the main or only target
of many existing standards for sound compression. Besides the com-
mon natural sound coding, MPEG-4 is capable in providing a very-low-
bit-rate but still very high-quality coding by standardizing a novel syn-
thetic sound description, where synthetic speech and synthetic music,
are transmitted and then synthesized into sound at the receiver.

Same as the previous MPEG standards, MPEG-4 does not standardize the en-
coding algorithms. Which means as long as the bitstream is compliant with the
MPEG-4 standard or is recognizable and decodable by the standard decoder, end-
users can make their own decisions in creating bitstreams with whatever method
they think is the best. In fact, how to automatically convert natural sound into syn-
thetic or multiobject descriptions is still an open problem. The most common cur-
rent solutions to these problems still require human interaction in hand authoring
the content stream, which is a similar process as current schemes for MIDI-based
and multichannel mixdown authoring of soundtracks.

The rest of this chapter will give more detailed overview of MPEG-4 audio.

6.2. MPEG-4 audio tools

The MPEG-4 audio provides two types of tools, the natural sound coding tools
and the audio synthesis tools. The natural sound coding can be used in encoding,
transmitting, and decoding human speech for telephony, personal communica-
tion, and surveillance applications. The audio synthesis tools are used for very-
low-bit-rate description, transmission, and synthesis of synthetic speech, music,
and other sounds.

(1) Natural sound coding tools.
(i) Speech tools are used for the encoding, transmission, and decoding

of human speech.
(ii) Audio tools are used for the encoding, transmission, and decoding

of recorded music, environmental sound, and other audio sound-
tracks.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

80 MPEG-4 audio coding tools

MPEG-4
audio
tools

Natural
sound
coding
tools

Audio
synthesis

tools

Speech tools

Audio tools

Parametric
tools

Scalable tools

Error
robustness

tools

Text-to-
speech tools

Structured
audio tools

Audio
composition

tools

HVXC & CELP

AAC & its
extensions

HILN & SSC

Bit rate, bandwidth
& complexity scalablility

Error resilience
& error protection

Figure 6.1. MPEG-4 audio tools.

(iii) Parametric tools are used for extremely low-bit-rate coding of gen-
eral audio signals and the low-cost speech and pitch modification.

(iv) Scalability tools are used for creating bitstreams that can be trans-
mitted, without recording, at several different bit rates.

(v) Error robustness tools are used at both encoding and decoding pro-
cesses to reconstruct the sound with better perceptual quality when
bitstreams are transmitted in error-prone networks.

(2) Audio synthesis tools.
(i) Text-to-speech tools are used as an interface of the text-to-speech

synthesis systems and provide very-low-bit-rate operation and
built-in connection with facial animation in low-bit-rate video-
teleconferencing applications.

(ii) Structured audio tools are used to provide general description of
synthetic sound and the creation of synthetic sound in the decod-
ing terminal.

(iii) Audio composition tools are used for object-based coding, interac-
tive functionality, and audiovisual synchronization.

In the following subsections, we will describe each type of these tools in more
detail.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 audio tools 81

6.2.1. MPEG-4 natural sound coding tools

6.2.1.1. Speech coding tools

Natural speech sound coded at bit rates ranging between 2 and 24 kbps is covered
by the MPEG-4 speech coding toolset. For variable bit rate coding, coding at even
lower bit rate, such as average bit rate of 1.2 kbps, is also supported. The target
applications of the MPEG-4 speech coder range from mobile and satellite com-
munications, to internet telephony, to packaged media and speech databases. In
other words, MPEG-4 speech coder is capable of meeting a wide range of require-
ments in bit rates, sound quality, as well as functionality. Two basic techniques are
used in speech coding: one is called HVXC (harmonic vector excitation coding)
and the other is called CELP (code-excited linear prediction).

MPEG-4 HVXC is a parametric speech coding algorithm and allows very-low
bit-rate compression. It operates at fixed bit rates between 2.0 kbps and 4.0 kbps,
using a bit-rate scalable scheme. In variable bit-rate modes, it also supports even
lower bit rate, typically 1.2–1.7 kbps. At 8 kHz sampling rate and 100–3800 Hz
band, HVXC can provide communications quality to near-toll-quality1 speech.
In addition, HVXC has the powerful functionality to independently change the
speed and/or the pitch during decoding, which can be used to fast access speech
databases.

MPEG-4 CELP coding technique is a well-known coding algorithm with new
functionality. Conventionally, working in a single bit rate, CELP coders compress
speech signals and are optimized for specific applications. Other than supporting
compression as one of its functionalities, MPEG-4 makes the basic CELP coder
contribute in multiple applications. CELP becomes a building block in MPEG-4
bit rate and bandwidth scalable tool and enables the MPEG-4 audio capability to
generate bitstreams at any arbitrary bit rate. Two sampling rates, 8 and 16 kHz, are
supported by MPEG-4 CELP. The associated bandwidths for 8 kHz sampling rate
are 100–3800 Hz and 50–7000 Hz for 16 kHz sampling rate.

The silence compression tool in CELP encoder reduces the compressed stream
to an even lower average bit rate. A voice activity detector is used in the encoder
so that regions with normal speech activity and those with silence or background
noise can be distinguished. The CELP coding, same as MPEG-4 version 1, is used
for normal speech activity; a silence insertion descriptor (SID) is transmitted at a
lower bit rate for other periods. At the decoder side, the SID signals the comfort
noise generator (CNG) to generate a comfortable background noise rather than
just insert a silent period. The amplitude and spectral shape of the comfortable
noise is determined by the energy and LPC parameters. Since these parameters
can be sent as an optional part of the SID, they can be updated from time to time
as required.

1Toll quality is the speech quality of public switched telephone networks, and communication
quality is that of 2G phone networks.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

82 MPEG-4 audio coding tools

The MPEG-4 speech coding toolset has been proved to work efficiently while
achieving good performance by MPEG committee by conducting extensive verifi-
cation tests in practical listening conditions.

6.2.1.2. General audio coding tools

MPEG-4 general audio coding tools offer a wide bit rate range of coding capabil-
ity. Bit rate from as low as 6 kbps up to several hundred kbps per audio channel
for mono-channel, two-channel, and multichannel signals, are covered in MPEG-
4. MPEG-2 AAC [60], which is able to provide high-quality compression, was
adopted in MPEG-4 general audio coding standard as base coding techniques. Sev-
eral new coding modules and improvements are added on top of MPEG-2 AAC to
become the so-called MPEG-4 AAC standard. The MPEG-4 general audio (GA)
coder uses several advanced coding blocks, including a perceptual filter bank, a
sophisticated masking model, noise-shaping techniques, channel coupling, noise-
less coding, and bit-allocation, to achieve the maximum compression within the
constraints of providing the highest possible quality. The MPEG-4 general audio
coding utilized the state-of-the-art psychoacoustic coding standards developed by
MPEG, which is one of the most important factors that makes the AAC achieve its
goal of low bit rate and high performance.

According to the MPEG standard verification tests, the MPEG-4 AAC toolset
is capable of providing “indistinguishable quality2” when working at
64 kbit/s/channel or even higher bit rate. For lower bit rates from 6 kbps up to
64 kbps per channel, a modification to the AAC quantization module is developed
in MPEG-4. This tool, called TwinVQ, enables content authors to generate high
quality complex sound at extremely low bit rate range.

In order to develop a high quality general audio coding algorithm that is suit-
able for real-time bidirectional communication, based on MPEG-2/4 advanced
audio coding (AAC), MPEG-4 version 2 specifies a low-delay audio coder. Unlike
speech coding schemes, the low-delay audio coder can handle general audio signal
types, including music, with high performance and low delay. It supports input
signals with 48 kHz sampling rate and adopts a frame length of 512 or 480 sam-
ples, instead of 1024 or 960 samples used in the standard MPEG-2/4 AAC. The size
of the window used in the analysis and synthesis filter bank is reduced by a factor
of 2. In addition, no block switching is enabled in order to avoid the “look-ahead”
delay due to the block switching decision. In case of transient signals, window
shape switching is provided so that pre-echo artifacts can be reduced. As for the
window type, a sine window is used for nontransient parts of the signal, while a
so-called low overlap window is used for transient signals. Bit reservoir is rarely
used during encoding in order to reach the desired target delay. In some extreme
cases, no bit reservoir is used at all. It has been shown by the verification tests that
only a moderate degradation in compression performance occurs due to reducing
the coding delay.

2Indistinguishable quality, which is defined by the European Broadcasting Union, refers to the
sound quality that is perceptually the same as that of original input signals.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 audio tools 83

The BSAC tool is built on top of original AAC coding tools with a new noise-
less coding module. BSAC can achieve scalability in steps of 1 kbps per audio chan-
nel, that is, 2 kbps steps for a stereo signal. It generates bitstream with one base
layer and many small enhancement layer. The base layer contains the audio data
for the first layer and other side information. The enhancement layers contain
audio data to improve the performance and other specific side information for
the corresponding layer. The fine-grain scalability is accomplished by a bit-slicing
scheme when doing the data quantization and transmission. The spectral data is
first grouped into frequency bands after the quantization. Data in each group is
represented in binary form. Then bits are processed in slices according to their
significance one group after the other. In other words, the most significant bits
(MSB) of all quantized values in a group are processed first, followed by the corre-
sponding next significant bits, and so on. All bit-slices are then compressed by an
arithmetic coding scheme to further remove the redundancy. Different arithmetic
coding models are provided to cope with the different statistics of the bit-slices.
Bandwidth scalability is achieved by assigning bit-slices of the different frequency
bands to the enhancement layer in a special way, so that with an increasing num-
ber of enhancement layers, the decoder can reconstruct the audio signal with more
refinement bits and in higher frequency bands.

The scalability of the fine-grain-scalable tool has been shown to perform well
over a wide range of rates. At the highest rate, it can perform almost the same as
the AAC main profile at the same rate. When working in a lower bit rate mode,
the scalability function requires a moderate overhead relative to AAC main profile
operating at the same rate.

MPEG-4 high efficiency AAC (HEAAC) is the newest extension of AAC and
is targeting to compress music with high quality at bit rate lower than 64 kbps for
each channel. It continues to use the traditional AAC to code input signals low
frequency components, while adopting the spectral band replication (SBR) tech-
nology to take care of the high-frequency components. The HEAAC significantly
reduced the required bit rate while maintaining similar perceptual quality of the
reconstructed sound.

6.2.1.3. Parametric audio coding

MPEG-4 parametric audio coding tool has two distinguished features. One is its
high compression ratio and the other is its convenient postprocessing capability.
The parametric audio encoder is capable of compressing general audio signals with
extremely low bit rate, while the parametric audio decoder can perform pitch and
playback speed modification without the need for an expensive processing unit.
Combined with the speech and audio coding tools of MPEG-4 version 1, MPEG-4
version 2 parametric audio coding provides improved overall coding efficiency for
applications of object-based coding and allows selection and/or switching between
different coding techniques.

The harmonic and individual lines plus noise (HILN) technique is the first
tool introduced in the MPEG-4 parametric audio coding. It uses a parametric

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

84 MPEG-4 audio coding tools

representation of the audio signal and can code general audio signals at bit rates of
4 kbps and above. Separating or decomposing the input signal into different audio
objects is the basic idea of the HILN technique. After decomposition, the coder
can describe each audio object by using source models and then representing each
object by model parameters. Three kinds of object models, that is, sinusoids, har-
monic tones, and noise, are utilized in the HILN coder.

From the knowledge about the speech coding, where specialized source mod-
els based on the speech generation process in the human vocal tract are applied, we
know that source models have more advantages than the waveform coding method
in very low bit rate coding schemes. The most challenging part in the parametric
audio codec design is to find a good set of source models. HILN introduces an
advanced source models and successfully handles the parametric coding of the
general sound signals.

Similar to the general audio coding tool, the parametric audio coding tool
also adopts the perception model in order to select and transmit the most impor-
tant parameters so that sound of the best perceptual quality can be reconstructed
with minimum amount of bit resources. Similar to the general audio coding tool,
in HILN, the output from the psychoacoustic model is used to control the quan-
tization of the frequency and amplitude parameters. Then, the LPC model known
from speech coding is used to describe the harmonic tone and the spectral enve-
lope of the noise. Correlation between parameters of one frame and between con-
secutive frames can be reduced by parameter prediction. The quantized parame-
ters are finally compressed by an entropy coder and then multiplexed together to
form a single bitstream. Since the signal is described in terms of frequency and
amplitude parameters in HILN, the speed and pitch change functionality can be
performed by simple parameter modification in the decoder.

The MPEG-4 parametric speech coder (HVXC) can be combined with the
HILN parametric audio coder to form an integrated parametric coder that sup-
ports a wider range of signals, bit rates, and speed and pitch change. With a pre-
processing module that performs speech/music classification at the beginning of
the encoding, it is possible to automatically select the HVXC for speech signals and
the HILN for music signals. MPEG-4 version 2 standard describes this automatic
HVXC/HILN switching and the corresponding classification tool in its informa-
tive part.

The HILN coding has been shown to achieve comparable performance with
other MPEG-4 coding technology operating at similar bit rates while providing the
additional capability of independent audio signal pitch and speed change during
decoding. It has also been demonstrated that the scalable HILN coder provides
comparable audio quality to that of a fixed-rate HILN coder at the same bit rate.

A newer tool in MPEG-4 parametric audio coding toolset is called sinusoidal
coding (SSC). For a mono-input sound, the MPEG-4 SSC decomposes the sig-
nal into three objects: transients, sinusoids, and noise. Transients represent signals
that dynamically change in the time domain, sinusoids represent the components
with deterministic frequency characteristics, and noise represents the rest signals
that are localized neither in temporal nor in spectral domain. If the input sound is

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 audio tools 85

stereo sound, then SSC uses another set of parameters to capture and reconstruct
the stereo sound image. Similar to HILN tool, SSC can also compress the complex
sound with extremely low bit rate and is capable of performing pitch and temporal
scaling at low cost. Moreover, its stereo image reconstruction capability makes it
an even better tool to handle and generate more appealing sound than the HILN
parametric coding tool. In fact, the stereo parameters can be combined with other
audio/speech coding method as an stereo enhancement tool. By doing this, the
core codec is only responsible for encoding and decoding the monophonic repre-
sentation of the original stereo sound and the SSC stereo parameters can be used to
enhance the monophonic signal and generate a copy of perceptually similar stereo
image at the decoder end.

6.2.1.4. Audio scalability tools

Many bitstreams in MPEG-4 have scalability functionality in one manner or an-
other. We will discuss several types of scalability in the standard below.

Scalability in bit rate means that a bitstream contains sub-bitstreams corre-
sponding to lower bit rate encoding and the total compressed stream is a combi-
nation of basic bitstream and several additional bitstreams. The basic bitstream is
able to reconstruct the input audio into reasonable quality signals. Each additional
bitstream refines the output signal so that a better quality sound can be recovered.
Making a scalable bitstream involves either reorganizing the nonscalable bitstream
or even redesigning the whole coding process. In MPEG-4, scalability is available
for each natural audio coding scheme, as well as combinations of different natural
audio coding schemes.

As a particular case of bit rate scalability, bandwidth scalability means that
part of a bitstream representing only partial or lower frequency spectrum can be
transmitted and reconstructed independently in the receiver. The CELP speech
coder provides two-layer bandwidth scalability, where the base layer presents the
narrow-band speech signals and can be extended to wide-band speech signals by
the enhancement layer. MPEG-4 general audio coding tool is capable of offering a
much more flexible bandwidth control and providing more layers and finer grain
of bandwidth scalability. This is because the general audio codec is a transform-
based coder and all major signal processing tools in the encoder are performed in
frequency domain.

Complexity scalability at the encoder side means that by working in differ-
ent complexities, the encoder can generate valid and meaningful bitstreams cor-
responding to different output audio qualities. For example, the wideband CELP
coder offers two modules. One is the high quality module and the other is the
low complexity excitation module. Content listeners have choices to select either
significant lower encoder complexity or optimized coding quality.

Complexity scalability at the decoder side means that a given bitstream can
be decoded by decoders of different levels of complexity corresponding to differ-
ent quality of the reconstructed audio signals. One of the subtypes of the decoder
complexity scalability worth to be mentioned is called graceful degradation. When

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

86 MPEG-4 audio coding tools

operating in this mode, the decoder can dynamically monitor the available re-
sources, and it switches to lower complexity decoder when resources are limited.
For example, in MPEg-4 structured audio, the content author can provide two or
more different algorithms on how to synthesize keyboard sounds. At the decoder
side, depending on available resources, the content itself can decide which one to
use to perform the synthesis.

6.2.1.5. Error robustness tools

When transmitting bitstreams through error-prone channels, the error robust-
ness tools are extremely helpful in improving the final performance. There are
two types of error robustness tools. One is codec-specific error resilience tools and
the other is common error protection tools.

The MPEG-4 parametric speech coding has integrated error resilient tool, that
is, the error resilient (ER) HVXC. The ER tool is available for both fixed-bit-rate
modes (2.0–4.0 kbps) and variable-bit-rate modes (< 2.0 kbps, < 4.0 kbps) in ei-
ther a scalable or a nonscalable scheme. The MPEG-4 version 1 HVXC supports
maximum variable bit rate of 2.0 kbps while version 2 ER HVXC supports maxi-
mum variable bit rate of 4.0 kbps. In the variable bit rate modes, nonspeech parts
are signaled by unvoiced signals and are only allocated a smaller number of bits
so that the average bit rate can be reduced. At 8 kHz sampling rate, ER HVXC is
capable of producing communications quality to near-toll-quality speech in the
100–3800 Hz bandwidth. An even lower average bit rate is achievable when the
coder is operating in the variable bit rate mode. Speech signal coded by variable
bit rate mode at typical bit rate of 1.5 kbps in average and at typical bit-rate of
3.0 kbps in average has the same quality as that coded by 2.0 kbps fixed rate and
4.0 kbps fixed rate, respectively. The capability to do the pitch and speech change
is available during decoding in all modes. The ER HVXC also defines error sensi-
tivity classes to be used with the EP tool. When transmitting through error-prone
channel, such as mobile communication channels, the error concealment func-
tionality is available during decoding. Therefore, the ER HVXC speech coder has
a wide application area, including mobile and satellite communications, Internet
telephony, packaged media, and speech databases.

MPEG-4 AAC has integrated a set of error resilience tools to improve its error
robustness. These error resilient tools reduce the perceived quality degradation of
the reconstructed audio signal that is caused by corrupted bits in the bitstream.
The following three tools are provided in AAC to improve its error robustness in
several areas:

(1) virtual codebook tool (VCB11),
(2) reversible variable length coding tool (RVLC),
(3) huffman codeword reordering tool (HCR).

Improved error robustness capabilities for all MPEG-4 audio coding tools are
achieved by the payload syntax of the error resilient bitstream, which also enables
advanced channel coding techniques so that special needs of different coding tools

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 audio tools 87

can be met. MPEG-4 version 2 requires that each object type have the error re-
silient bitstream payload syntax.

All MPEG-4 audio version 2 audio objects are provided with the error protec-
tion tool (EP tool), which has a flexible configuration and can be applied to a wide
range of channel error conditions.

The distinguished features of the EP tool are listed below.
(1) A set of error correcting/detecting codes, with wide- and small-step scal-

ability in performance and in redundancy, is provided.
(2) A generic and bandwidth-efficient error protection framework that cov-

ers both fixed-length and variable-length frame streams is provided.
(3) An unequal error protection (UEP) configuration control with low over-

head is provided.
MPEG-4 audio version 2 coding algorithms classify each bitstream field ac-

cording to its error sensitivity. Then the bitstream is divided into several classes,
each of which is separately protected by the EP tool, such that more error-sensitive
parts are protected more strongly.

6.2.2. MPEG-4 audio synthesis tools

6.2.2.1. Text-to-speech interface

Text-to-speech (TTS) starts to play an important role in various multimedia appli-
cation areas and is becoming a rather common media type. For example, a mul-
timedia content with narration can be easily created by using TTS functionality
without recording natural speech sound. However, without MPEG-4 TTS func-
tionality, there was no way for a multimedia content provider to easily give in-
structions to an unknown TTS system. MPEG-4 standardizes a single common
TTS interface, which enables the speech information to be transmitted in the in-
ternational phonetic alphabet (IPA), or in a written form of any language.

The MPEG-4 TTS package, called hybrid/multilevel scalable TTS interface, is
not a conventional TTS system. It extends the conventional TTS system by adding
the prosodic (e.g., time-dependent variation of pitch) information on top of the
input text. With the help of the prosodic information, which is extracted from the
natural speech, the decoder can generate much higher-quality and perceptually
less artificial synthetic speech. Moreover, in MPEG-4 TTS, the interface and its
bitstream format is highly scalable in terms of this additional information. For
example, if part of the prosodic information, for example, some parameters, is not
available at the decoder side, MPEG-4 TTS system is still able to generate these
missing parameters by rule.

MPEG-4 TTS system does not specify its normative algorithms in speech syn-
thesis and text-to-phoneme translation. However, in order to meet the goal that
underlies the MPEG-4 TTS interface, a decoder should make full use of all the
provided information according to the user’s requirements level.

Besides an interface to text-to-speech synthesis systems, a joint coding method
for phonemic information and facial animation parameters and other animation
parameters are specified by MPEG-4, so that a single bitstream may be used to

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

88 MPEG-4 audio coding tools

control both the text-to-speech interface and the facial animation visual object
decoder. Thus, MPEG-4 TTS has extended its functionalities from conventional
TTS to natural speech coding and its application areas, and from simple TTS to
audio presentation with TTS and motion picture dubbing with TTS.

6.2.2.2. Structured audio

MPEG-4 structured audio (the SA coder) refers to the toolset that achieves the gen-
eral audio synthesis capability. It provides general description of synthetic sound
and the normative creation of synthetic sound in the decoding terminal. By using
these tools, high-quality stereo sound can be transmitted at bit rates from 0 kbps
(no continuous cost) to 2–3 kbps for extremely complex and expressive sound.

Instead of being specified by a particular method of synthesis, the synthesis
methods are described by a flexible language in SA coder. By adopting this tech-
nique, MPEG-4 structured audio not only provides a flexible encoding approach,
but also ensures the compatibility during the decoding processing. This is because
at the encoder side, by using this flexible language to specify the synthesis method,
the available synthesis techniques are not limited to those provided during the
standardization process, but can also be extended by any other future MPEG-4 SA
tool users. On the other hand, since the creation of synthetic sound from struc-
tured descriptions is normative in MPEG-4, any terminal will be able to create the
same sound with the SA decoder.

A set of instrument modules that can create audio signals under the control
of a score is utilized to transmit the synthetic audio. An instrument refers to a
small network composed of some signal-processing primitives that control how
the sound is generated according to some algorithm. A single structured audio bit-
stream may consist of several different instruments. A score is a set of commands
arranged in time. It determined at what specific time, how each instrument should
make its contribution to the overall music performance.

Wavetables refer to the efficient transmission of sound samples. Its use in sam-
pling synthesis is accomplished by interoperably working with the MIDI manufac-
turers association downloaded sounds level 2 (DLS-2) standard. Either by itself or
in conjunction with other kinds of synthesis using the more general-purpose tools,
the DLS-2 standard, which is normatively referenced by the structured audio stan-
dard, provides a simple and popular technique of wavetable synthesis in MPEG-4
structured audio soundtracks. The popular MIDI (musical instrument digital in-
terface) control format can be adopted to replace, or in addition to, scores in SASL
(structured audio score language) for controlling synthesis in order to further en-
able interoperability with existing content and authoring tools. By including the
MIDI standards, MPEG-4 structured audio is a representation of the current tech-
nique for synthetic sound description (MIDI-based wavetable synthesis) and the
future general-purpose algorithmic synthesis. This unified solution makes the re-
sulting standard capable of solving problems not only in very-low-bit-rate coding,
but also in many other applications, such as karaoke systems, video games, virtual
environments, and so forth.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 audio tools 89

6.2.2.3. Audio composition tools

Same as the visual composition tools, the audio composition tools are specified
in the MPEG-4 systems standard. Audio composition is an object-based approach,
which makes use of multiple individual “audio objects” and mixes different tech-
niques to create a single soundtrack. At the encoder side, it treats each object in-
dividually and uses different coding tool for each of them. The instructions on
how to mix these multiple objects into one soundtrack are also included in the
bitstream. At the decoder end, audio objects are first decoded separately after they
are received, and then they are mixed together to a single soundtrack by related
instructions. Finally, the composed mixed file can be played back to the listeners.

By treating each audio object individually, some more sophisticated client-
side interaction can be enabled at the decoding terminal by the end user. For in-
stance, when listeners want to focus more on the foreground speech content, they
can simply mute the background music if the compound soundtrack is processed
by MPEG-4 audio composition tool. On the other hand, this operation would re-
quire much more sophisticated technology or may be simply not possible if the
speech and the background music were coded in one audio track.

Another advantage of using audio composition tools is that the bit rate of
the final bitstream can be reduced if each audio object is encoded individually by
its best encoding method. As an example, suppose a person is making a speech
in a reverberant environment over background music. If we wish to transmit this
sound with high fidelity, we can first represent this sound as a compound signal
processing, a speech signal passing through a reverberator and then mixed with
a synthetic music. The speech signal can be encoded by CELP speech coder at
16 kbps and the synthetic music can be taken care of by the SA tool at 2 kbps. The
description of the reverberation and the stereo mixdown can be transmitted by
a small amount of overhead (only a few hundreds of bytes as a fixed cost) in the
bitstream. Therefore, the total bit rate of this bitstream is less than 20 kbps. On the
other hand, if this soundtrack is treated as one single object, only a general audio
codec can encode it with high quality due to its complex nature. Currently, the
most state-of-art general audio codec, such as MPEG-4 HEAAC, would require
48 kbps to reconstruct this complex sound with similar perceptual quality.

In MPEG-4 systems, a tool called AudioBIFS, which is a subset of MPEG-4
binary format for scenes (BIFS), allows content authors to describe sound scenes
using this object-based framework. We can perform multiple sources mixing and
combining, as well as the interactive control provided for their combination. This
method also allows sample-resolution control over mixing. Dynamic download
of custom signal-processing routines makes it possible for the content author to
exactly request a particular, normative, digital filter, reverberator, or other effects-
processing routine. Finally, the description of virtual reality and other 3D sound
material can be accomplished by an interface to terminal-dependent methods of
3D audio spatialization.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

7
MPEG advanced audio coding

MPEG advanced audio coding (AAC) and its successors are currently the most
powerful members in the MPEG family for high-quality, multichannel, digital au-
dio compression. MPEG AAC provides a various selection of operating modes and
configurations, and therefore supports a wide range of applications from low bit-
rate Internet audio to multichannel broadcasting services. In this chapter, we will
introduce the main features of the AAC multichannel coding system.

7.1. Introduction to advanced audio coding

As part of the MPEG-2 standard (ISO/IEC 13818-7) [60], MPEG-2 AAC was fi-
nalized in 1997. Initially the MPEG-2 AAC was called the MPEG-2 non-backward
compatible (NBC) coding [15]. The standardization of MPEG-2 NBC started after
the completion of the MPEG-2 multichannel audio standard in 1994 [59]. At that
time, the MPEG audio subgroup wished to develop a new multichannel coding
standard that allows an even higher quality other than the first MPEG-2 multi-
channel audio standard, which is backward compatible with MPEG-1. The devel-
opment goal of this new multichannel audio coding algorithm is to achieve indis-
tinguishable quality according to the EBU definition [11] at the bit rate of 384 kbps
or lower for five full-bandwidth channel signals, without any backward compati-
bility constrain.

MPEG-4 AAC, which is also referred to as MPEG-4 general audio (T/F) coder
[58], added several new audio tools on top of MPEG-2 AAC. Some of the new
tools borrow ideas from speech coding to even lower the encoding bit rate while
maintaining the similar sound quality. Others modified certain existing MPEG-2
AAC coding blocks to enable a few desirable features and provide more function-
alities. With a typical bit rate of 64 kbps per channel, MPEG-4 AAC can achieve
near-transparent coding for CD-quality original input sound. Even at very low bit
rates down to 16 kbps, MPEG-4 AAC still exhibits excellent performance.

A scalable audio coding standard is also included in MPEG-4 audio. MPEG-4
version 1 provides large-step scalability, which integrated several existing MPEG-4
audio coding schemes to deliver a scalable audio bitstream. AAC is adopted as part
of this large-step scalable audio coding architecture to provide enhancement layer
bitstream. A fine-grain scalable (FGS) audio framework was developed in MPEG-4

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

92 MPEG advanced audio coding

Main

Low
complexity

Scalable
sampling rate

6 kHz

12 kHz

18 kHz

20 kHz

Figure 7.1. Three MPEG-2 AAC profiles [60].

audio version 2 [65]. The new FGS audio codec is called bit-sliced arithmetic cod-
ing (BSAC). It replaces the AAC’s quantization and entropy coding module to en-
able the decoder to reconstruct the audio signal more and more accurately.

MPEG-4 high-efficiency AAC (HE AAC) is the next generation of AAC stan-
dard, which utilizes AAC as the core coder and extends the higher-frequency com-
ponent and stereo information with the help of a set of limited parameters. Since
this new algorithm is a model-based parametric extension to AAC, it further
reduces the bit rate and is capable to reproduce a CD-quality stereo sound at
24 kbps, which is about 64 times smaller than the original file.

In this chapter, audio tools in all AAC-related standards including MPEG-2
AAC, MPEG-4 AAC, MPEG-4 BSAC, and MPEG-4 HEAAC will be discussed in
detail.

7.2. MPEG-2 AAC

7.2.1. Overview of MPEG-2 AAC

7.2.1.1. Profiles

MPEG-2 AAC provides three profiles that can be selected by end-users according
to their desired complexity and quality requirements. These three profiles are main
profile, low-complexity (LC) profile, and scalable sampling rate (SSR) profile, and
their relationships are shown in Figure 7.1.

(1) Main profile. AAC main profile, abbreviated as AAC main, provides the
best audio quality at any given bit rate among all three profiles. All coding tools
except the gain control are enabled in AAC main. Thus both the memory require-
ment and the computational complexity of this configuration are higher than the
other two profiles. However, the main profile AAC decoder is more powerful and
is capable to decode a bitstream generated by a low-complexity AAC encoder.

(2) Low-complexity profile. AAC low-complexity profile, abbreviated as AAC
LC, does not use the gain control and prediction tools. Moreover, the temporal

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-2 AAC 93

Pre-
processing

Input signal

Gain
control

Transform
Spectral

processing

Quantization
&

entropy coding

Multiplex

Compressed bitstream

B
lo

ck
ty

p
e

Psychoacoustic
model

Threshold

Figure 7.2. The block diagram of the AAC encoder.

noise shaping (TNS) filter has a lower order than that of the AAC main codec.
With this configuration, the AAC codec consumes considerably lower memory
and processing power requirements. However, degradation of the reconstructed
sound quality is not obvious. In fact, among all three profiles, AAC LC is the most
popular profile adopted in industry.

(3) Scalable sampling rate profile. AAC scalable sampling rate profile, abbrevi-
ated as AAC SSR, is capable to provide a frequency scalable signal. The gain control
is activated when the AAC codec is operating in this profile. Except the gain con-
trol module, other audio tools are operating at the same configuration as the AAC
LC profile. Therefore, the memory requirement and the computational complex-
ity of the AAC SSR codec are also significantly lower than that of the AAC main
codec.

7.2.1.2. High-level block diagrams

Figures 7.2 and 7.3 are high-level block diagrams of AAC encoder and decoder,
respectively.

At the encoder side, input signals are first processed by the preprocessing
module if it is necessary. Depending on the required bit rate and the sampling
frequency of the input signal, the preprocessing module downsamples the original
signal so that better quality can be achieved with the limited bit budget. If the in-
put signal has out-of-range amplitude, it will also be processed in this module. If
the encoder is operating in SSR profile, signals are then processed by the gain con-
trol. Otherwise, they directly go to the transform block to map the time-domain
signal to frequency domain and obtain spectral data. A serial of spectral process-
ing is followed to remove irrelevant and unimportant information. Finally, the
processed spectral data is quantized and noiseless coded. Throughout the entire
encoding process, the output from the psychoacoustic model, such as block type

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

94 MPEG advanced audio coding

Entropy decoding
&

inverse quantization

Inverse
spectral

processing

Inverse
transform

Inverse
gain

control

Post-
processing

Output signal

B
lo

ck
ty

p
e

Demultiplex

Compressed bitstream

Figure 7.3. The block diagram of the AAC decoder.

and masking thresholds, is used as a guide line to control each encoding module.
The compressed spectral data as well as that side information generated in each
coding module are all multiplexed in the bitstream.

When the decoder receives a compressed bitstream, it first demultiplexes it.
Compressed spectral data is then decoded by entropy decoder and inverse quan-
tizer. Side information extracted from the bitstream is used to control the inverse
spectral processing, inverse transform, and inverse gain control if activated. If the
original sound input to the encoder has out-of-range amplitude, then the post-
processing module restores the reconstructed signal back to its original amplitude
range.

7.2.2. Psychoacoustic model

Psychoacoustic model plays the most important role in the perceptual audio cod-
ing. The output of this model controls almost every major coding block in the
AAC encoder. The main task of this psychoacoustic model is to calculate masking
thresholds. Any quantization noise added in the later quantization block is imper-
ceptible if its energy is smaller than the masking thresholds. Ideally, if all encoding
errors are masked by the signal itself, then the reconstructed sound is perceptu-
ally indistinguishable from the original input. However, if the available bit budget
does not allow all spectral data to meet masking thresholds, psychoacoustic model
needs to guide the quantizer so that the minimum perceptual noise will be added
by loosening the psychoacoustic requirements.

7.2.3. Gain control

The gain control block, which is only activated in the SSR profile, includes a polyp-
hase quadrature filter (PQF), gain detectors, and gain modifiers. The PQF filter-
bank separates the input signal to four equal-width frequency bands. For example,
if input sound has 48 kHz sampling rate, then four-band output from the PQF

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-2 AAC 95

filter contains signals of 0–6 kHz, 6–12 kHz, 12–18 kHz, and 18–24 kHz. Hence,
the bandwidth scalability can be achieved by discarding one or more upper band
signals. The distinct feature of this structure allows the decoder to reconstruct a
reduced bandwidth signal with lower computational complexity. The gain detec-
tor gathers information from the output of the PQF filter and let the gain modi-
fier know which one of these four bands needs amplitude adjustment and how it
should be done.

The inverse gain control module in the decoder consists of gain compensators
and inverse polyphase quadrature filter (IPQF). Four gain compensators corre-
sponding to four equal-width frequency bands are required if the full-bandwidth
signal needs to be reconstructed. Each gain compensator recovers gain control data
then restores the original signal dynamics. The resulting outputs after the gain
compensation are combined and synthesized by the IPQF to generate final PCM
data.

7.2.4. Transform

7.2.4.1. Modified discrete cosine transform

The conversion between time-domain signals as the input of the encoder or the
output of the decoder and their corresponding frequency representations is a fun-
damental component of the MPEG AAC audio coder. This conversion, which
is also called time-to-frequency transform, is carried out by a forward modified
discrete cosine transform (MDCT) in the encoder, and an inverse modified dis-
crete cosine transform (IMDCT) in the decoder. During encoding, each block
of time samples, either 2048 samples for regular long windows or 256 samples
for short windows, consists of 50% old signals from previous frame and 50%
new signals from current frame. In other words, each block of input samples
is overlapped by 50% with the immediately preceding block and the following
block. From the MDCT transform function equation (7.1), we know that sequence
Xik is odd-symmetric, that is, the ith coefficient has the same amplitude as the
(N − i − 1)th coefficient. Therefore, the overlapping will not increase the data
rate after MDCT is performed. At the decoder side, spectral signals from two con-
secutive frames are also overlapped by 50% before they are added to reconstruct
the time-domain data. Both MDCT and IMDCT adopt a technique called time-
domain aliasing cancellation (TDAC) [103]. More information about TDAC and
the window-overlap-add process can be found in [103].

The analytical expression for MDCT is given by

Xik = 1
N

N−1∑
n=0

xin cos
(

2π
N

(
n + n0

)(
k +

1
2

))
, 0 ≤ k ≤ N − 1. (7.1)

The analytical expression for IMDCT is

xin =
N−1∑
k=0

Xik cos
(

2π
N

(
n + n0

)(
k +

1
2

))
, 0 ≤ n ≤ N − 1, (7.2)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

96 MPEG advanced audio coding

where

n = sample index,

N = transform block length,

i = block index,

n0 = N/2 + 1
2

.

(7.3)

7.2.4.2. Window function

Before MDCT is performed, each block of samples is first multiplied by an ap-
propriate window function. In other words, MDCT is applied on the modulated
signal to generate the frequency-domain spectral data. Similarly, a window func-
tion is applied on the spectral signals before they go through the inverse MDCT
transform. The window performed before MDCT is called analysis window and
the window performed before IMDCT is called synthesis window. In order to
have perfect reconstruction, the analysis window wana(i) and the synthesis win-
dow wsyn(i) should satisfy the following condition:

wana[i]×wsyn[i] + wana[N −M + i]×wsyn[N −M + i]=1, for i=1, 2, . . . ,N ,

(7.4)

where N is the window length and M is the number of overlapped samples. If the
synthesis window is the same as the analysis window, that is, wana[i] = wsyn[i] =
w[i], the above condition can be simplified to

w2[i] + w2[N −M + i] = 1, for i = 1, . . . ,M,

w2[i] = 1, for i =M + 1, . . . ,N −M.
(7.5)

Two window functions, the sine window and the Kaiser-Bessel-derived (KBD)
window [32], are provided in AAC coder. Compared with the sine window, the
KBD window has a better frequency-selectivity property but a wider mainlobe.
Depending on the characteristics of the input signal, the encoder can select the
optimum window shape.

7.2.4.3. Block type and block switching

For stationary signals, long blocks of 2048 spectra are processed one at a time.
However, for transient signals, this will produce noticeable noise after the quan-
tization. Because the spectra quantization is performed in frequency domain, the
quantization noise will extend to more than a few milliseconds when spectral sig-
nals are transformed back to time domain. For transient signals, these spread er-
rors may not be masked by the nearby signal and present a perceptible artifact.
This phenomenon is called preecho effect. To control the preecho, transient sig-
nals should be encoded with shorter transform blocks. However, short transform

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-2 AAC 97

(a)
(b)

(c) (d)

Figure 7.4. Different window types in AAC. (a) Long window. (b) Short window. (c) Long start win-
dow. (d) Long stop window.

(a) (b)

Figure 7.5. Window switch in AAC. (a) Long-to-short window switch. (b) Short-to-long window
switch.

length results in inefficient coding for stationary signals. Thus, in order to achieve
good performance for both regular signals and transient signals, a better solution
to determine the window length needs to be reached.

AAC tackles this problem by adopting two block lengths and allowing block
switching when different signal type is detected. For steady-state signals, long block
is used to increase the coding efficiency. When transient signals appear, short block,
which is one eighth of the long block length, is adopted to minimize the preecho
effect. The transition between two different block types is carefully handled so
that no aliasing would occur if no quantization is involved. Figure 7.4 shows four
different window types used in AAC, where (a) is a long window, (b) is a short
window, (c) is a long start window, and (d) is a long stop window. The criterion to
design the transition window is that the first half of the transition window should
always be the same type as the last part of the previous window. Therefore, if a
short window is required after several long windows, then the last window before
the short window starts should be a long start window. Similarly, when short win-
dow is followed by long windows, the first window after the short window should
be a long stop window. The long-to-short and short-to-long window switches are
illustrated in Figure 7.5.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

98 MPEG advanced audio coding

From
filter bank

To
quantizer

Temporal
noise shaping

Intensity
stereo

Prediction Mid/side

Spectral processing

(a)

From
inverse

quantizer
Mid/side Prediction

Intensity
stereo

Temporal
noise shaping

To inverse
filter bank

Inverse spectral processing

(b)

Figure 7.6. Spectral processing and inverse spectral processing in AAC [18].

7.2.5. Spectral processing

Figure 7.6 shows all coding tools provided in spectral processing and inverse spec-
tral processing. Four separate blocks, temporal noise shaping (TNS), intensity
stereo (IS), prediction, and mid/side (M/S) coding, are included in spectral pro-
cessing module. We will discuss each of them one by one in this section.

7.2.5.1. Temporal noise shaping

Temporal noise shaping is a tool that further improves the coding performance
when transient and pitched input signals are present. In Section 7.2.4.3, we dis-
cussed the block switch method. By switching to short length window, the AAC en-
coder is capable to reduce the preecho effect. However, the result of block switching
alone does not achieve satisfactory coding result. This is because only one mask-
ing threshold is used to control the quantization noise in each block, while signals
in one block may still vary considerably. Coding is especially difficult if there are
temporal mismatches between the masking threshold and the quantization noise
(preecho). To alleviate the above problem, AAC introduces a new concept, the
temporal noise shaping tool, to the perceptual audio coding. With TNS, the en-
coder is capable to control the fine temporal structure of the quantization noise
even within a filterbank window.

The basic idea of TNS is to do frequency-domain prediction. Regular time-
domain prediction is efficient to code signals with “unflat” spectrum, such as
a sine wave. While the frequency-domain prediction is a good choice to com-
press signals with “unflat” time structure, such as transient signals. Similarly as
the time-domain intra-channel prediction method that increases coder’s spectral

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-2 AAC 99

resolution, the prediction over frequency enhances the coder’s temporal resolu-
tion. In addition, frequency-domain prediction helps the noise shaping so that the
quantization noise can be put under the actual signal’s masking threshold.

The TNS coding module is a noise-shaping filter [49]. Linear predictive cod-
ing (LPC) is adopted in the filter. The order of the filter depends on what profile
the codec is working on. The higher the filter’s order is, the higher the memory
requirement and the computational complexity. Moreover, TNS filtering does not
have to be applied to the entire spectrum. And different prediction filters can be
applied to different frequency regions. In MPEG-2 AAC, only necessary frequency
regions have active TNS filtering module.

At the decoder side, the TNS coding module is an inverse TNS filtering block
and is inserted before the frequency-domain spectral data is converted back to the
time-domain signals by the synthesis filterbank.

If we consider the encodering filterbank and the adaptive (TNS) prediction
filter to be a compound continuously signal adaptive filterbank, then according to
the characteristics of the input signal, the behavior of this type of adaptive compos-
ite filterbank switches between a high-frequency resolution filterbank (for station-
ary signals) and a high-time resolution filterbank (for transient signals) dynam-
ically [48]. Thus, adding the TNS tool significantly improves the overall coding
performance, especially for speech stimuli.

7.2.5.2. Joint stereo coding

Joint stereo coding has been proven extremely valuable for compressing high-
quality stereophonic (or multichannel) audio signals at low bit rates. Based on
the binaural psychoacoustic theory, joint stereo coding tool was developed to sig-
nificantly reduce the bit rate for multichannel audio signals to a rate much lower
than that required for coding of multiple input channels independently.

Figure 7.7 is a simple illustration of how joint stereo coding is applied on a
five-channel audio signal. Signals in each input channel are independently pro-
cessed through some coding module, such as transform, psychoacoustic model,
and so forth, Then they will be processing by a joint stereo coding block. The out-
puts of the joint stereo coding are easier to be compressed than signals in original
input channels. Some other processing tools, such as quantization and noiseless
coding, are carried out on signals in the modified channels independently. Finally,
bits are multiplexed to form the bitstream. Two techniques are included in the joint
stereo coding module. One is called mid/side (M/S) stereo coding (also known as
“sum/difference coding”), the other is called intensity stereo coding. Similar as
TNS coding, both techniques in joint stereo coding can be selectively applied on
different frequency regions. Brief introductions on M/S stereo coding and inten-
sity stereo coding will be listed below. More detailed discussion on joint stereo
coding in MPEG-2 AAC can be found in [74].

M/S stereo coding. In MPEG-2 AAC, M/S stereo coding is applied to signals at
lower-frequency region in each channel pair of the multichannel audio source,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

100 MPEG advanced audio coding

Multichannel
audio signal

RS

LS

R

L

C

Independent
channel

processing

Independent
channel

processing

Independent
channel

processing

Independent
channel

processing

Independent
channel

processing

Joint
stereo
coding

Independent
channel

processing

Independent
channel

processing

Independent
channel

processing

Independent
channel

processing

Independent
channel

processing

Multiplex
Bitstream

Figure 7.7. Illustration of a multichannel joint stereo coder.

such as the left and right channel pair, left surround and right surround channel
pair, an so forth. In other words, lower-frequency signals belonging to any pair
of channels that are arranged symmetrically on the left/right listener axis will go
through the M/S stereo coding block in MPEG-2 AAC. With M/S stereo coding,
the signal in left and right channels L(i) and R(i) will be replaced by (L(i) +R(i))/2
and (L(i) − R(i))/2. New signals are referred to as the middle (M) and side (S)
channels.

Depending on input signals’ characteristics, M/S can be enabled and disabled,
not only from frame to frame but also from subband to subband. A single bit
representing the M/S stereo on or off state needs to be sent to the bitstream so that
the decoder can reconstruct the original channel accordingly.

Intensity stereo coding. The idea of intensity stereo coding has been utilized widely
for stereophonic and multichannel coding under other names, such as dynamic
crosstalk and channel coupling, in the past [15]. Based on the fact that the per-
ception of high frequency sound components relies mainly on the analysis of their
energy-time envelopes [13] rather than signals themselves, the encoder can trans-
mit only a single set of spectral values and share them among several audio chan-
nels while still achieving excellent sound quality. In addition to shared spectral
values, some side information, such as energy envelopes, needs to be included in
the bitstream so that the decoder can recover signal’s original energy level.

Two general mechanisms are provided in MPEG-2 AAC’s intensity stereo cod-
ing block. The first one, called intensity stereo coding, is applied to higher-
frequency components of channel pair elements. With intensity stereo coding,
the signal in left channel L(i) and right channel R(i) will be replaced by (L(i) +
R(i))×√

El/Er and 0, respectively, where El and Er represent the subband energies
of left and right channels. The implementation of intensity stereo coding is quite
straightforward and covers most of the common needs with little overhead.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-2 AAC 101

The second mechanism in intensity stereo coding, which is called AAC
coupling-channel element, allows better control of coding parameters by relaxing
the constrain on the channel pair concept. Coupling channels can be considered as
an extended intensity stereo coding, where channel spectral values can be shared
not only between channel pair elements but also between different channel pairs.
Moreover, they can be used to downmix additional sound objects into stereo audio
files.

7.2.5.3. Prediction

In MPEG-2 AAC main profile, a second-order backward prediction is adopted.
The advantage of backward prediction over forward prediction is that it uses pre-
vious samples instead of future samples to predict the current sample. Therefore,
no additional side information needs to be sent into the bitstream. For each spec-
tral sample, the quantized spectral values at the same frequency region in previous
two frames are used. If the prediction results in a coding gain for a certain sub-
band, that is, coding the prediction residue consumes less bits than coding orig-
inal signals, then the prediction will be set active for this subband. In order to
signal the predictor’s on or off state, a one-bit flag is required for each subband.
When all subbands’ prediction state has been checked, the prediction efficiency
for the entire frame also needs to be checked. In other words, in cases when bits
saved by enabling some of the subbands’ prediction block cannot compensate the
overall required side information, the prediction of this frame shall be completely
disabled and only one-bit flag needs to be included in the bitstream.

Although both TNS and prediction modules use predictor, two major differ-
ences exist between these two techniques. Unlike TNS coding module, where pre-
diction is performed over adjacent frequency samples within a frame, the MPEG-2
AAC prediction coding module implements prediction over samples in different
frames. The TNS tool provides a temporal resolution enhancement, whereas pre-
diction tool increases the temporal scope of the perceptual codec. The second dif-
ference between these two tools is that TNS filtering is performed over signals with
any block type and is especially effective for transient signals. However, prediction
of spectral coefficients over time is only suitable for stationary signals and no pre-
diction over time is enabled for signals with short window type.

In real applications, the encoder and decoder may be running on different sys-
tems that exhibit different behaviors. This small difference between encoder and
decoder may accumulate as the prediction over time goes further and further. To
prevent significant diverge between encoder and decoder, the predictor should be
reset once after a while. In MPEG-2 AAC, predictors of all coefficients are sepa-
rated to several groups. Predictor reset is performed one group at a time. By doing
this, resetting of all predictors can be achieved without considerably affecting the
overall prediction gain.

The MPEG-2 prediction tool is only available for main profile encoder and
decoder because of the high storage and computational power requirement. In
fact, not all coefficients in all frequency range have active predictor even in the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

102 MPEG advanced audio coding

main profile codec. And none of coefficients corresponding to higher frequency
range performs any prediction calculation in any circumstances.

7.2.6. Quantization

All spectral processing blocks we discussed above as well as the entropy coding
module have perfect inverse procedures, which means signals going through these
modules can be precisely reconstructed if no intermediate computational error is
involved. On the contrary, the effect of quantization module is irreversible and is
crucial to the overall compression performance. The ultimate goal of quantization
in AAC is twofold. The first goal, which is the same as the quantization module
for compression of any other multimedia signals, is to reduce the necessary bit so
that after the entropy coding, the bit requirement is under the target bit limit. The
second goal, which is unique for audio coding, is to control the quantization noise
so that psychoacoustic requirement can be met or no perceptual noise should be
introduced after the quantization.

AAC encoder takes care of quantization in two steps. One is the quantization
for spectral samples. The other is the quantization for the scale-factor band.

(i) Quantization for spectral samples. A nonuniform power-law quantizer

sq(i) = sign
(
s(i)

)× round

[(∣∣s(i)∣∣
4
√

2
s f

)0.75

− α

]
(7.6)

is adopted, where s(i) and sq(i) represent the original and quantized spectral sam-
ples, function round(x) returns the nearest integer value that is close to value x,
α is a small constant, and s f represents the quantization parameter for the scale-
factor band that sample i resides. With a nonuniform quantizer, the increase of the
signal-to-noise ratio with the increasing signal energy is significantly lower than
that of a linear quantizer. In fact, the feature of having the built-in noise shap-
ing depending on the amplitude of coefficients is the main advantage of using a
nonuniform quantizer. Huffman codes are used to code the quantized coefficients
output from the quantizer. Several Huffman tables based on different probability
models are available for any spectrum. The details of the lossless coding process is
described in Section 7.2.7.

(ii) Quantization for scale-factor bands. Beside the use of a nonuniform quan-
tizer, an additional method to shape the quantization noise is required in order
to fulfill the psychoacoustic demands. In AAC, the encoder uses the amplification
for each individual groups of spectral coefficients (scale-factor bands). If we can
shape the quantization noise in units similar to that of the critical bands of the hu-
man auditory system, then the psychoacoustic requirements can be fulfilled more
efficiently. This is done in AAC quantization block by adding a parameter s f for
each scale-factor band as shown in (7.6). Since the decoder needs to perform the
inverse quantization, the side information about parameters in each scale-factor
band needs to be included in the bitstream. The first scale-factor parameter for

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-2 AAC 103

band #0, which is called global gain, is coded by a fixed-length PCM code. Param-
eters for all the rest scale-factor bands are differentially Huffman encoded.

Ideally, quantization block should be designed so that both the bit rate and
the psychoacoustic requirement are fulfilled. However, in real encoding, there are
many cases that one or both of these requirement cannot be satisfied. When this
happens, the encoding algorithm should come up with a solution that either in-
creases the available bit or loosens the psychoacoustic requirement. In fact, dif-
ferent implementation may approach this problem differently. And how it is car-
ried out substantially affects the overall coding performance. In AAC, the target
bit limit for each frame is usually the average bit per frame, which can be cal-
culated from the desired bit rate and the sampling frequency of input signals. In
addition, a bit reservoir is available for each frame so that an extra variable bit
distribution is allowed between consecutive frames on a short-time basis. How-
ever, there is no standard procedure in MPEG AAC on how the psychoacoustic
requirement should be loosened when the bit limit cannot be achieved. This is be-
cause MPEG AAC did not standardize the encoder part; as long as the compressed
bitstream is compliant with the syntax as given in [60], any encoder design is al-
lowed. In paper [15], Bosi et al. show a double-nested iteration loop to control
the quantization. Although this method generates fairly good results and has been
adopted in the MPEG AAC reference software, it is time-consuming and compu-
tationally exhausted. Based on the reference code, different quantization module
[83] is proposed to modify the double loop and significantly improve the encoding
speed.

7.2.7. Entropy coding

Each time, a set of 1024 quantized spectral coefficients is sent to the entropy cod-
ing module to further reduce the bit rate. The goal of this module is to repre-
sent all quantized samples as efficiently as possible without introducing new er-
rors. In the beginning, a noiseless dynamic range compression may be applied to
the spectral data. Since dynamic range compression requires sending side infor-
mation into the bitstream, it is only activated when a net saving of bits can be
achieved. Beside dynamic range compression, three other techniques, that is, sec-
tioning, Huffman coding, grouping, and interleaving, are included in the entropy
coding blocks.

7.2.7.1. Sectioning

Since each scale-factor band may exhibit different statistics, different Huffman ta-
bles could be used for each scale-factor band. However, a better way is to group
several adjacent scale-factor bands into one section and let them share a common
Huffman codebook so that the side information required to represents the Huff-
man codebook index can be reduced. There are a number of choices for sectioning,
the encoder can perform a search for different sectioning parameters and find the
one that gives the best overall bit reduction results.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

104 MPEG advanced audio coding

Table 7.1. Huffman codebooks used in AAC.

Codebook index Dimension Max amplitude Signed/unsigned

0 — 0 —

1 4 1 Signed

2 4 1 Signed

3 4 2 Unsigned

4 4 2 Unsigned

5 2 4 Signed

6 2 4 Signed

7 2 7 Unsigned

8 2 7 Unsigned

9 2 12 Unsigned

10 2 12 Unsigned

11 2 16(ESC) Unsigned

7.2.7.2. Huffman coding

Twelve predefined Huffman codebooks are provided in AAC. The index of
Huffman codebook together with the maximum absolute value of the quantized
coefficients that can be represented by each Huffman codebook and the number
of coefficients in each n-tuple for each codebook are shown in Table 7.1. This ta-
ble indicates that both 2-dimensional and 4-dimensional codebooks are available.
Among codebooks #1 through #10, for each maximum absolute value, two code-
books are provided. Although both of them can be used for encoder, only the best
one, which is often the one that represents a probability distribution close to the
source, should be chosen for final encoding.

Huffman codebooks #0 and #11 are two special tables. Codebook #0 indicates
a section with all coefficients equal to zero. By using this codebook, only the code-
book index 0 needs to be included in the bitstream, neither the scale-factor param-
eter nor the coefficients’ codeword needs to be sent to the decoder. This codebook
is especially useful for input signals with bandlimited feature. Codebook #11 is
used to represent quantized coefficients that have an absolute value greater than
or equal to 16. For each such coefficients, an escape code is used to indicate the
excess value portion of the codeword. The largest absolute value that codebook
#11 can represent is 8191. The sign bit of the coefficient should be appended to the
codeword as necessary.

7.2.7.3. Grouping and interleaving

For the case of eight short windows, where the set of 1024 coefficients is actually a
matrix of 8 by 128 frequency coefficients, a grouping and interleaving method is in-
troduced to achieve higher coding gain. The purpose of grouping and interleaving
is to rearrange the order of the quantized spectral in such a way that coefficients
of similar magnitude are sorted into contiguous region thus minimum overhead

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

New features in MPEG-4 AAC 105

To quantizer

Mid/side

Perceptual noise
substitute

Prediction

Intensity
stereo

Long term
prediction

Temporal
noise shaping

From filterbank

(a)

To inverse filter bank

Temporal
noise shaping

Long term
prediction

Intensity
stereo

Prediction

Perceptual noise
substitute

Mid/side

From inverse quantizer

(b)

Figure 7.8. Spectral processing block for MPEG-4 AAC’s (a) encoder and (b) decoder [58].

consumes the limited bit budget. Grouping is a strategy that selects contiguous
short windows to form groups. Within each group, scale-factor parameters among
all scale-factor bands can be shared, whereas interleaving changes the order of
scale-factor bands, windows, and coefficients within a group and is especially use-
ful for bandlimited signals. Both grouping and interleaving enhance the coding
efficiency for short block signals.

7.3. New features in MPEG-4 AAC

MPEG-4 AAC has several new tools to enhance the coding efficiency. Figures 7.8(a)
and 7.8(b) illustrate the spectral processing block for MPEG-4 AAC’s encoder

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

106 MPEG advanced audio coding

To bitstream
multiplex module

AAC TwinVQ BSAC

From spectral
processing module

Figure 7.9. MPEG-4 AAC’s quantization and entropy coding module [58].

and decoder. Two new coding blocks, long-term prediction (LTP) and perceptual
noise substitute (PNS) are included in MPEG-4 AAC’s spectral processing module.
Figure 7.9 shows MPEG-4 AAC’s quantization and entropy coding module, where
a transform-domain weighted interleave vector quantization (TwinVQ) and a fine-
grain scalable (FGS) bit-sliced arithmetic coding (BSAC) tool are added as optional
coding kernels. Based on MPEG-2 AAC, two new functionalities, low-delay AAC
(AAC-LD) coder and the error-resilience, are introduced by modifying one of orig-
inal AAC’s coding blocks. All above new coding tools and new functionalities will
be addressed in following sections.

7.3.1. Perceptual noise substitution

Most of audio coding tools in MPEG-2 AAC’s spectral processing module belong
to waveform coding method, which means they have perfect inverse processing
blocks that can reconstruct an exact copy of input signals. Contrary to the wave-
form coding method, the model-based (vocoder) technique, which does not have a
matching perfect inverse processor, produces intermediate sound quality at much
lower bit rate. Instead of trying to reproduce a waveform that is similar as input
signals, the model-based coding tries to generate a perceptually similar sound as
output. The perceptual noise substitution (PNS) tool [51] is one of this kind of
nonwaveform coding methods and has been widely used in speech coding.

From the psychoacoustic study, it is found that the subjective sensation stim-
ulated by a noise-like signal is determined by the input signal’s spectral and tem-
poral fine structure rather than its actual waveform. Based on this observation, a
parametric coding tool, PNS is introduced to the MPEG-4 AAC spectral process-
ing module. The encoding of PNS includes two steps.

(1) Noise detection. For input signals in each frame, the encoder performs
some analysis and determines if the spectral data in a scale-factor band belongs
to noise component.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

New features in MPEG-4 AAC 107

Input Transform

Transform

Long-term
prediction

Quantization &
entropy coding

Long-term
synthesis

Inverse
transform

To bitstream
multiplex module

LTP side information

Figure 7.10. Encoding block diagram of MPEG-4 long-term prediction [58].

(2) Noise compression. All spectral samples in the noise-like scale-factor bands
are excluded from the following quantization and entropy coding module. Instead,
only a PNS flag and the energy of these samples are included in the bitstream.

The decoding of PNS is much simpler. When a PNS flag is signaled, the de-
coder replace the actual spectral coefficients with some pseudorandom numbers.
The energy of the substitute random numbers needs to be adjusted according to
PNS parameters.

The perceptual noise shaping technique significantly reduces the bit require-
ment for the noise-like components. It is verified that, at low bit rates, the PNS
tool has the ability to enhance the coding efficiency for complex musical signals
while maintaining similar memory and computational requirements.

7.3.2. Long-term prediction

MPEG-4 AAC’s long-term prediction (LTP) is another nonwaveform tool that bor-
rows idea from the speech coding. It is an efficient tool to reduce signals’ redun-
dancy between successive frames, especially for signals that have clear pitch prop-
erty, which is true for speech signals and many other sound signals. Unlike MPEG-
2 AAC’s backward prediction tool, LTP is a forward-adaptive scheme. Although
side information has to be sent to the decoder, LTP achieves similar compression
result while only requiring half of the RAM storage and computational complex-
ity as that of MPEG-2 AAC’s prediction tool. Moreover, it is less sensitive to errors
if spectral coefficients are not correctly reconstructed in previous frames due to
transmission failure.

Figure 7.10 depicts a simple encoder block diagram of an MPEG-4 AAC coder
with LTP. For simplicity, the psychoacoustic model is excluded in the figure. For
each frame, the long-term prediction is carried out based on quantized spectral
coefficients. The predicted signals and the original signals are both transformed
into frequency domain. Errors of these signals are calculated and then quantized,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

108 MPEG advanced audio coding

Input to
quantization

& coding

LPC
spectral

estimation

Periodic
component

coding

Bark-scale
envelope
coding

Flattened
spectral

coefficients

Figure 7.11. Spectral normalization in TwinVQ kernel.

coded, and sent to the bitstream. Side information including predictor control
flags and predictor parameters also needs to be sent to the decoder.

In MPEG-4 AAC, long-term prediction is defined as a separate profile. How-
ever, the LTP bitstream syntax is backward compatible with that of MPEG-2 AAC
LC profile. In other words, any regular nonscalable MPEG-2 AAC LC bitstream
is decodable by an MPEG-4 AAC LTP decoder. On the other hand, any MPEG-4
AAC LTP bitstream can be decoded by an MPEG-2 AAC LC decoder, when LTP is
not activated.

Different from MPEG-2 backward-adaptive prediction tool, LTP is not re-
stricted to be used for long windows. It can also be applied to signals with eight-
short window cases. Testing results have shown that LTP tool not only provides
good coding gain for stationary harmonic signals, but also improves the coding
performance to a certain degree for nonharmonic tonal signals.

7.3.3. TwinVQ

TwinVQ [69, 70] is an additional profile provided by MPEG-4 general audio coder.
It can be used to replace the MPEG-2 AAC’s quantization and coding kernel. Based
on the vector quantization scheme, this TwinVQ tool is capable of providing good
coding performance at extremely low bit rates (down to 6 kbps) for general audio
signals.

In the TwinVQ kernel, two steps are performed in the process of quantizing
and coding of the spectral coefficients. The first step is to normalize spectral co-
efficients, where the spectral coefficients’ values are scaled into a specified target
amplitude range. The second step is to quantize and code these normalized or
flattened spectral coefficients by means of perceptually weighted vector quantiza-
tion.

7.3.3.1. Normalize spectral coefficients

The normalization process flattens the spectral coefficients’ amplitude to a desired
range by performing scaling and extracting parameters that represent the signal’s
characteristic. After this process, the spectral coefficients become more flattened
across the frequency axis than before. The extracted parameters need to be quan-
tized and transmitted as side information to the decoder.

Three tools as shown in Figure 7.11 are associated with the spectral normal-
ization step. They are LPC spectral estimation, periodic component coding, and
Bark-scale envelope coding.

(i) LPC spectral estimation. An LPC model is adopted to estimate the over-
all coarse spectral envelope of the input signal, which is then used to normalize

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

New features in MPEG-4 AAC 109

the amplitude of the spectral coefficients. The LPC envelope parameters are trans-
formed to the line spectral pair (LSP) representation so that they can be more
efficiently coded.

(ii) Periodic component coding. Periodic peak components, which correspond
to harmonic peaks in the spectrum, are coded for frames using long windows.
The encoder estimates the pitch, that is, the fundamental signal frequency, and
extracts a number of periodic peak components from LPC output coefficients.
Side information about the pitch value and the average gain of the components
needs to be sent to the bitstream.

(iii) Bark-scale envelope coding. By using a spectral envelope based on the
Bark-related AAC scalefactor bands, the encoder can further flatten the resulting
coefficients from previous steps. The vector quantization with interframe predic-
tion is then used to quantize these envelope values.

7.3.3.2. Perceptual weighted VQ

The weighted vector quantization is carried out in the second phase of TwinVQ
to code the flattened spectral coefficients. This process is illustrated in Figure 7.12
and can be separated into three stages: interleaving, weighting, and VQ.

(i) Interleaving. Flattened spectral coefficients are first separated into groups
of subvectors. Generally speaking, coefficients corresponding to lower-frequency
range require more bits in quantization than those coefficients corresponding to
the higher-frequency range. Therefore, if consecutive coefficients are grouped to-
gether, the resulting subvectors would be unbalanced and are hard to be com-
pressed. By interleaving the spectral coefficients in frequency, subvectors with com-
parable properties in terms of required accuracy can be grouped together. Conse-
quently, it is possible to allocate constant bits for each subvector.

(ii) Weighting. A weighting factor, which is controlled by the psychoacous-
tic model [69], is introduced to each subvector before the final vector quantiza-
tion is performed. By applying this adaptive weighting process, the quantization
noise can be shaped perceptually to reduce possible noticeable artifact in the re-
constructed sound.

(iii) Vector quantization. The VQ scheme is used to quantize the interleaved
subvectors. By finding the best codebook indices, the encoder can minimize the
quantization distortion. In order to achieve the perceptual control of the quanti-
zation distortion, a weighted distortion measure is applied during the codebook
index selection for each subvector.

7.3.4. Low-delay AAC

Despite the fact that the MPEG-4 AAC provides excellent coding performance for
general audio signals at low bit rates, its long algorithmic coding delay prevents
it from being used by many real-time applications. For example, with a 24 kHz
sampling rate input audio source, when coded at 24 kbps, MPEG-4 AAC’s theo-
retical coding delay is about 110 milliseconds, and may have additional delay as

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

110 MPEG advanced audio coding

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

16

12

8

4

15

11

7

3

14

10

6

2

13

9

5

1

Flattened
spectral

coefficients

Subvector

Perceptual
weight

Subvector

Perceptual
weight

Subvector

Perceptual
weight

Subvector

Perceptual
weight

×

×

×

×

VQ

To
bitstream
multiplex
module

Figure 7.12. Weighted vector quantization [58].

long as 210 milliseconds due to the use of bit reservoir. This is certainly not toler-
able by real-time bidirectional communications.

A low-delay audio coding mode (AAC-LD), which is derived from the MPEG-4
AAC LTP audio object type [9], is developed in MPEG-4 audio version 2 to enable
coding of general audio signals with an algorithmic delay down to 20 milliseconds.
Compared with the standard MPEG-4 AAC MAIN audio object type, although
some limitation exists in the coding strategy due the low-delay modification, the
low-delay AAC requires only about 8 kbps/ch additional bit rate to achieve the
same reconstructed audio quality.

Based on the MPEG-4 AAC LTP coding scheme, the following four modifica-
tions have been made to achieve the low-delay functionality.

(i) Reduced window size. Instead of using window size of 1024 or 960 samples
in standard MPEG-4 AAC, the low-delay mode uses a frame length of only 512 or
480 samples. In other words, the window size used in the analysis and synthesis
filterbanks in AAC-LD is reduced by a factor of two.

(ii) Disable window switching. The regular window type switching is disabled
in AAC-LD so that the look-ahead delay can be avoided. In order to eliminate

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

New features in MPEG-4 AAC 111

the annoying preecho artifact in the case of transient signals, only TNS tool is
employed together with the window shape adaptation.

(iii) Modification of window shape. In order to achieve the optimum TNS per-
formance and to reduce the MDCT’s temporal aliasing effect, a low overlap win-
dow is applied for transient signals. The shape of the low overlap window is derived
from the combination of a long start window and a long stop window. This low
overlap window replaced the KBD window for transient signals. For nontransient
signal parts, a sine window is used.

(iv) Minimizing the use of bit reservoir. In order to reach the desired target
delay, the use of the bit reservoir is minimized or disabled at the encoder.

7.3.5. Error-resilient tools

In order to enhance the performance over error-prone transmission channels,
MPEG-4 audio version 2 added several error-resilient (ER) tools to the AAC codec.
On top of the error-resilient bitstream, some error-protection (EP) tools can be
added to further improve the bitstream’s error robustness. Despite these error-
resilient and error-protection tools, errors may still occur, in which case error-
concealment tools can be activated to recover or smooth the reconstructed sound.
MPEG-4 audio does not standardize the error-concealment techniques and the
error-protection tools are common for all MPEG-4 audio codecs. Therefore, only
the AAC related error-resilient tools will be discussed below.

Three tools are introduced in the AAC ER scheme.
(1) Virtual codebook (VCB11). From Section 7.2.7, we know that Huffman

codebook #11 is used to code those scale-factor bands that contain spectral coef-
ficients with maximum absolute values greater than 16. When bit error occurs for
these parts of bitstream, it usually leads to annoying perceived distortions. This
is because large amplitude coefficients have more perceptual impact than coeffi-
cients with smaller amplitude values. Therefore, more accurate reconstruction of
these coefficients results in better reconstructed sound quality. MPEG-4 AAC in-
troduces 16 virtual codebooks, all of which refer to the same codes as codebook
#11, but provides 16 difference limitations on the spectral values. By doing this, bit
errors corresponding to large spectral coefficients, which lead to serious perceptual
artifacts, can be properly detected and recovered.

(2) Reversible variable-length coding (RVLC). The RVLC tool uses symmet-
ric codewords. When error happens in the middle of the bitstream, if the regular
codewords are used, then most of the rest data in the current frame cannot be re-
covered. However, with the reversible variable-length codes, the decoder can start
backward decoding from the end, then the percentage of the corrupted data can
be reduced and result in better quality of the reconstructed sound. Note that in or-
der to make the bitstream backward decodable, both the length of the scalefactor
data and the value of the last scalefactor need to be sent to the decoder. Moreover,
not all RVLC achieves the same coding performance. More information on how to
construct the reversible length codes can be found in [123].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

112 MPEG advanced audio coding

(3) Huffman codeword reordering (HCR) [120]. One of the biggest impacts
of bitstream error is the loss of synchronization or the error propagation. Once
the synchronization is lost, the decoder cannot perform as expected until the syn-
chronization is regained. The HCR tool is developed based on the exploration that
some Huffman codewords can be placed at known regular positions within the
bitstream so that even in the presence of bit errors a proper synchronization can
be regained at these positions. The idea of HCR is implemented by defining a set
of regular positions in the bitstream and each of them is filled with a priority code-
word (PCW). Between two PCWs are all remaining non-PCWs. For better results,
more important coefficients are placed nearer to the PCW, so that they are less
likely to be affected by the previous errors.

The above three error-resilient tools are provided for regular AAC quantiza-
tion and coding module. Error-resilient tools for BSAC will be covered in Section
7.3.6.2. For the TwinVQ scheme, since the vector quantization uses only fixed-
length codewords, it is much more robust to the bit error than variable-length
codewords. Therefore, MPEG-4 AAC provides no additional error-resilient tools
for TwinVQ.

7.3.6. MPEG-4 scalable audio coding tools

In the traditional perceptual audio coding design, each compression bitstream cor-
responds to one specific bit rate, which needs to be provided at the beginning of the
encoding. Different bitstream coded at different bit rate usually has no meaningful
overlap. This kind of traditional codec design is not appropriate for applications
where target bit rate is not available beforehand or is varying depending on the
channel capacity or the transmission conditions. In order to solve this problem,
MPEG-4 audio standardized scalable audio coding algorithms, where the target
bit rate of the transmission and the decoding of the bitstream can be adapted to
dynamically varying requirements, such as the instantaneous transmission chan-
nel capacity or the decoder computational resources. MPEG-4 audio version 1 has
scalability functionality in terms of large-step scalable coding. This functionality
is integrated into the AAC coding framework and is capable to generate a single
bitstream which adapts to different channel characteristic. In MPEG-4 audio ver-
sion 2, the fine-grain scalability (FGS) mode based on bit-sliced arithmetic coding
(BSAC) is introduced. This is the first time that fine-grain scalability is provided in
MPEG-4 audio. In the previous MPEG standards, such kind of scalability is only
available for video coding.

Scalable audio codecs are typically accomplished by the concept of hierarchical
embedded coding, which means the bitstream generated by a scalable audio codec
is composed of several partial bitstreams that can be independently decoded and
then combined to form a meaningful decoding result. In other words, decoding
the first several subsets of a hierarchical full bitstream will result in a valid decoded
signal but corresponding to lower quality.

Figure 7.13 illustrates a hierarchical embedded coding scheme corresponding
to a three-layer coding mechanism. The encoder #1 (base layer coder) is the first

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

New features in MPEG-4 AAC 113

Good quality audio

Better quality audio

Basic quality audio

Base layer Enhancement layer #1 Enhancement layer #2

Encoder
#1

Decoder Encoder
#2 Decoder Encoder

#3

Input signals

Figure 7.13. Hierarchical embedded coding scheme [58].

coder involved in the scheme. It codes the input audio signal into a bitstream de-
livering the audio with the basic perceptual quality. The coding error of the base
layer coder is calculated by a matching decoder and then subtracted from the orig-
inal signal. The residual data is coded by an encoder #2 (enhancement layer coder
#1), and then output as the second part of the scalable bitstream. Decoding of
base-layer and enhancement-layer #1 subbitstreams gives a better quality sound.
Similarly, the encoder #3 (enhancement-layer coder #2) codes the residue signal
resulting from encoders #1 and #2. This additional subbitstream enables the de-
coder to generate a good copy of the original sound.

In fact, more encoders can be included in this hierarchical embedded cod-
ing scheme to generate more enhancement layers and finer coding scalability. In
MPEG-4 audio version 1, the concept of scalability is achieved by a limited number
of layers (typically 2 to 4), while MPEG-4 audio version 2 includes a scalable coder
that contains considerably more layers. Therefore, MPEG-4 audio version 1’s scal-
able coding mechanism is referred to as coarse-grain scalability tool and MPEG-4
audio version 2’s scalable coding mechanism is referred to as fine-grain scalability
tool.

7.3.6.1. Coarse-grain scalable tool

The general architectures of an MPEG-4 two-layer large-step scalable audio en-
coder and decoder are illustrated in Figures 7.14 and 7.15, respectively. This en-
coder configuration contains a non-AAC base-layer coder and an enhancement
layer based on AAC coding modules. A narrowband speech coder, such as the
MPEG-4 CELP coder, can be adopted as the non-T/F base-layer coder. This coder

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

114 MPEG advanced audio coding

Bitstream

Bitstream multiplex

Base-layer bitstream Enhancement bitstream

Quantization
&

entropy coding

Spectral
processing

Core
encoder

Core
decoder

Upsample Transform

Down-
sample Transform

Input signals

Figure 7.14. General architecture of an MPEG-4 two-layer large-step scalable audio encoder [58].

is called a core coder [41] and often operates at a lower sampling rate than the
subsequent enhancement-layer coder. A more detailed description of how these
scalable encoding and decoding components work is listed below.

(i) Encoding.
(1) The input audio signal is first downsampled and processed by the

core coder. The base-layer bitstream occupies the first portion of
the entire scalable coding output. This bitstream is then decoded,
upsampled, and fed into the AAC time-to-frequency transform
block.

(2) In the right path of the figure, the input signal is transformed into
frequency domain via AAC’s MDCT filterbank. These spectral co-
efficients are then subtracted by the corresponding coefficients cal-
culated from the first step and produce residual coding error sig-
nals.

(3) Error coefficient output from the second step is then processed
by the AAC spectral processing module and the quantization and

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

New features in MPEG-4 AAC 115

Base-layer output
(basic quality)

Full output
(good quality)

Inverse
transform

Inverse
spectral

processing

Core
decoder

Upsample Transform

Entropy decoding
&

inverse quantization

Bitstream demultiplex

Bitstream

Figure 7.15. General architecture of an MPEG-4 two-layer large-step scalable audio decoder [58].

coding block. The bitstream generated from the right path of the
encoding block diagram constructs the second portion of the entire
scalable coding output, which enables the decoder to reconstruct a
better copy of the original audio signal.

(ii) Decoding.
(1) The decoder first decomposes the bitstream into two different sub-

streams, each of which is further processed by two different de-
coders.

(2) The core stream need to be decoded before the enhancement
stream. The output from the core decoder produces a reconstructed
sound of basic perceptual quality. If more layers need to be recon-
structed, the output from the core decoder is upsampled and then
transformed to the frequency domain.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

116 MPEG advanced audio coding

(3) The enhancement substream is entropy decoded and inverse quan-
tized to generate the residue signal, which is then added to the sig-
nal generated from the base-layer. After that, the combined spectral
coefficients are processed by the inverse spectral processing mod-
ule before they are inverse transformed into the time domain. The
final output from the right enhancement path is the reconstructed
sound with good perceptual quality.

More stages of refinement (enhancement layers) can be performed according
to the hierarchical embedded coding scheme shown in Figure 7.13. In MPEG-4
large-step scalability tool, since the AAC kernel is adopted to provide coefficients’
refinement, it is more efficient to calculate the error signals in frequency domain
rather than in time domain as shown in Figures 7.14 and 7.15. In fact, the core
coder does not have to be a non-AAC speech codec. The base-layer coder can
be also a filterbank-based coder as the enhancement coder. For example, we can
choose TwinVQ as the base codec. The advantage of choosing the same transform-
based core coder as the enhancement coder is that no sampling conversion is re-
quired during the entire encoding and decoding process [47]. Thus, the coding
structure of this kind of large-step scalable coder is even simpler than what is il-
lustrated in Figures 7.14 and 7.15.

The scalable tool we described above achieves SNR scalability. Using narrow-
band speech codec as core coder can also achieve bandwidth scalability. Beside
SNR/bandwidth scalability functionalities, the MPEG-4 scalable coder also offers
a possible channel (mono-to-stereo) scalable feature, which means the core coder
only takes care of the mono or downmixed signals, while the enhancement coder
is capable to extend a monophonic signal into a stereophonic signal and improve
the final listening effect.

Although MPEG-4 coarse-grain scalability tool is flexible in choosing differ-
ent coding module, two restrictions apply in this coder design process. The first
restriction is that the narrowband CELP speech coder can only be used as the core
coder. In other words, no nontransform-based codec is allowed for the enhance-
ment part. The other restriction is that TwinVQ coding kernel can only be adopted
in the enhancement layer if the previous layer is also based on TwinVQ.

Large-step scalable tool is included in MPEG-4 audio as a separate profile,
parallel with AAC-LC or AAC-LTP, and so forth. In addition to the standard 1024
frame size, the AAC coder in the MPEG-4 large-step scalability configuration also
supports a smaller frame size of 960 so that it can better accommodate the core
speech coder’s frame size.

7.3.6.2. Fine-grain scalable tool

The large-step scalable audio framework is an efficient scalable configurations
if only a few enhancement layers are involved. An alternative coding tool that
achieves good performance for fine-grain-scalability (FGS) in MPEG-4 audio is
specified in MPEG-4 audio version 2 [59]. The new codec is called BSAC [75, 98].
It is built based on the modified version of the MPEG-4 AAC tools with a new
quantization and noiseless coding scheme.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

New features in MPEG-4 AAC 117

Bit-plane processing sequence
v[0] v[1] v[2] v[4] . . .

Conventional
processing
sequence

x[0] x[1] x[2] x[4] . . .

0 1 0 1 1x[4]

v[0] v[1] v[2] v[3] v[4]
MSB LSB

Spectral
data

0 0 1 1 1x[2]

1 0 0 0 0x[1]

0 1 0 0 1x[0]

Figure 7.16. Conventional processing and bit-plane scanning process [100].

BSAC is capable to produce scalable bitstream in steps at approximately 1 kbps
per audio channel. Since side information needs to be included in each refine-
ment layer, the use of small steps scalability actually degrades the overall coding
efficiency if full bit rate needs to be provided. BSAC handles this problem by re-
placing the original AAC’s quantization and Huffman coding module with the
bit-plane scanning and arithmetic coding. When working at high bit rates (about
48 to 64 kbps/ch), BSAC FGS achieves performance comparable to a nonscalable
AAC coder with only a marginal loss in coding efficiency. At lower bit rates, the
performance of the BSAC decreases progressively.

Figure 7.16 shows the difference between the conventional scanning process
and the bit-plane scanning processing. Traditionally, coefficients are processed se-
quentially one after the other, that is, no bit information about the next coefficient
is transmitted if all bit information about the previous coefficient has not finished.
In bit-plane scanning processing, bits of coefficients are separated to several groups
according to the bit position, that is, all the most significant bits (MSB) of all co-
efficients are in one group and all the least significant bits (LSB) of all coefficients
are in another group, and so forth. In this manner, the coefficients’ amplitude
can be reconstructed more and more accurately as more and more layers are de-
coded. If we call the conventional scanning method as the horizontal scanning
process, then we can call the bit-plane scanning method as the vertical scanning
process. In the horizonal scanning processing, within each scanning path, bits are
processed in the order of the bit plan, whereas in the vertical scanning process,
within each scanning path, bits are processed in the sequential order. Therefore,
the bit-plane coding is virtually a similar processing method as the conventional
coding.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

118 MPEG advanced audio coding

In BSAC, a sign/magnitude format is used for each quantized spectral coef-
ficients. A maximum length of 13 bits can be used to represent the binary inte-
gers of any magnitudes (absolute values). Starting from the most significant bit
(MSB) plane and continuing to the less significant bit plane, bits of magnitudes
are processed in slices according to their significance in BSAC. The sign bit of a
coefficient is sent following the first “1” bit encountered in the magnitude of the
coefficient.

A context-based arithmetic coder is adopted to encode the vertical scanned
bits. In context-based arithmetic coder, different coding models with different
probability tables are provided. According to the statistics of each bit slice, the
best matching coding model is selected so that a minimum redundant bitstream
can be produced.

The side information, the scale factors, and the first bit slices of spectral data
corresponding to a certain frequency range are included in the BSAC base-layer.
Depending on the bit rate of the base-layer, reconstructed base-layer audio may
have different bandwidth. As more and more numbers of enhancement layers
are received by the decoder, quantized spectral data is refined by more and more
LSB information, that is, more bit slices. Meanwhile, the bandwidth of the recon-
structed audio is increased as more scale factors and spectral data bits in higher-
frequency bands become available to the decoder. By operating in this fashion, the
decoder may stop decoding almost at any bit in a bitstream and achieve a fine-
grain scalability.

An optional segmented binary arithmetic (SBA) coding tool is provided in
MPEG-4 audio to improve the BSAC error-resilient capability. In the error-
resilient BSAC mode, the whole bitstream is composed by several segments. And
in order to reduce overhead, each segment contains data from adjacent enhance-
ment layers. The arithmetic coder is reinitialized at the beginning of each segment
and terminated at its end. In this way, the potential error can be confined in the
range of one segment and will not propagate across segment boundaries.

7.4. MPEG-4 high-efficiency AAC

During the March 2003 MPEG meeting, a new standard called MPEG-4 high-
efficiency AAC (HE-AAC) is finalized. HE-AAC is a combination of MPEG AAC
and the spectral band replication (SBR) bandwidth extension amendment. In fact,
HE-AAC works as a two-layer scalable audio codec. The MPEG-AAC works as the
core coder to process the lower half of the spectral coefficients, while the SBR cod-
ing module takes care of extending the bandlimited signal to the full-bandwidth
by only limited additional bits. With the SBR coding tool, the HE-AAC is able
to achieve the similar quality sound at a much lower bit rate. More specifically,
HE-AAC can reconstruct CD-quality stereo at 48 kbps and 5.1 channel surround
sound at 128 kbps.

MPEG-4 HE-AAC coder is a backward compatible extension of the previous
MPEG-4 AAC standard. The HE-AAC decoder is capable to process the bitstream
generated by both MPEG-4 AAC and HE-AAC encoders. On the other hand, the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 high-efficiency AAC 119

0 1 2 3 4 5 6 7

Spectral coefficients

A
m

p
li

tu
d

e

Original value
Quantized value

Quantization noise

Figure 7.17. Spectral coefficients before and after quantization.

MPEG-4 AAC decoder can reconstruct the lower half-bandwidth signal in an HE-
AAC bitstream. By cutting the bit rate to half of the MPEG AAC, HE-AAC is more
suitable for Internet content delivery and new applications in the markets of mo-
bile and digital broadcasting.

7.4.1. Background of SBR technology

The goal of the development of spectral band replication is to design a generic
method so that the performance of the current perceptual audio codecs, such as
MPEG layer-3 (mp3) and MPEG AAC, can be significantly enhanced.

The quantization block of any perceptual coder introduces noise, which is
called quantization noise. Only when the quantization noise satisfies the psychoa-
coustic requirement can the perceptual coder really achieve the transparent audio
quality. Figure 7.17 is an illustration of how quantization noise occurs. And Figures
7.18(a) and 7.18(b) show the relationship between the noise level and the masking
threshold for two AAC encoders. Figure 7.18(a) reveals that quantization noise in
all scale-factor bands has lower energy than the masking threshold. Therefore, the
first AAC encoder is capable to reproduce the sound of perceptually indistinguish-
able quality as the original input. However, the quantization noise introduced by
the second AAC encoder cannot be masked by its own signal. In other words, the
energy of the noise is larger than the masking threshold, which is the typical result
of a perceptual coder when the bit budget is too low and is incapable of handling
the input sound transparently.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

120 MPEG advanced audio coding

0 1 2 3 4 5 6 7

Scale-factor band

N
o
is

e
en

er
g
y

Masking threshold

Quantization noise

(a)

0 1 2 3 4 5 6 7

Scale-factor band

N
o
is

e
en

er
g
y

Masking threshold

Quantization noise

(b)

Figure 7.18. Quantization noise versus masking thresholds [25]. (a) Noise level is smaller than mask-
ing threshold. (b) Noise level is larger than the masking threshold.

The bitstream generated by the second AAC encoder delivers poor sound
quality with noticeable artifacts. Since perceptual artifacts in the reconstructed
sound is more annoying than a perceptually noise-free bandlimited sound, the
typical way to solve the problem for the second AAC encoder is to downsam-
ple the input signal so that the limited bit budget can be used to encode the
lower-frequency coefficients transparently. Although intensity stereo coding can
also be applied to reduce the bit requirement of the original signal by combining
some information in both channels, the bit reduction by intensity stereo is usually

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 high-efficiency AAC 121

0 Fs/4 Fs/2

Frequency

En
er

g
y

Quantized spectra
corresponding to

the lower-half-
frequency

Spectra replica
from the lower-
half-frequency

region

Replicatation

Figure 7.19. Generate the high-frequency component by replicating the low-frequency part [25].

insufficient and generates unsatisfactory stereo sound. Nevertheless, the spectral
band replication technology tackles this problem in a more efficient way. While
the core coder processes coefficients corresponding lower half of the frequency
region, SBR extracts some parameters from the full-bandwidth original signal so
that the decoder can generate a good quality sound of the same bandwidth as that
of the original one.

7.4.2. Basic principle of SBR technology

The SBR technique is derived from the hybrid waveform/parametric method. It
is observed in many cases the higher-frequency parts depend considerably on the
lower-frequency parts and therefore they can be approximately reconstructed
based on the information of low-frequency signal. In other words, there is no need
to code and transmit the high-frequency signal as accurately as the low-frequency
signal. Instead, only a small amount of SBR control data needs to be included in
the bitstream so that the receiver can optimally reconstruct the high-frequency
part.

Figures 7.19 and 7.20 illustrate the basic principle of SBR technology. The first
step of the SBR enhancement is to replicate the lower-frequency spectra. However,
the simple high-frequency generation by copying the low-frequency information
is not sufficient for the accurate high-frequency reconstruction. Therefore, the sec-
ond step of the SBR enhancement is to adjust the high-frequency component re-
sults from the first step. In fact, the high-frequency adjustment plays an important
role in correctly shaping the high-frequency component and the SBR control in-
formation that need to be used to perform this adjustment constitutes a consider-
able amount of the SBR bitstream.

There are cases when there is little relationship between the low- and high-
frequency parts, the above reconstruction method is not able to deliver the desired
results. SBR technology takes care of this kind of situation by some additional tools
and still can achieve excellent coding efficiency.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

122 MPEG advanced audio coding

0 Fs/4 Fs/2

Frequency

En
er

g
y

Quantized spectra
corresponding to

the lower-half-
frequency

Adjusted higher-
frequency

component

Adjustment

Figure 7.20. High-frequency component adjustment [25].

The reason that SBR is capable to significantly reduce the bit rate while still
maintaining the performance of the perceptual codec can be summarized as fol-
lows.

(1) High-frequency part. In traditional perceptual audio codecs, the waveform
coding of the high-frequency signals usually requires a considerable amount of bits
in encoding. By relaxing the waveform coding requirement, the SBR technology,
which is a hybrid waveform/parametric method, extracts only a small amount of
side information to recreate the high-frequency component at the receiver side.
Thus, a significant bit rate reduction can be achieved.

(2) Low-frequency part. Since the core coder only needs to handle the wave-
form coding of the low-frequency components, it can operate with a comparatively
higher precision. In fact, the core coder can even work at a different sampling rate
from the desired output sampling rate to ensure its optimal performance. This is
because the SBR technology is capable of converting the sampling rate of the core
codec into the desired output sampling rate.

7.4.3. More technical details on high-efficiency AAC

Figures 7.21 and 7.22 illustrate the encoder and decoder block diagrams of HE-
AAC. The HE-AAC algorithm is generally to be used as a dual-rate coding system,
where the core AAC codec operates at the half of the original sampling rate, and the
SBR tool operates at the original sampling rate, which means the core AAC codec
only takes care of handling spectral data in the lower half of the original frequency
range. The spectral data in the higher half of the original frequency range are no
longer waveform coded. Instead, they are synthesized by the model-based SBR
technology.

SBR encoder is responsible for generating all necessary parameters so that
the SBR decoder is able to reconstruct the higher-frequency part as effectively as
possible. A serial of coding blocks is included in the SBR encoder. They are anal-
ysis quadratic mirror filterbank (QMF), transient detection, time and frequency

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

MPEG-4 high-efficiency AAC 123

2 : 1
downsample

AAC
encoder

AAC
bitstream

B
it

st
re

am
m

u
lt

ip
le

xe
r

HEAAC
bitstream

SBR
bitstream

SBR
encoder

Input
samples

Figure 7.21. Encoder block diagram of HE-AAC.

Hight-frequency
reconstruction

via SBR

AAC
decoder

AAC
bitstream

B
it

st
re

am
d

em
u

lt
ip

le
xe

r

Onput
signals

SBR
bitstream

SBR
parameters

decoder

HEAAC
bitstream

Figure 7.22. Decoder block diagram of HE-AAC.

(T/F) grid generation, envelope estimation, additional control parameters extrac-
tion and entropy coding of SBR parameters.

(i) Analysis QMF filterbank. The complex QMF analysis is calculated based on
the original input signal and generates oversampled values. The reason that SBR
encoder chooses to use a noncritically sampled QMF filterbank is to avoid aliasing
at the decoder side.

(ii) Transient detection. Since transient signals mainly reside in the high-
frequency region, while the SBR decoder generates high band signals based on the
decoded lower band signals that present less transient components, the transient-
related information has to be included in the SBR bitstream.

(iii) T/F grid generation and envelope estimation. Based on the characteristics
of the current input signal segments, the SBR encoder estimates the spectral enve-
lope for a suitable time and frequency resolution. For a given input segment, the
best suited time and frequency resolutions of the spectral envelopes are selected.

(iv) Additional control parameters extraction. In cases when simple frequency
patching and envelop adjustment cannot satisfy the coding performance, some
special control parameters need to be available at the SBR decoder side. These
parameters include tone-to-noise ratio, noise-floor energy, and sinusoidal com-
ponent, and so forth.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

124 MPEG advanced audio coding

(v) Entropy coding of SBR parameters. All parameters extracted from the pre-
vious SBR coding blocks are finally sent to the entropy coding part in order to
further reduce the redundancy.

The HE-AAC decoder consists of the core AAC decoder and the SBR decoder.
The AAC decoder works in the same way as MPEG-4 AAC decoder. Since only the
spectral data corresponding to the lower half of the frequency range is encoded
by the AAC at the encoder side, the core AAC decoder in HE-AAC decoder can
only reconstruct the spectrum in low-frequency range. The corresponding higher-
frequency components are synthesized by the SBR decoder.

The SBR decoder performs the following procedures after the bitstream de-
multiplexer outputs the SBR bitstream.

(i) Entropy decoding. The matching entropy decoder recovers all SBR param-
eters.

(ii) High-frequency generation. Higher-half-frequency components are first
estimated by frequency patch based on decoded values of spectral data in low-
frequency part.

(iii) Envelope adjustment. The envelope of the high-frequency part needs to be
adjusted to match the high-frequency envelope of the original signal.

(iv) Including additional high-frequency component. Additional SBR control
parameters are then used to further modify the high-frequency component so that
more perceptual similar signals can be reconstructed.

(v) QMF synthesis. Signals generated from all previous steps are then synthe-
sized by QMF filterbank to reconstruct the final time-domain output.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

8
Introduction to new audio coding tools

8.1. Motivation and overview

Ever since the beginning of the twentieth century, the art of sound coding, trans-
mission, recording, mixing, and reproduction has been constantly evolving. Start-
ing from the monophonic technology, technologies on multichannel audio have
been gradually extended to include stereophonic, quadraphonic, 5.1 channels, and
more. Compared with traditional mono or stereo audio, multichannel audio pro-
vides end users with a more compelling experience and becomes increasingly more
appealing to music producers. Consequently, an efficient coding scheme is needed
for multichannel audio storage and transmission, and this subject has attracted a
lot of attention recently.

Among several existing multichannel audio compression algorithms, Dolby
AC-3, and MPEG advanced audio coding (AAC) are the two most prevalent per-
ceptual digital audio coding systems. Dolby AC-3 is the third generation of digital
audio compression systems from Dolby Laboratories, and has been adopted as
the audio standard for high definition television (HDTV) systems. It is capable of
providing indistinguishable audio quality at 384 kbit/s for 5.1 channels [8]. AAC
is currently the most powerful multichannel audio coding algorithm in the MPEG
family. It can support up to 48 audio channels and provide perceptually lossless
audio at 320 kbit/s for 5.1 channels [18]. In general, these low-bit-rate multichan-
nel audio compression algorithms not only utilize transform coding to remove
statistical redundancy within each channel, but also take advantage of the human
auditory system to hide lossy coding distortions.

8.1.1. Redundancy inherent in multichannel audio

Despite the success of AC-3 and AAC, not much effort has been made in reduc-
ing interchannel redundancy inherent in multichannel audio. The only technique
used in AC-3 and AAC to eliminate redundancy across channels is called “Joint
Coding,” which consists of intensity/coupling and mid/side (M/S) stereo coding.
Coupling is adopted based on the psychoacoustic evidence that, at high frequen-
cies (above approximately 2 kHz), the human auditory system localizes sound pri-
marily based on envelopes of critical-band-filtered signals that reach human ears,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

126 Introduction to new audio coding tools

rather than the signals themselves [24, 126]. M/S stereo coding is only applied
to lower frequency coefficients of channel-pair-elements (CPEs). Instead of direct
coding of original signals in the left and right channels, it encodes the sum and the
difference of signals in two symmetric channels [15, 73].

Our experimental results show that high correlation is very likely to be
present between every pair of channels besides CPE in all frequency regions, es-
pecially for those multichannel audio signals that are captured and recorded in a
real space [137]. Since neither AAC nor AC-3 exploits this property to reduce re-
dundancy, none of them can efficiently compress this kind of multichannel audio
content. On the other hand, if the input multichannel audio signals presented to
the encoder module have little correlation between channels, the same bit rate
encoding would result in higher reconstructed audio quality. Therefore, a bet-
ter compression performance can be achieved if interchannel redundancy can be
effectively removed via a certain kind of transform together with redundancy
removal techniques available in the existing multichannel audio coding
algorithms. One possibility to reduce the cross-channel redundancy is to use in-
terchannel prediction [36] to improve the coding performance. However, a recent
study [79] argues that this kind of technique is not applicable to perceptual audio
coding.

8.1.2. Quality-scalable single compressed bitstream

As the world is evolving into the information era, media compression for a pure
storage purpose is far less than enough. The design of a multichannel audio codec
that takes the network transmission condition into account is also important.
When a multichannel audio bitstream is transmitted through a heterogeneous
network to multiple end users, a quality-scalable bitstream would be much more
desirable than the nonscalable one.

The quality scalability of a multichannel audio bitstream makes it possible
that the entire multichannel sound can be played at various degrees of quality for
end users with different receiving bandwidths. To be more precise, when a single
quality-scalable bitstream is streamed to multiple users over the Internet via mul-
ticast, some lower priority packets can be dropped, and a certain portion of the
bitstream can be transmitted successfully to reconstruct different quality multi-
channel sound according to different users’ requirement or their available band-
width. This is called the multicast streaming [134]. With nonscalable bitstreams,
the server has to send different users different unicast bitstreams. This is certainly a
waste of resources. Not being considered for audio delivery over heterogenous net-
works, the bitstream generated by most existing multichannel audio compression
algorithms, such as AC-3 or AAC, is not scalable by nature.

8.1.3. Embedded multichannel audio bitstream

Similar to the quality-scalable single audio bitstream mentioned in the previous
section, the most distinguishable property of an embedded multichannel audio

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Audio coding improvements 127

compression technique lies in its network transmission applications. In the sce-
nario of audio coding, the embedded code contains all lower rate codes “embed-
ded” at the beginning of the bitstream. In other words, bits are ordered according
to their importance, and the decoder can reconstruct audio progressively. With an
embedded codec, an encoder can terminate the encoding at any point, thus allow-
ing a target rate or a distortion metric to be met exactly. Typically, some target
parameters, such as the bit count, is monitored in the encoding process. When the
target is met, the encoding simply stops. Similarly, given a bitstream, the decoder
can cease decoding at any point and produces reconstructions corresponding to
all lower-rate encodings. The property of being able to terminate the encoding or
decoding of an embedded bitstream at any specific point is extremely useful in
systems that are either rate- or distortion-constrained [116].

MPEG-4 version-2 audio coding supports fine grain bit rate scalability [98,
61, 65, 66, 47] in its generic audio coder (GAC). It has a bit-sliced arithmetic
coding (BSAC) tool, which provides scalability in the step of 1 kbit/s per audio
channel for mono or stereo audio material. Several other scalable mono or stereo
audio coding algorithms [145, 128, 117] were proposed in recent years. However,
not much work has been done on progressively transmitting multichannel audio
sources. Most existing multichannel audio codecs, such as AAC or AC-3, can only
provide fixed-bit-rate perceptually loseless coding at about 64 kbit/s/ch. In order
to transfer high quality multichannel audio through a network of a time-varying
bandwidth, an embedded audio compression algorithm is highly desirable.

8.1.4. Error-resilient scalable audio bitstream

Current coding techniques for high quality audio mainly focus on coding effi-
ciency, which makes them extremely sensitive to channel errors. A few bit errors
may lead to a long period of error propagation and cause catastrophic results, in-
cluding making the reconstructed sound file with unacceptable perceptual quality
and the crash of the decoder. The desired audio bitstream transmitted over the
network should be the one with error resiliency, which means that the audio bit-
stream should be designed to be robust to channel errors, that is, make the error
impact as small as possible. During the period when packets are corrupted or lost,
the decoder should be able to perform error concealment and allow the output au-
dio to be reproduced at acceptable quality. Compared with existing work on image,
video or speech coding, the amount of work on error-resilient audio is relatively
small. Techniques on robust coding and error concealment for compressed speech
signals have been discussed for years. However, since speech and audio signals have
different applications, straightforwardly applying these techniques to audio does
not generate satisfactory results in general.

8.2. Audio coding improvements

Based on the current status of multichannel audio compression discussed in pre-
vious sections, we propose three audio coding algorithms which are all built upon

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

128 Introduction to new audio coding tools

the MPEG AAC basic coding structure in this book. The first one is called modified
AAC with Karhunen-Loève transform (MAACKLT). The second one is called pro-
gressive syntax-rich multichannel audio codec (PSMAC). The third one is called
error-resilient scalable audio coding (ERSAC). Major contributions of this part of
the book are summarized below.

8.2.1. Interchannel redundancy removal approach

As mentioned in Section 8.1.1, not much effort has been made in reducing inter-
channel redundancy inherent in multichannel audio sources. In our research, we
carefully observe the interchannel correlation present in multichannel audio ma-
terials and propose an effective channel redundancy removal approach. Specific
contributions along this direction are listed below.

(1) Observation of channel correlation. Based on our observation, most of the
multichannel audio materials of interest exhibit two types of channel correlation.
The first type only shows high correlation between CPEs, but little correlation
between other channel pairs. The other type shows high correlation among all
channels.

(2) Proposal of an effective interchannel redundancy removal approach. An in-
terchannel decorrelation method via KLT is adopted in the preprocessing stage
to remove the redundancy inherent in original multichannel audio signals. Audio
channels after KLT show little correlation between channels.

(3) Study of efficiency of the proposed interchannel decorrelation method. Exper-
imental results show that the KLT preprocessing approach not only significantly
decorrelates input multichannel audio signals but also considerably compacts the
signal energy into the first several eigen-channels. This provides strong evidence
of KLT’s data compaction capability. Moreover, the energy compaction efficiency
increases with the number of input channels.

(4) Frequency domain KLT versus time domain KLT. It is observed that ap-
plying KLT to frequency domain signals achieves a better performance than di-
rectly applying KLT to time domain signals as shown by experimental results in
Section 9.8. Thus, intrachannel signal decorrelation and energy compaction pro-
cedures should be performed after time-domain signals are transformed into the
frequency domain via MDCT in the AAC encoder.

(5) Temporal adaptive KLT. A multichannel audio program is often comprised
of different periods, each of which has its unique spectral signature. In order to
achieve the highest information compactness, the decorrelation transform matrix
must adapt to the characteristics of different periods. Thus, a temporal-adaptive
KLT method is proposed, and the trade-off between the adaptive window size and
the overhead bit rate is analyzed.

(6) Eigen-channel compression. Since signals in decorrelated eigen-channels
have different characteristics from signals in original physical channels, MPEG
AAC coding blocks are modified accordingly so that they are more suitable to com-
press audio signals in eigen-channels.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Audio coding improvements 129

8.2.2. Audio concealment and channel transmission strategy
for heterogeneous network

Based on the results of our KLT preprocessing approach, the advantage of this
method is further explored. Once signals in original physical channels are trans-
formed into independent eigen-channels, the energy accumulates much faster as
the number of channels increases. This implies, when transmitting data of a fixed
number of channels with our algorithm, more information content will be re-
ceived in the decoder side and better quality of the reconstructed multichannel
audio can be achieved. Possible channel transmission and recovery strategies for
MPEG AAC and our algorithm are studied and compared. The following two con-
tributions have been made in this work.

(1) Channel importance sequence. It is desirable to reorganize the bitstream
such that bits of more important channels are received at the decoder side first
for audio decoding. This should result in best audio quality given a fixed amount
of received bits. According to the channel energy and, at the same time, consid-
ering the sound effect caused by different channels, the channel importance for
both original physical channels and KL-transformed eigen-channels is studied. A
channel transmission strategy is determined according to this channel importance
criterion.

(2) Audio concealment and channel scalable decoding. When packets belong-
ing to less important channels are dropped, an audio concealment strategy must
be enforced in order to reconstruct a full multichannel audio. A channel-scalable
decoding method based on this audio concealment strategy for bitstreams gener-
ated by AAC and the proposed algorithm is proposed. Experimental results show
that our algorithm has a much better scalable capability and can reconstruct mul-
tichannel audio of better quality, especially at lower bit rates.

8.2.3. Quantization efficiency for adaptive Karhunen-Loève transform

The quantization method for the Karhunen-Loève transform matrix and the dis-
cussion on the temporal adaptive KLT method in the MAACKLT algorithm are
relatively simple. Some questions arise with respect to improving the efficiency of
the quantization scheme. For example, can we improve the coding performance by
reducing the overhead involved in transmitting the KLT matrix? If the number of
bits required to quantize each KLT matrix is minimized, can we achieve much bet-
ter interchannel decorrelation efficiency if the KLT matrix is updated much more
frequently? Having these questions in mind, we investigate the impact of different
quantization methods and their efficiency on the adaptive Karhunen-Loève trans-
form. The following two areas are addressed in this research.

(1) Scalar quantizer versus the vector quantizer. The coding efficiency, the bit
requirement of the scalar quantizer, and the vector quantizer are carefully ana-
lyzed. Although a scalar quantizer applied to the KLT matrix gives much bet-
ter interchannel decorrelation efficiency, vector quantization methods that have

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

130 Introduction to new audio coding tools

a smaller bit requirement achieve a better performance in terms of the final MNR
values of the reconstructed sound file.

(2) Long versus short temporal adaptive period for KLT. We study how to choose
a moderately long temporal adaptive period so that the optimal trade-off between
the interchannel decorrelation efficiency and the overhead bit rate can be
achieved.

8.2.4. Progressive syntax-rich multichannel audio codec design

Inspired by progressive image coding and the MPEG AAC system, a novel pro-
gressive syntax-rich multichannel audio compression algorithm is proposed in this
book. The distinctive feature of the multichannel audio bitstream generated by our
embedded algorithm is that it can be truncated at any point and still reconstruct a
full multichannel audio, which is extremely desirable in the network transmission.
The novelty of this algorithm includes the following.

(1) Subband selection strategy. A subband selection strategy based on the
mask-to-noise ratio (MNR) is proposed. An empirical MNR threshold is used to
determine the importance of a subband in each channel so that the most sensitive
frequency region can be reconstructed first.

(2) Layered coefficient coding. A dual-threshold strategy is adopted in our im-
plementation. At each layer, the MNR threshold is used to determine the subband
significance, the coefficient magnitude threshold is used to determine coefficient
significance. According to these selection criteria, within each selected subband,
transformed coefficients are layered quantized and transmitted into the bitstream
so that a coarse-to-fine multiprecision representation of these coefficients can be
achieved at the decoder side.

(3) Multiple context lossless coding. A context-based QM coder is used in the
lossless coding part in the proposed algorithm. Six classes of contexts are carefully
selected in order to increase the coding performance of the QM coder.

(4) Three user-defined profiles. Three user-defined profiles are designed in this
codec. They are MNR progressive, random access, and channel enhancement. With
these profiles, PSMAC algorithm provides end users versatile functionalities.

8.2.5. Error-resilient scalable audio coding

In order to improve the performance of the PSMAC algorithm when its bitstream
is transmitted over erroneous channels, we extend its error-free codec to an error-
resilient scalable audio coding (ERSAC) over WCDMA channels by reorganizing
the bitstream and modifying the noiseless coding part. The distinctive features of
the ERSAC algorithm are presented below.

(1) Unequal error protection. Compared with the equal error protection
scheme, the unequal error protection method gives higher priority to critical bits
and therefore better protection. It offers an improved perceived signal quality at
the same channel signal-to-noise ratio.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Audio coding improvements 131

(2) Adaptive segmentation. In order to minimize the error propagation effect,
the bitstream is dynamically segmented into several variable length segments such
that it can be resynchronized at the beginning of each segment even when error
happens. Within each segment, bits can be independently decoded. In this way,
errors can be confined to one segment, and will not propagate and affect the de-
coding of neighboring segments.

(3) Frequency interleaving. To further improve the error-resilience, bits be-
longing to the same time period but different frequency region are divided into
two groups and sent in different packets. Therefore, even when the packets that
contain bits for the header or the data part of the base layer are corrupted, not all
information for the same time position is lost so that the end user is still able to re-
construct a poorer version of the sound with some frequency component missing.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

9
Interchannel redundancy removal and
channel-scalable decoding

9.1. Introduction

In this chapter,1 we present a new algorithm called MAACKLT, which stands for
modified advanced audio coding with Karhunen-Loève transform (KLT). In
MAACKLT, a 1D temporal-adaptive KLT is applied in the preprocessing stage to
remove interchannel redundancy. Then, decorrelated signals in the KL transformed
channels, called eigen-channels, are compressed by a modified AAC main profile
encoder module. Finally, a prioritized eigen-channel transmission policy is en-
forced to achieve quality scalability.

In this work, we show that the proposed MAACKLT algorithm provides a
coarse-grain scalable audio solution. That is, even if packets of some eigen-
channels are dropped completely, a slightly degraded yet full-channel audio can
still be reconstructed in a reasonable fashion without any additional computa-
tional cost.

To summarize, we focus on two issues in this research. First, the proposed
MAACKLT algorithm exploits interchannel correlation existing in audio data to
achieve a better coding gain. Second, it provides a quality-scalable multichannel
audio bitstream which can be adaptive to networks of time-varying bandwidth.
The rest of this chapter is organized as follows. Section 9.2 summarizes the in-
terchannel decorrelation scheme and its efficiency. Section 9.3 discusses the tem-
poral adaptive approach. Section 9.4 describes the eigen-channel coding method
and its selective transmission policy. Section 9.5 demonstrates the audio conceal-
ment strategy at the decoder end when the bitstream is partially received. The sys-
tem overview of the complete MAACKLT compression algorithm is provided in
Section 9.6. The computational complexity of MAACKLT is compared with that
of MPEG AAC in Section 9.7. Experimental results are shown in Section 9.8. Fi-
nally, concluding remarks are given in Section 9.9.

9.2. Interchannel redundancy removal

9.2.1. Karhunen-Loève transform

For a given time instance, removing interchannel redundancy would result in a
significant bandwidth reduction. This can be done via an orthogonal transform

1Part of this chapter represents works published before, see [137, 136, 142].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

134 Interchannel redundancy removal and channel-scalable decoding

× =

KLT
matrix
M

Correlated
component

V

Decorrelated
component

U

Original multichannel audio
signals with high correlation

between channels

Eigen-channel audio signals
with little correlation

between channels

Figure 9.1. Interchannel decorrelation via KLT.

MV = U , where V and U denote the vector whose n elements are samples in orig-
inal and transformed channels, respectively. Among several commonly used trans-
forms, including the discrete cosine transform (DCT), the fourier transform (FT),
and the Karhunen-Loève transform (KLT), the signal-dependent KLT is adopted
in the preprocessing stage because it is theoretically optimal in decorrelating sig-
nals across channels. If M is the KLT matrix, the transformed channels are called
the eigen-channels. Figure 9.1 illustrates how KLT is performed on multichannel
audio signals, where the columns of the KLT matrix is composed of eigenvectors
calculated from the covariance matrix CV associated with original multichannel
audio signals V .

Suppose that an input audio signal has n channels. Then, we can form an
n × n KLT matrix M consisting of n eigenvectors of the cross-covariance matrix
associated with these n channels. Let V(i) denote the vector whose n elements are
the ith sample value in channel 1, 2, . . . ,n, that is ,

V(i) = [x1, x2, . . . , xn]T , i = 1, 2, . . . , k, (9.1)

where xj is the ith sample value in channel j (1 ≤ j ≤ n), k represents the number
of samples in each channel, and [∗]T represents the transpose of [∗]. The mean
vector μV and covariance matrix CV are defined as

μV = E[V] =
∑k

i=1 V(i)
k

,

CV = E
[
(V − μV)(V − μV)T

] =
∑k

i=1[V(i)− μV][V(i)− μV]T

k
.

(9.2)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Interchannel redundancy removal 135

The KLT matrix M is M = [m1,m2, . . . ,mn]T , where m1, m2, . . . , mn are eigenvec-
tors of CV . The covariance of KLT signals is

E[(U − μU)(U − μU)T] = E[(MV −MμV)(MV −MμV)T]

=ME[(V − μV)(V − μV)T]MT

=MCVM
T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(9.3)

where λ1, λ2, . . . , λn are eigenvalues of CV . Thus, the transform produces statisti-
cally decorrelated channels in the sense of having a diagonal covariance matrix for
transformed signals. Another property of KLT, which can be used in the recon-
struction of audio of original channels, is that the inverse transform matrix of M
is equal to its transpose. Since CV is real and symmetric, the matrix is formed by
normalized eigenvectors which are orthonormal. Therefore, we have V = MTU
in reconstruction. From KL expansion theory [46], we know that selecting eigen-
vectors associated with the largest eigenvalues can minimize the error between
original and reconstructed channels. This error becomes zero if all eigenvectors
are used. KLT is thus optimum in the least-square-error sense.

9.2.2. Evidence for interchannel decorrelation

Multichannel audio sources can be roughly classified into three categories. Those
belonging to class I are mostly used in broadcasting, where signals in one chan-
nel may be completely different from the other. Either broadcasting programs are
different from channel to channel, or the same program is broadcast but in dif-
ferent languages. Samples of audio sources in class I normally contain relatively
independent signals in each channel and present little correlation among chan-
nels. Therefore, this type of audio source will not fall into the scope of high quality
multichannel audio compression discussed here.

The second class of multichannel audio sources can be found in most film
soundtracks, which are typically in the format of 5.1 channels. Most of this kind
of program material has a symmetry property among CPEs and presents high cor-
relation in CPEs, but little correlation across CPEs and single-channel elements
(SCEs). Almost all existing multichannel audio compression algorithms such as
AAC and Dolby AC-3 are mainly designed to encode audio material that belongs
to this category. Figure 9.2 shows the normalized covariance matrix generated
from one sample audio of class II, where the normalized covariance matrix is de-
rived from the cross-covariance matrix by multiplying each coefficient with the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

136 Interchannel redundancy removal and channel-scalable decoding

Channel

C

L

R

LS

RS
Channel

C
L

R
LS

RS

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.5

1

C
h

an
n

el
s

C

L

R

LS

RS

Channels
C L R LS RS

.0086

.0166

.0066

.0053

1

.0036

.0210

.9153

1

.0065

.0156

1

.2570

1

1

Figure 9.2. Absolute values of elements in the lower triangular normalized covariance matrix for five-
channel “Herre.”

reciprocal of the square root of the product of their individual variance. Since the
magnitude of nondiagonal elements in a normalized covariance matrix provides
a convenient and useful measure for the degree of interchannel redundancy, it is
used as a correlation metric throughout the chapter.

A third emerging class of multichannel audio sources consists of material
recorded in a real space with multiple microphones that capture acoustical char-
acteristics of that space. Audio of class III is becoming more prevalent with the
introduction of consumer media such as DVD-audio. This type of audio signals
has considerably larger redundancy inherent among channels especially adjacent
channels as graphically shown in Figure 9.3, which corresponds to the normalized
covariance matrix derived from a test sequence named “Messiah.” As shown in
the figure, a large degree of correlation is presented between not only CPEs (e.g.,
left/right channel pair and left-surround/right-surround channel pair) but also
SCE (e.g., the center channel) and any other channels.

The work presented in this research will focus on improving the compression
performance for multichannel audio sources that belong to classes II and III. It
will be demonstrated that the proposed MAACKLT algorithm not only achieves

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Interchannel redundancy removal 137

Channel

C
L

R
LW

RW
LH

RH
LS

RS
BS Channel

C
L R LWRW

LHRH
LS RS

BS

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.5

1
C

h
an

n
el

s

C

L

R
LW
RW

LH

RH

LS

RS

BS

Channels

C L R LW RW LH RH LS RS BS

.2156

.1148

.1260

.1235

.1464

.0298

.0484

.3231

.6067

1

.1773

.2154

.1189

.1655

.0493

.0236

.0745

.1873

1

.1305

.1827

.0407

.0310

.0887

.0854

.0064
1

.0540

.0375

.0724

.0031

.0791

.2564

1

.1686

.0826

.0705

.0439

.0921

1

.1173

.0952

.0671

.0356

1

.1606

.0147

.0384

1

.0383

.0570

1

.0714
1

1

Figure 9.3. Absolute values of elements in the lower triangular normalized covariance matrix for ten-
channel “Messiah.”

good results for class III audio sources, but also improves the coding performance
to a certain extent for class II audio sources compared with original AAC.

Two test data sets are used to illustrate the decorrelation effect of KLT. One
is a class III ten-channel audio piece called “Messiah.”2 It is a piece of classical
music recorded live in a concert hall. Another one is a class II five-channel audio
piece called “Herre,”3 which is a piece of pop music and was used in MPEG-2 AAC
standard (ISO/IEC 13818-7) conformance work. These test sequences are chosen
because they contain a diverse range of frequency components played by several

2The ten channels include center (C), left (L), right (R), left wide (LW), right wide (RW), left
high (LH), right high (RH), left surround (LS), right surround (RS), and back surround (BS). They
were obtained by mixing signals from 16 microphones placed in various locations in a concert hall.

3The five channels include C, L, R, LS, and RS.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

138 Interchannel redundancy removal and channel-scalable decoding

Eigen-channel

1

2

3

4

5
Eigen-channel

1
2

3
4

5

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.5

1

E
ig

en
-c

h
an

n
el

s

1

2

3

4

5

Eigen-channels
1 2 3 4 5

.0004

.0013

.0016

.0006

1

.0004

.0004

.0004

1

.0026

.0026

1

.0009

1

1

Figure 9.4. Absolute values of elements in the lower triangular normalized covariance matrix after
KLT for five-channel “Herre.”

different instruments so that they are very challenging for interchannel decorrela-
tion and subsequent coding experiments. In addition, they provide good samples
for result comparison between original AAC and the proposed MAACKLT algo-
rithm.

Figures 9.4 and 9.5 show absolute values of elements in the lower triangu-
lar part of the normalized cross-covariance matrix after KLT for five-channel set
“Herre” and ten-channel set “Messiah.” These figures clearly indicate that KLT
method achieves a high degree of decorrelation. Note that the nondiagonal ele-
ments are not exactly zeros because we are dealing with an approximation of KLT
during calculation. We predict that by removing redundancy in the input audio
with KLT, a much better coding performance can be achieved when encoding each
channel independently, which will be verified in later sections.

9.2.3. Energy compaction effect

The KLT preprocessing approach not only significantly decorrelates the input mul-
tichannel audio signals but also considerably compacts the signal energy into the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Interchannel redundancy removal 139

Eigen-channel

1
2

3
4

5
6

7
8

9
10 Eigen-channel

1 2 3
4 5 6

7 8 9
10

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.5

1
E

ig
en

-c
h

an
n

el
s

10
9
8
7
6
5
4
3
2
1

Eigen-channels

1 2 3 4 5 6 7 8 9 10
.0001
.0002
.0004
.0005
.0001
.0004
.0001
.0006
.0012

1

.0013

.0009

.0016

.0017

.0007

.0019

.0014

.0009
1

.0008

.0008

.0009

.0012

.0006

.0014

.0010
1

.0005

.0004

.0002

.0000

.0005

.0003
1

.0002

.0001

.0005

.0005

.0005
1

.0010

.0006

.0007

.0011
1

.0001

.0001

.0005
1

.0001

.0007
1

.0010
1

1

Figure 9.5. Absolute values of elements in the lower triangular normalized covariance matrix after
KLT for ten-channel “Messiah.”

first several eigen-channels. Figures 9.6(a) and (b) show how energy is accumu-
lated with an increased number of channels for original audio channels and decor-
related eigen-channels. As clearly shown in these two figures, energy accumulates
much faster in the case of eigen-channels than original channels, which provides
a strong evidence of data compaction of KLT. It implies that, when transmitting
data of a fixed number of channels with the proposed MAACKLT algorithm, more
information content will be received at the decoder side, and better quality of re-
constructed multichannel audio can be achieved.

Another convenient way to measure the amount of data compaction can be
obtained via eigenvalues of the cross-covariance matrix associated with the KL
transformed data. In fact, these eigenvalues are nothing else but variances of eigen-
channels, and the variance of a set of signals reflects its degree of jitter, or the infor-
mation content. Figures 9.7(a) and (b) are plots of variances of eigen-channels as-
sociated with the “Messiah” test set consisting of ten and five channels, respectively.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

140 Interchannel redundancy removal and channel-scalable decoding

Channel

1 2 3 4 5

A
cc

u
m

u
la

te
d

en
er

gy

0

10%

20%

30%

40%

50%

Before KLT
After KLT

(a)

Channel

1 2 3 4 5 6 7 8 9 10

A
cc

u
m

u
la

te
d

en
er

gy

0

10%

20%

30%

40%

50%

Before KLT
After KLT

(b)

Figure 9.6. Comparison of accumulated energy distribution for (a) five-channel “Herre” and (b) ten-
channel “Messiah.”

As shown in the figures, the variance drops dramatically with the order of eigen-
channels. The steeper the variance drop is, the more efficient is the energy com-
paction achieved. These experimental results also show that the energy compaction
efficiency increases with the number of input channels. The area under the vari-
ance curve reflects the amount of information to be encoded. As illustrated from

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Interchannel redundancy removal 141

Eigen-channel

1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

va
ri

an
ce

0.2

0.4

0.6

0.8

1

(a)

Eigen-channel

1 2 3 4 5

N
or

m
al

iz
ed

va
ri

an
ce

0.2

0.4

0.6

0.8

1

(b)

Figure 9.7. Normalized variances for (a) ten-channel “Messiah” and (b) five-channel “Messiah,” where
the vertical axis is plotted in the log scale.

these two figures, this particular area is substantially much smaller for the ten-
channel set than that of the five-channel set. As the number of input channels
decreases, the final compression performance of MAACKLT tends to be more in-
fluenced by the coding power of the AAC main profile encoder.

9.2.4. Frequency-domain versus time-domain KLT

In all previous discussions, we considered only the case of applying KLT to time-
domain signals across channels. However, it is also possible to apply the interchan-
nel decorrelation procedure after time-domain signals are transformed into the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

142 Interchannel redundancy removal and channel-scalable decoding

Sample
0 200 400 600 800 1000

A
bs

ol
u

te
am

pl
it

u
de

0

1

2

3
×104

(a)

Sample

0 200 400 600 800 1000

A
bs

ol
u

te
am

pl
it

u
de

0

2000

4000

6000

(b)

Figure 9.8. (a) Frequency-domain and (b) time-domain representations of the center channel from
“Herre.”

frequency-domain via modified discrete cosine transform (MDCT) in the AAC
encoder.

One frame of the audio signal from the center channel of “Herre” in the
frequency-domain and in the time-domain are shown in Figures 9.8(a) and (b),
respectively. The energy compaction property can be clearly seen from the simple
comparison between the time-domain and the frequency-domain plots. Gener-
ally speaking, applying KLT to frequency-domain signals achieves a better per-
formance than directly applying KLT to time-domain signals. In addition, a cer-
tain degree of delay and reverberant sound copies may exist in time-domain sig-
nals among different channels, which is especially true for class III multichannel

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Temporal adaptive KLT 143

audio sources. The delay and reverberation effects affect the time-domain KLT’s
decorrelation capability, however, they may not have that much impact on
frequency-domain signals. Figures 9.9 and 9.10 show absolute values of off-
diagonal nonredundant elements for normalized covariance matrices generated
from frequency- and time-domain KLTs with test audio “Herre” and “Messiah,”
respectively. Clearly, the frequency-domain KLT has a much better interchannel
decorrelation capability than that of the time-domain KLT. This implies that ap-
plying KLT to frequency-domain signals should lead to a better coding perfor-
mance, which will be verified by experimental results shown in Section 9.8. Any
result discussed hereafter will focus on frequency-domain KLT method unless oth-
erwise mentioned.

9.3. Temporal adaptive KLT

A multichannel audio program may comprise different periods, each of which
has its unique spectral signature. For example, a piece of music may begin
with a piano prelude followed by a chorus. In order to achieve the highest in-
formation compactness, the decorrelation transform matrix should be adaptive
to the characteristics of different periods. In this section, we present a temporal-
adaptive KLT approach, in which the covariance matrix (and, consequently, the
corresponding KLT matrix) is updated from time to time. Each adaptation period
is called a block.

Figure 9.11 shows the variance of each eigen-channel of one nonadaptive and
two temporal-adaptive approaches for test set “Messiah.” Compared with the non-
adaptive method, the adaptive method achieves a smaller variance for each eigen-
channel. Furthermore, the shorter the adaptation period, the higher is the inter-
channel decorrelation achieved. The only drawback of the temporal-adaptive ap-
proach over the nonadaptive approach goes to the overhead bits, which have to be
transmitted to the decoder so that the multichannel audio can be reconstructed to
its original physical channels. Due to the increase of the block number, the shorter
the adaptation period, the larger is the overhead bit rate. The trade-off between
this block size and the overhead bit rate will be discussed below.

Since the inverse KLT has to be performed at the decoder side, the information
of the transform matrix should be included in the coded bitstream. As mentioned
before, the inverse KLT matrix is the transpose of the forward KLT matrix, which is
composed by eigenvectors of the cross-covariance matrix. To reduce the overhead
bit rate, elements of the covariance matrix are included in the bitstream instead
of those of the KLT matrix since the covariance matrix is real and symmetric and
we only have to send the lower (or higher) triangular part that contains nonre-
dundant elements. As a result, the decoder also has to calculate eigenvectors of the
covariance matrix before the inverse KLT can be performed.

Only one covariance matrix has to be coded for the nontemporal-adaptive
approach. However, for the temporal-adaptive approach, every covariance matrix
must be coded for each block. Assume that n channels are selected for simultane-
ous interchannel decorrelation, and that the adaptation period is K seconds, that

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

144 Interchannel redundancy removal and channel-scalable decoding

Eigen-channel

1

2

3

4

5
Eigen-channel

1
2

3
4

5

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.005

0.01

(a)

Eigen-channel

1

2

3

4

5
Eigen-channel

1
2

3
4

5

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.005

0.01

(b)

Figure 9.9. Absolute values of off-diagonal elements for the normalized covariance matrix after (a)
frequency-domain and (b) time-domain KLTs with test audio “Herre.”

is, each block contains K seconds of audio. The size of the covariance matrix is
n× n, and the number of nonredundant elements is n× (n + 1)/2. In order to re-
duce the overhead bit rate, the floating-point covariance matrix is quantized to 16
bits per element. Therefore, the total bit requirement for each covariance matrix is

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Temporal adaptive KLT 145

Eigen-channel

1
2

3
4

5
6

7
8

9
10 Eigen-channel

1 2 3 4
5 6 7

8 9 10

N
or

m
al

iz
ed

co
va

ri
an

ce

0

2

4

×10−3

(a)

Eigen-channel

1
2

3
4

5
6

7
8

9
10 Eigen-channel

1 2 3 4
5 6 7

8 9 10

N
or

m
al

iz
ed

co
va

ri
an

ce

0

2

4

×10−3

(b)

Figure 9.10. Absolute values of off-diagonal elements for the normalized covariance matrix after (a)
frequency-domain and (b) time-domain KLTs with test audio “Messiah.”

8n× (n + 1) bits, and the overhead bit rate roverhead is

roverhead = 8n× (n + 1)
nK

= 8(n + 1)
K

(9.4)

in bit per second per channel (bit/s/ch). The above equation suggests that the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

146 Interchannel redundancy removal and channel-scalable decoding

Eigen-channel

1 2 3 4 5

V
ar

ia
n

ce

2

4

6

8

10

×105

Nonadaptive
Adaptive each 645 frames
Adaptive each 430 frames

Figure 9.11. Decorrelation efficiency of temporal adaptive KLT.

Adaptation time (s)

2 4 6 8 10 12 14

O
ve

rh
ea

d
bi

t
ra

te
(b

it
s/

s/
ch

)

0

10

20

30

40

50

3 channels
5 channels

7 channels
10 channels

Figure 9.12. The overhead bit rate versus the number of channels and the adaptation period.

overhead bit rate increases approximately linearly with the number of channels.
The overhead bit rate is, however, inversely proportional to the adaptation time
(or the block size).

Figure 9.12 illustrates the overhead bit rate for different channel numbers and
block sizes. The optimal adaptation time is around 10 seconds, since shorter adap-
tation time dramatically increases the overhead bit rate. Extensive experimental

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Eigen-channel coding and transmission 147

Data

Control
Coded audio stream

Bitstream multiplex

Overhead
information

Gain
control

Filter
bank

KLT TNS Intensity
coupling

Prediction M/S
disabled

Scale
factors

Q Noiseless
coding

Perceptual

model Quantized spectrum of

previous frame

Rate/distortion
control process

Input audio

signal Iteration loops

Figure 9.13. The modified AAC encoder block diagram.

results [138] suggest that, when shorter adaptation time is adopted, the improve-
ment of decorrelation efficiency is not sufficient to compensate for coding perfor-
mance degradation due to the excessive overhead bit rate.

9.4. Eigen-channel coding and transmission

9.4.1. Eigen-channel coding

The main profile of the AAC encoder is modified to compress audio signals in
decorrelated eigen-channels. The detailed encoder block diagram is given in Figure
9.13, where the shaded parts represent coder blocks that are different from the
original AAC algorithm.

The major difference between Figure 9.13 and the original AAC encoder block
diagram is the KLT block added after the filter bank. When the original input sig-
nals are transformed into frequency domain, the cross-channel KLT is performed
to generate the decorrelated eigen-channel signals. Masking thresholds are then
calculated based on the KL transformed signals in the perceptual model. The KLT
related overhead information is sent into the bitstream afterwards.

The original AAC is typically used to compress class II audio sources. Its M/S
stereo coding block is specifically used for symmetric CPEs. It encodes the mean
and difference of CPEs instead of two independent SCEs, which reduces redun-
dancy existing in symmetric channel pairs. In the proposed algorithm, since in-
terchannel decorrelation has been performed at an earlier stage and audio signals
after KLT are from independent eigen-channels with little correlation between any
channel pairs, the M/S coding block is no longer needed. Thus, the M/S coding
block of the AAC main profile encoder is disabled.

The AAC encoder module originally assigns an equal amount of bits to each
input channel. However, since signals into the iteration loops are no longer the
original multichannel audio in the new system, the optimality of the same strategy

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

148 Interchannel redundancy removal and channel-scalable decoding

−2 0 2

0.02

0.03

0.04

0.05

−2 0 2

0.02

0.03

0.04

0.05

−2 0 2

0.02

0.03

0.04

0.05

−2 0 2

0.02

0.03

0.04

0.05

−2 0 2

0.02

0.03

0.04

0.05

Figure 9.14. The empirical probability density functions of normalized signals in five eigen-channels
generated from test audio “Herre,” where X axes represent the value of normalized random variable
and Y axes represent the corresponding probability.

has to be investigated. Experimental results indicate that the compression perfor-
mance will be strongly influenced by the bit assignment scheme for decorrelated
eigen-channels.

According to the bit allocation theory [38], the optimal bit assignment for
identically distributed normalized random variables under the high rate approxi-
mations while without nonnegativity or integer constraints on the bit allocations
is

bi = b̄ +
1
2

log2
σ2
i

ρ2
, (9.5)

where b̄ = B/k is the average number of bits per parameter, k is the number of
parameters, and ρ2 = (

∏k
i=1 σ

2
i)1/k is the geometric mean of the variances of the

random variables. A normalized random variable of X is

X̄ = X − E(X)
std(X)

, (9.6)

where E(X) and std(X) represent the mean and the standard deviation of X , re-
spectively. It is verified by experimental data that the normalized probability den-
sity functions of signals in eigen-channels are almost identical. They are given
in Figures 9.14 and 9.15. This optimal bit allocation method is adopted for rate/
distortion control processing when encoding eigen-channel signals.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Eigen-channel coding and transmission 149

−2 0 2
0.018

0.02

0.022

0.024

−2 0 2
0.018

0.02

0.022

0.024

−2 0 2
0.018

0.02

0.022

0.024

−2 0 2
0.018

0.02

0.022

0.024

−2 0 2
0.018

0.02

0.022

0.024

−2 0 2
0.018

0.02

0.022

0.024

−2 0 2
0.018

0.02

0.022

0.024

−2 0 2
0.018

0.02

0.022

0.024

−2 0 2
0.018

0.02

0.022

0.024

Figure 9.15. The empirical probability density functions of normalized signals in the first nine eigen-
channels generated from test audio “Messiah,” where X axes represent the value of normalized random
variable and Y axes represent the corresponding probability.

9.4.2. Eigen-channel transmission

Figures 9.6(a) and (b) show that the signal energy accumulates faster in eigen-
channel form than original multichannel form. This implies that, with a proper
channel transmission and recovery strategy, as well as transmitting the same
number of eigen-channels and original multichannels, the eigen-channel approach
should result in a higher quality reconstructed audio since more energy is trans-
mitted.

It is desirable to reorganize the bitstream so that bits of more important chan-
nels can be received at the decoder side first for audio decoding. This should result
in the best audio quality given a fixed amount of received bits. When this reor-
ganized audio bitstream is transmitted over a heterogeneous network, for those
users with a limited bandwidth, the network can drop packets belonging to less
important channels.

The first instinct about the metric of channel importance would be the en-
ergy of the audio signal in each channel. However, this metric does not work well
in general. For example, for some multichannel audio sources, especially those be-
longing to class II; since those are reproduced in a music studio artificially, the side
channel which normally does not contain the main melody may even have larger
energy than the center channel. Based on our experience with multichannel au-
dio, loss or significant distortion of the main melody in the center channel would
be much more annoying than loss of melodies in side channels. In other words,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

150 Interchannel redundancy removal and channel-scalable decoding

the location of channels also plays an important role. Therefore, for a regular 5.1
channel configuration, the order of channel importance from that of highest to
lowest importance should be:

(1) center channel,
(2) L/R channel pair,
(3) LS/RS channel pair,
(4) low frequency channel.

Between channel pairs, their importance can be determined by their energy values.
This rule is adopted in experiments below.

After KLT, eigen-channels are no longer the original physical channels, and
sounds in different physical channels are mixed in every eigen-channel. Thus, spa-
tial dependency of eigen-channels is less trivial. We observe from experiments that
although it is true that one eigen-channel may contain sounds from more than one
original physical channel, there still exists a close correspondence between eigen-
channels and physical channels. To be more precise, audio of eigen-channel one
would sound similar to that of the center channel, audio of eigen-channels two
and three would sound similar to that of the L/R channel pair and so forth. There-
fore, if eigen-channel one is lost in transmission, we would end up with a very
distorted center channel. Moreover, it happens that, sometimes, eigen-channel one
may not be the channel with a very large energy and could be easily discarded if the
channel energy is adopted as the metric of channel importance. Thus, the channel
importance of eigen-channels should be similar to that of physical channels. That
is, eigen-channel one should correspond to the center channel, eigen-channel two
and three should correspond to the L/R channel pair, and eigen-channel four and
five should correspond to the LS/RS channel pair. Within each channel pair, the
importance is still determined by their energy values.

9.5. Audio concealment for channel-scalable decoding

Consider the scenario that an AAC-coded multichannel bitstream is transmitted
in a heterogeneous network such as the Internet. For end users that do not have
enough bandwidth to receive full channel audio, some packets have to be dropped.
In this section, we consider the bitstream of each channel as a one minimum unit
for audio reconstruction. When the bandwidth is not sufficient, we may drop
bitstreams of a certain number of channels to reduce the bit rate. This is called
channel-scalable decoding, which has an analogy in MPEG video coding, that is,
dropping B frames while keeping only I and P frames.

For an AAC channel pair, the M/S stereo coding block will replace low fre-
quency coefficients in symmetric channels to be their sum and difference at the
encoder, that is,

specl[i]←�
specl[i] + specr[i]

2
,

specr[i]←�
specl[i]− specr[i]

2
,

(9.7)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Audio concealment for channel-scalable decoding 151

where specl[i] and specr[i] are the ith frequency-domain coefficient in the left and
right channels of the channel pair, respectively.

The intensity coupling coding block will replace high frequency coefficients of
the left channel with a value proportional to the envelope of the sound signal in the
symmetric channel, and set the value of right channel high frequency coefficients
to zero, that is,

specl[i]←�
(

specl[i] + specr[i]
)×

√
El[sfb]
Es[sfb]

,

specr[i]←� 0,

(9.8)

where El[sfb], Er[sfb], and Es[sfb] are, respectively, energy values of the left chan-
nel, the right channel and the sum of left and right channels of the scale factor
band that sample i belongs to. Values of El[sfb]/Er[sfb] are included in the coded
bitstream as scaling factors.

At the decoder end, the low frequency coefficients of the left and right channel
are reconstructed via

specl[i]←� specl[i] + specr[i],

specr[i]←� specl[i]− specr[i].
(9.9)

For high frequency coefficients, audio signals in the left channel will remain the
same as they are received from the bitstream, while those in the right channel will
be reconstructed via

specr[i] = f (scale)× specl[i], (9.10)

where f (scale) is a function of the scaling factor.
When packets of one channel of a channel pair are dropped, we drop fre-

quency coefficients of the right channel while keeping all other side information
including scaling factors. Therefore, what we receive at the decoder side are just
coefficients in the left channel. For low frequency coefficients, they correspond to
the mean value of the original frequency coefficient in the left and right chan-
nels. For high frequency coefficients, they correspond to the energy envelope of
the symmetric channel. That is, we have

specl[i] �→
specl[i] + specr[i]

2
,

specr[i] �→ 0,
(9.11)

for the low frequency part and

specl[i] �→
(

specl[i] + specr[i]
)×

√
El[sfb]
Es[sfb]

,

specr[i] �→ 0,
(9.12)

for the high frequency part.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

152 Interchannel redundancy removal and channel-scalable decoding

Note that since scaling factors are contained in the received bitstream, recon-
struction of high frequency coefficients in the right channel will remain the same
as in the original AAC when data of all channels are received. Therefore, only low
frequency coefficients in the right channel need to be recovered. The strategy used
to reconstruct these coefficients is just to let values of right channel coefficients
equal the values of received left channel coefficients. This is nothing else but the
mean value of coefficients in the original channel pair, that is,

specr[i] = specl[i] �→
specl[i] + specr[i]

2
. (9.13)

Audio concealment for the proposed eigen-channel coding scheme is rela-
tively simple. All coefficients in dropped channels will be set to 0, then a regu-
lar decoding process is performed to reconstruct full multichannel audio. For the
situation where packets of two or more channels are dropped, the reconstructed
dropped channel may have a much smaller energy than other channels after in-
verse KLT. In order to get better reconstructed audio quality, an energy boost
up process can be enforced so that the signal in each channel will have a similar
amount of energy.

To illustrate that the proposed algorithm MAACKLT has a better quality-
degradation property than AAC (via a proper audio concealment process de-
scribed in this section), we perform experiments with lossy channels where packets
are dropped in a coded bitstream in Section 9.8.

9.6. Compression system overview

The block diagram of the proposed compression system is illustrated in Figure
9.16. It consists of four modules: (1) data partitioning, (2) Karhunen-Loève trans-
form, (3) dynamic range control, and (4) the modified AAC main profile en-
coder. In the data partitioning module, audio signals in each channel are parti-
tioned into sets of nonoverlapping intervals, that is, blocks. Each block contains
K frames, where K is a predefined value. Then, data in each block are sequen-
tially fed into the KLT module to perform interchannel decorrelation. In the KLT
module, multichannel block data are decorrelated to produce a set of statistically
independent eigen-channels. The KLT matrix consists of eigenvectors of the cross-
covariance matrix associated with the multichannel block set. The covariance ma-
trix is first estimated and then quantized into 16 bits per element. The quantized
covariance coefficients will be sent to the bitstream as the overhead. Note that the
KLT decorrelation module will add a certain amount of delay in the encoder and
the decoder. For the nontemporal-adaptive method, the delay can be as long as
the length of the input audio. For the temporal-adaptive method, this delay can be
reduced to that of the block length.

As shown in Figure 9.1, eigen-channels are generated by multiplication of the
KLT matrix and the block data set. Therefore, after the transform, the sample value
in eigen-channels may have a larger dynamic range than that of original channels.
To avoid any possible data overflow in the upcoming compression module, data

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Compression system overview 153

Compressed

bitstream

Overhead bits Overhead bits
+

Transmission
strategy
control

Mapping

info

Karhunen-Loève
transformation

Mapping

to 16 bits

Modified
AAC main

profile

encoder

Eigenvector

& eigenvalue

calculation

Desired bit rate

Bit-
allocation

control

Subblock
partitioning Covariance

matrix
quantization

Quantized covariance matrix

Multichannel
data

Covariance
matrix

estimation

Data partitioning

module
KLT

module

Dynamic range

control module
Modified AAC
compression

module

Figure 9.16. The block diagram of the proposed MAACKLT encoder.

in eigen-channels are rescaled in the dynamic range control module so that the
sample value input to the modified AAC encoder module does not exceed the dy-
namic range of that in regular 16-bit PCM audio files. This rescaling information
will also be sent to the bitstream as the overhead.

Signals in decorrelated eigen-channels are compressed in the next module by
a modified AAC main profile encoder. The AAC main profile encoder is mod-
ified in our algorithm so that it is more suitable in compressing the audio sig-
nal in eigen-channels. To enable channel-scalability, a transmission strategy con-
trol block is adopted in this module right before the compressed bitstream is
formed.

The block diagram of the decoder is shown in Figure 9.17. The mapping infor-
mation and the covariance matrix together with the coded information for eigen-
channels are extracted from the received bitstream. If data of some eigen-channels
are lost due to the network condition, the eigen-channel concealment block will be
enabled. Then, signal values in eigen-channels will be reconstructed by the AAC
main profile decoder. The mapping information is used to restore a 16-bit dy-
namic range of the decoded eigen-channel back to its original range. The inverse
KLT matrix can be calculated from the extracted covariance matrix via transpos-
ing its eigenvectors. Then, inverse KLT is performed to generate the reconstructed

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

154 Interchannel redundancy removal and channel-scalable decoding

Compressed

bitstream

Covariance
matrix Eigenvector

calculation

Inverse
Karhunen-

Lèove
transform

Combining

subblocks

Reconstructed
multichannel

audio

Mapping info
Inverse

mapping

from 16 bits

Compressed

eigen-channels
Channel
recovery
strategy

control

AAC main
profile

decoder

Figure 9.17. The block diagram of the proposed MAACKLT decoder.

multichannel block set. These block sets are finally combined together to produce
the reconstructed multichannel audio signals.

9.7. Complexity analysis

Compared with the original AAC compression algorithm, the additional compu-
tational complexity required by the MAACKLT algorithm mainly comes from the
KLT preprocessing module, which includes the generation of the cross-covariance
matrix, calculation of its eigenvalues and eigenvectors, and matrix multiplication
required by KLT.

Table 9.1 illustrates the running time of MAACKLT and AAC for both the
encoder and the decoder at a typical bit rate of 64 kbit/s/ch, where “n-sec AP”
means the MAACKLT algorithm with a temporal adaptation period of n seconds
while “NonA” means a nonadaptive MAACKLT algorithm. The input test audio
signals are 20-second ten-channel “Messiah” and 8-second five-channel “Herre.”
The system used to generate the above result is a Pentium III 600 PC with 128M
RAM.

These results indicate that the coding time for MAACKLT is still dominated
by the AAC compression and decompression part. When the optimal 10-second
temporal adaptation period is used for test audio “Messiah,” the additional KLT
computational time is less than 7% of the total encoding time at the encoder side
while the MAACKLT algorithm only takes about 26.8% longer than that of the
original AAC at the decoder side. The MAACKLT algorithm with a shorter adap-
tation period will take a little bit more time in encoding and decoding since more
KLT matrices need to be generated. Note also that we have not made any attempt to
optimize our experimental codes. A much shorter amount of encoding/decoding
time of MAACKLT is expected if the source code for the KLT preprocessing part is
carefully rewritten to optimize the performance.

In channel-scalable decoding, when packets belonging to less important chan-
nels are dropped during transmission in the heterogeneous network, the audio
concealment part adds a negligible amount of additional complexity in the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Experimental results 155

Table 9.1. Comparison of computational complexity between MAACKLT and AAC.

Encoding

Time used MAACKLT AAC Extra

(s) Time Percent

Messiah 1-sec AP 344.28 26.15 8.2%

Messiah 5-sec AP 340.43 22.30 7.0%

Messiah 10-sec AP 339.44 21.31 6.7%

Messiah NonA 337.62 318.13 19.49 6.1%

Herre NonA 112.15 101.23 10.92 10.8%

Decoding

Time used MAACKLT AAC Extra

(s) Time Percent

Messiah 1-sec AP 16.92 4.62 37.6%

Messiah 5-sec AP 16.04 3.74 30.4%

Messiah 10-sec AP 15.60 3.30 26.8%

Messiah NonA 14.66 12.30 2.36 19.2%

Herre NonA 2.75 2.42 0.33 13.6%

MAACKLT decoder. The decoding time remains about the same as that of reg-
ular bit rate decoding at 64 kbit/s/ch when all packets are received at the decoder
side.

9.8. Experimental results

9.8.1. Multichannel audio coding

The proposed MAACKLT algorithm has been implemented and tested under the
PC Windows environment. We supplemented an interchannel redundancy
removal block and a channel transmission control block to the basic source code
structure of MPEG-2 AAC [60, 62]. The proposed algorithm is conveniently pa-
rameterized to accommodate various input parameters, such as the number of
audio channels, the desired bit rate, and the window size of temporal adaptation,
and so forth.

We have tested the coding performance of the proposed MAACKLT algo-
rithm by using three ten-channel set audio data “Messiah,” “Band,”4 and “Herbie”5

and one five-channel set audio data “Herre” at a typical rate of 64 kbit/sec/ch.
“Messiah” and “Band” are class III audio files, while “Herbie” and “Herre” are
class II audio files. Figures 9.18(a) and (b) show the mean mask-to-noise-ratio
(MNR) comparison between the original AAC6 and the MAACKLT scheme for

4“Band” is a rock band music recorded live in a football field.
5“Herbie” is a piece of music played by an orchestra.
6All audio files generated by AAC in this section are processed by the AAC main profile codec.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

156 Interchannel redundancy removal and channel-scalable decoding

Sfb

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

85

90

95

100

105

110

115
MPEG AAC
MAACKLT

Mean MNR improvement:
2.8 dB/sfb

(a)

Sfb

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

20

30

40

50
MPEG AAC
MAACKLT

Mean MNR improvement:
1.4 dB/sfb

(b)

Sfb

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

20

30

40

50
MPEG AAC
MAACKLT

Mean MNR improvement:
0.7 dB/sfb

(c)

Figure 9.18. The MNR comparison for (a) ten-channel “Herbie” using frequency-domain KLT,
(b) five-channel “Herre” using frequency-domain KLT, and (c) five-channel “Herre” using time-
domain KLT.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Experimental results 157

the ten-channel set “Herbie” and the five-channel set “Herre,” respectively. The
mean MNR values in these figures are calculated via

mean MNRsfb =
∑

channel MNRchannel,sfb

number of channels
, (9.14)

where sfb represents the “scale factor band.” The mean MNR improvement shown
in these figures are calculated via

mean MNR improvement =
∑

sfb(mean MNRMAACKLT
sfb −mean MNRAAC

sfb)
number of sfb

.

(9.15)

Experimental results shown in Figure 9.18(a) and (b) are generated by using
the frequency-domain nonadaptive KLT method. These plots clearly indicate that
MAACKLT outperforms AAC in the objective MNR measurement for most scale
factor bands and achieves mean MNR improvement of more than 1 dB for both
test audio. It implies that, compared with AAC, MAACKLT can achieve a higher
compression ratio while maintaining similar indistinguishable audio quality. It is
worthwhile to mention that no software optimization has been performed for any
codec used in this section and all coder blocks adopted from AAC have not been
modified to improve the performance of our codec.

Figure 9.18(c) shows the mean MNR comparison between AAC and
MAACKLT with the time-domain KLT method using five-channel set “Herre.”
Compared with the result shown in Figure 9.18(b), we confirm that frequency-
domain KLT achieves a better coding performance than time-domain KLT.

The experimental result for the temporal-adaptive approach for ten-channel
set “Messiah” is shown in Figure 9.19. This result verifies that a shorter adaptive
period leads to a more efficient decorrelation of the multichannel signal but sac-
rifices the coding performance by adding the overhead in the bitstream. On the
other hand, if the covariance matrix is not updated frequently enough, interchan-
nel redundancy cannot be removed to the largest extent. As shown in the figure,
to compromise between these two constraints, the optimal adaptation period for
“Messiah” is around 10 seconds.

9.8.2. Audio concealment with channel-scalable coding

As described in Section 9.5, when packets of one channel from a channel pair are
lost, we can conceal the missing channel at the decoder side. Experimental results
show that the quality of the recovered channel pair with the AAC bitstream is much
worse than that of the MAACKLT bitstream when it is transmitted under the same
network conditions.

Take the test audio “Herre” as an example. If one signal of the L/R channel
pair is lost, the reconstructed R channel using the AAC bitstream has obvious

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

158 Interchannel redundancy removal and channel-scalable decoding

Adaptation period (s)

0 2 4 6 8 10 12 14 16 18 20

M
ea

n
M

N
R

im
pr

ov
em

en
t

(d
B

/s
u

bb
an

d)

0

0.4

0.8

1.2

1.6

Figure 9.19. The mean MNR improvement over AAC for temporal-adaptive KLT applied to the cod-
ing of ten-channel “Messiah,” where the overhead information is included in the overall bit rate calcu-
lation.

distortion and discontinuity in several places while the reconstructed R channel
by using the MAACKLT bitstream has little distortion and is much smoother. If
one signal of the LS/RS channel pair is lost, the reconstructed RS channel using
the AAC bitstream has larger noise in the first one to two seconds in compar-
ison with that of MAACKLT. The corresponding MNR values are compared in
Figures 9.20(a) and (b) when AAC and MAACKLT are used; missing channels are
concealed, when packets of one channel from L/R and LS/RS channel pairs are lost.
We see clearly that MAACKLT achieves better MNR values than AAC for about
2 dB per scale factor band for both cases.

For a typical 5.1 channel configuration, when packets of more than two chan-
nels are dropped, which implies that at least one channel pair’s information is
lost, some lost channels can no longer be concealed from the received AAC bit-
stream. In contrast, the MAACKLT bitstream can still be concealed to obtain a full
5.1 channel audio with poorer quality. Although the recovered channel pairs do
not sound exactly the same as the original ones, a reconstructed full multichan-
nel audio would give the listener a much better acoustical effect than a three- or
mono-channel audio.

Take the five-channel “Messiah,” which includes C, L, R, LS, and RS chan-
nels, as an example. At the worst case, when packets of four channels are dropped
and only data of the most important channel are received at the decoder side,
the MAACKLT algorithm can still recover five-channel audio. Compared with the
original sound, the recovered LS and RS channels lost most of the reverberant
sound effect. Since eigen-channel one does not contain much reverberant sound,
the MAACKLT decoder can hardly recover these reverberant sound effects in the
LS and RS channels.

Similar experiments were also performed using test audio “Herre.” However,
the advantage of MAACKLT over AAC is not as obvious as that of test audio

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Experimental results 159

Sfb

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

−10

−5

0

5

10

15

20

MPEG AAC
MAACKLT

Mean MNR improvement:
2.2 dB/sfb

(a)

Sfb

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

−20

−10

0

10

20

30

40

50

MPEG AAC
MAACKLT

Mean MNR
improvement:

1.9 dB/sfb

(b)

Figure 9.20. MNR comparison for five-channel “Herre” when packets of one channel from the (a)
L/R and (b) LS/RS channel pairs are lost.

“Messiah.” The reason can be easily found out from the original covariance ma-
trix as shown in Figure 9.2. It indicates that little correlation exists between SCE
and CPE for class II test audio such as “Herre.” Thus, once one CPE is lost, little
information can be recovered from other CPEs or SCEs.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

160 Interchannel redundancy removal and channel-scalable decoding

A M A M A M A M
Messiah Band Herbie Herre

Q
u

al
it

y

1

2

3

4

5

A =MPEG AAC
M =MAACKLT

Figure 9.21. Subjective listening test results.

9.8.3. Subjective listening test

In order to further confirm the advantage of the proposed algorithm, a formal sub-
jective listening test according to ITU recommendations [1, 2, 3] was conducted in
an audio lab to compare the coding performance of the proposed MAACKLT algo-
rithm and that of the MPEG AAC main profile codec. At the bit rate of 64 kbit/s/ch,
the reconstructed sound clips are supposed to have perceptual quality similar to
that of the original ones. This implies that the difference between MAACKLT and
AAC would be so small that nonprofessionals can hardly hear it. Thus, instead
of inviting a large number of nonexpert listeners, four well-trained professionals,
who have no knowledge of either of two algorithms, participated in the listening
test [3]. During the test, for each test sound clip, the subjects listened to three ver-
sions of the same sound clip, that is, the original one followed by two processed
ones (one by MAACKLT and one by AAC in random order). The subjects were al-
lowed to listen to these files as many times as possible until they were comfortable
to give scores to the two processed sound files for each test material.

The five-grade impairment scale given in Recommendation ITU-R BS. 1284
[2] was adopted in the grading procedure and utilized for final data analysis. Four
multichannel audio materials, that is, “Messiah,” “Band,” “Herbie,” and “Herre,”
are all used in this subjective listening test. According to ITU-R BS. 1116-1 [1],
audio files selected for the listening test are of short duration (10 to 20 seconds
long), so all test files coded by MAACKLT are generated by nonadaptive frequency-
domain KLT method.

Figure 9.21 shows the listening test results, where bars represent the score
given to each test material coded at 64 kbit/s/ch. The dark shaded area on the top of
each bar represents the 95% confidence interval, where the middle line shows the
mean value and the other two lines at the boundary of the dark shaded area rep-
resent the upper and lower confidence limits [104]. Figure 9.21 indicates that the
proposed MAACKLT algorithms outperforms MPEG AAC in all four test pieces,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Experimental results 161

and indicates statistically significant improvements for the “Messiah” and “Band”
pieces.

Besides the 95% confidence interval comparison, it is possible to analyze the
obtained listening test results with the sign-test [22, 85] as shown below. Table 9.2
lists listening test results in terms of signs +, 0, and−, which represent cases where
the score given to the sound file processed by MAACKLT is higher than, the same
as or worse than that of AAC, respectively. It is assumed that the score given by
each listener to each sound file is independent of all other scores so that these
test results can be viewed as 16 independent experiments. The total number S of
sign + can be viewed as a random variable having a binomial distribution with
parameters n and p, where n is the number of experiments and p is the probability
of getting sign +. We consider the following null hypothesis (H0) and its counter
hypothesis (H1):

H0 : the proposed MAACKLT algorithm is no better than AAC,

H1 : the proposed MAACKLT algorithm is better than AAC.
(9.16)

Under the null hypothesis, the probability that a listener gives a higher score to
the sound file processed by MAACKLT should be smaller than or equal to 0.5 (i.e.,
p ≤ 0.5).

The strict sign test. In the strict sign test, all experimental results are taken
into account, that is, n = 16. Because p ≤ 0.5 (under H0) and

(1− p)16−i pi ≤
[

(16− i)(1− p) + ip

16

]16

=
[

16− i + (2i− 16)p
16

]16

≤
[

16− i + (2i− 16)/2
16

]16

= 0.516, ∀i ≥ 8,

(9.17)

where the first inequality is based on the fact that the arithmetic mean is greater
than or equal to the geometric mean. The probability of getting a result as shown
in Table 9.2 or getting a result which is even more favorable to our proposed algo-
rithm under H0 is

P[S ≥ 13] =
∑

13≤i≤16

⎛
⎝16

i

⎞
⎠ (1− p)16−i pi ≤

∑
13≤i≤16

⎛
⎝16

i

⎞
⎠ 0.516 = 697

65536
≈ 0.01.

(9.18)
The above inequality indicates that, under null hypothesis H0, the probability of
getting a listening test result that is so favorable (as given in Table 9.2) or even more
favorable to the proposed algorithm would be as small as 1%. Thus, it is concluded
that the null hypothesis H0 is rejected in favor of H1 at the level of 0.01.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

162 Interchannel redundancy removal and channel-scalable decoding

Table 9.2. Performance comparison of AAC and MAACKLT.

Listener #1 Listener #2 Listener #3 Listener #4

Messiah + + + +

Band + − + +

Herbie + 0 + +

Herre + + 0 +

The loose sign test. In the loose sign test, the experiment that has sign 0 in
Table 9.2 is not counted. Then, we have a total of 14 effective experimental results,
that is, n = 14. The probability of getting a result as shown in Table 9.2 or getting
a result which is even more favorable to our proposed algorithm under the null
hypothesis H0 is

P[S ≥ 13] =
∑

13≤i≤14

⎛
⎝14

i

⎞
⎠ (1− p)14−i pi ≤

∑
13≤i≤14

⎛
⎝14

i

⎞
⎠ 0.514 = 15

16384
< 0.001.

(9.19)

This means that, if the null hypothesis is true, the probability of getting a listening
test result so favorable or even more favorable to the proposed algorithm would be
as small as 0.1%. In other words, the null hypothesis H0 is rejected in favor of H1

at the level of 0.001.
Based on the strict sign test or the loose sign test shown above, we reject the

null hypothesis with a comfortable degree of confidence and conclude that the
proposed algorithm MAACKLT has a better performance than that of AAC.

9.9. Conclusion

We presented a new channel-scalable high-fidelity multichannel audio compres-
sion scheme called MAACKLT based on the existing MPEG-2 AAC codec. This
algorithm explores the inter and intrachannel correlation in the input audio signal
and allows channel-scalable decoding. The compression technique utilizes KLT in
the preprocessing stage to remove the interchannel redundancy, then compresses
the resulting relatively independent eigen-channel signals with a modified AAC
main profile encoder module, and finally uses a prioritized transmission policy
to achieve quality scalability. The novelty of this technique lies in its unique and
desirable capability to adaptively vary the characteristics of the interchannel decor-
relation transform as a function of the covariance of a certain period of music and
its ability to reconstruct different quality audio with single bitstream. It achieves
a good coding performance especially for the input audio source whose chan-
nel number goes beyond 5.1. In addition, it outperforms AAC according to both
objective (MNR measurement) and subjective (listening) tests at the typical low-
bit-rate of 64 kbit/s/ch while maintaining a similar computational complexity for

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Appendix: Karhunen-Loève expansion 163

both encoder and decoder modules. Moreover, compared with AAC, the channel-
scalable property of MAACKLT enables users to conceal full multichannel audio
of reasonable quality without any additional cost.

9.10. Appendix: Karhunen-Loève expansion

9.10.1. Definition

The discrete-time Karhunen-Loève expansion can be described as shown below.
Karhunen-Loève expansion. Suppose u(n) is an M-by-1 vector that represents

a data sequence drawn from a wide-sense stationary process with mean equals zero
and correlation matrix equals R. Let M vectors q1, q2, . . ., qM denote eigenvectors
of the matrix R. Thus, vector u(n) may be represented by a linear combination of
these eigenvectors as follows:

u(n) =
M∑
i=1

ciqi, (9.20)

where, ci(n) are coefficients of the expansion, which have zero-mean and are un-
correlated to each other. Coefficients ci(n) can be calculated by the inner product
of qi and u(n), that is,

ci(n) = qH
i u(n), i = 1, 2, . . . ,M. (9.21)

Equation (9.21) shows the analysis part of the Karhunen-Loève expansion and
indicates the relationship between the coefficient ci(n) and the input vector u(n).
Whereas equation (9.20) shows the “synthesis” part of the expansion and illus-
trates how to reconstruct the original input vector u(n) from ci(n). Assuming that
all eigenvectors q1, q2, . . . , qM have the unit length, these eigenvectors form an or-
thonormal set. The definition of the expansion coefficient in equation (9.21) can
be derived directly from equation (9.20). Similarly, given equation (9.21), equa-
tion (9.20) can also be easily derived.

9.10.2. Features and properties

The expansion coefficients ci(n) are random variables and have the following de-
sirable properties:

E[ci(n)] = 0, i = 1, 2, . . . ,M, (9.22)

E[ci(n)c∗j (n)] =
⎧⎪⎨
⎪⎩
λi, i = j,

0, i = j.
(9.23)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

164 Interchannel redundancy removal and channel-scalable decoding

Equation (9.22) tells us that all coefficients of the expansion have a mean value
equal to zero. Equation (9.23) indicates that coefficients of the expansion are un-
correlated and that each one of them has a mean-square value equal to its corre-
sponding eigenvalue. The first property can be easily calculated from the coeffi-
cient’s definition shown in equation (9.21) given the fact that the input random
vector u(n) is assumed to have the zero mean in the beginning. The derivation of
the second property is given as below:

E
[
ci(n)c∗j (n)

] = E
[(

qH
i u(n)

)(
qH
j u(n)

)H]

= qH
i E

[
u(n)u(n)H

]
q j

= qH
i Rq j

= λjqH
i q j

=

⎧⎪⎪⎨
⎪⎪⎩
λi, i = j,

0, i = j.

(9.24)

There is also a physical interpretation of the above discrete-time Karhunen-
Loève expansion. Let the eigenvectors q1, q2, . . . , qM be the M orthogonal coor-
dinates of an M-dimensional space. Then the random vector u(n) can be rep-
resented by a set of its projections c1(n), c2(n), . . . , cM(n) onto these axes. From
equation (9.20), we know

M∑
i=1

|ci(n)|2 = |u(n)|2, (9.25)

where |u(n)| represents the Euclidean norm of u(n). The above equation suggests
that the energy measured along the ith coordinate of the original vector u(n) is
given by the Euclidean norm of the ith coefficient ci(n). Moreover, the mean value
of this energy is equal to the ith eigenvalue, that is,

E[|ci(n)|2] = λi, i = 1, 2, . . . ,M. (9.26)

which is a direct result of equation (9.23).

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

10
Adaptive Karhunen-Loève
transform and its quantization
efficiency

10.1. Introduction

Based on today’s most distinguished multichannel audio coding system, a modi-
fied advanced audio coding with Karhunen-Loève transform (MAACKLT) method
is proposed to perceptually losslessly compress a multichannel audio source in
Chapter 9. This method utilizes the Karhunen-Loève transform (KLT) in the pre-
processing stage for the powerful multichannel audio compression tool, that is,
MPEG advanced audio coding (AAC), to remove interchannel redundancy and
further improve the coding performance. However, as described in Chapter 9, each
element of the covariance matrix, from which the KLT matrix is derived, is scalar
quantized to 16 bits. This results in a 240 bits overhead for each KLT matrix for
typical five channel audio contents. Since the bit budget is the most precious re-
source in the coding technique, every effort must be made to minimize the over-
head due to the additional preprocessing stage while maintaining a similar high-
quality coding performance. Moreover, the original MAACKLT algorithm did not
fully explore the KLT temporal adaptation effect.

In this research, we investigate the KLT decorrelation efficiency versus the
quantization accuracy and the temporal KLT adaptive period. Extensive experi-
ments on the quantization of the covariance matrix by using scalar and vector
quantizers have been performed. Based on these results, the following two inter-
esting points are concluded.

(1) Coarser quantization can dramatically degrade the decorrelation capabil-
ity in terms of the normalized covariance matrix of decorrelated signals. However,
the degradation of decoded multichannel audio quality is not as obvious.

(2) Shorter temporal adaptation of KLT will not significantly improve the
decorrelation efficiency whilst it will considerably increase the overhead. Thus, a
moderately long adaptation time is a good choice.

It is shown in this work that, with vector quantization, we can reduce the over-
head from more than 200 bits to less than 3 bits per KLT while maintaining compa-
rable coding performance. Even with scalar quantization, a much lower overhead
bit rate can still generate decoded audio with comparable quality. Our experimen-
tal results indicate that although a coarser quantization of the covariance matrix

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

166 Adaptive Karhunen-Loève transform and its quantization efficiency

gives a poorer decorrelation effect, reduction of bits in the overhead is able to com-
pensate this degradation to result in a similar coding performance in terms of the
objective MNR measurement.

The rest of this chapter1 is organized as follows. In Section 10.2, we introduce
vector quantization and its application to the MAACKLT algorithm. In Sections
10.3 and 10.4, we explore how the quantization method and the temporal adap-
tive scheme affect the KLT decorrelation efficiency and the coding performance
by applying scalar and vector quantizers to encode the KLT matrix with a range
of different bit rates. In Section 10.5, we examine computational complexity is-
sues. Some experimental results are presented in Section 10.6. Finally concluding
remarks are given in Section 10.7.

10.2. Vector quantization

The MAACKLT algorithm described in Chapter 9 dealt only with scalar quanti-
zation of the covariance matrix. If the input audio material is short or if the KLT
matrix is updated more frequently, the overhead that results from transmitting the
covariance matrix will increase significantly, which will degrade the coding perfor-
mance of the MAACKLT algorithm to a certain extent. To alleviate this problem,
we have to resort to a look-up-table (LUT) approach. Here, a stored table of pre-
calculated covariance matrices is searched to find the one that approximates the
estimated covariance matrix of the current block of the input audio. This approach
yields substantial savings in the overhead bit rate since only pointers to the table,
instead of the entire covariance matrix itself, will be transmitted to the receiver.

Vector quantization (VQ) [38, 97, 29] provides an excellent choice to imple-
ment the LUT idea. By vector quantization, we identify a set of possible vectors
both at the encoder and the decoder side. They are called the codebook. The VQ
encoder pairs up each source vector with the closest matching vector (i.e., “code-
word”) in the codebook, thus “quantizing” it. The actual encoding is then simply
a process of sequentially listing the identity of codewords that match most closely
with vectors making up the original data. The decoder has a codebook identical
to the encoder, and the decoding is a trivial matter of piecing together the vec-
tors whose identity has been specified. Vector quantizers in this work consider the
entire set of nonredundant elements of each covariance matrix as an entity, or a
vector. The identified codebook should be general enough to include the char-
acteristics of different types of multichannel audio sources. Since VQ allows for
direct minimization of the quantization distortion, it results in smaller quantiza-
tion distortion than scalar quantizers (SQ) at the same bit rate. In other words,
VQ demands a smaller number of bits for source data coding while keeping the
quantization error similar to that achieved with a scalar quantizer.

Four different five-channel audio pieces (each containing center (C), left (L),
right (R), left surround (LS), and right surround (RS) channels), are used to gen-
erate more than 80,000 covariance matrices. Each covariance matrix is treated as

1Part of this chapter represents work published before, see [138].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Efficiency of KLT decorrelation 167

one training vector X, which is composed of fifteen nonredundant elements of the
covariance matrix as shown below:

X =

x1

x2 x3

x4 x5 x6

x7 x8 x9 x10

x11 x12 x13 x14 x15,

(10.1)

where x1, x2, . . . , x15 are elements in the lower triangular part of the covariance
matrix. During the codebook generation procedure, the generalized Lloyd algo-
rithm (GLA) was run on the training sequence by using the simple square error
distortion measurement, that is,

d(X,Q(X)) =
15∑
i=1

[X−Q(X)]2, (10.2)

where Q(X) represents the quantized value of X. The same distortion measure-
ment is used with the full searching method during the encoding procedure.

10.3. Efficiency of KLT decorrelation

The magnitudes of nondiagonal elements in a normalized covariance matrix pro-
vide a convenient metric to measure the degree of interchannel correlation. The
normalized covariance matrix is derived from the cross-covariance matrix by mul-
tiplying each coefficient with the reciprocal of the square root of the product of
their individual variance, that is,

CN (i, j) = C(i, j)√
C(i, i)× C(j, j)

, (10.3)

where CN (i, j) and C(i, j) are elements of the normalized covariance matrix and
the cross-covariance matrix in row i and column j, respectively.

Tables 10.1 and 10.2 show the absolute values of nonredundant elements (i.e.,
elements in only the lower- or the upper-triangle) of the normalized covariance
matrix calculated from original signals and KLT decorrelated signals, respectively,
where no quantization is performed during the KLT decorrelation. From these
tables, we can easily see that KLT reduces the interchannel correlation from around
the order of 10−1 to the order of 10−4.

In order to investigate how the decorrelation efficiency is affected by various
quantization schemes, a sequence of experiments, including SQ and VQ with a
different number of bits per element/vector, was performed. Table 10.3 shows the
absolute values of nonredundant elements of the normalized covariance matrix
calculated from KLT decorrelated signals, where each element of the covariance

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

168 Adaptive Karhunen-Loève transform and its quantization efficiency

Table 10.1. Absolute values of nonredundant elements of the normalized covariance matrix calculated
from original signals.

1

5.36928147e-1 1

3.26056331e-1 1.02651220e-1 1

1.17594877e-1 8.56662289e-1 5.12340667e-3 1

7.46899187e-2 1.33213668e-1 1.15962389e-1 6.55651089e-2 1

Table 10.2. Absolute values of nonredundant elements of the normalized covariance matrix calculated
from KLT decorrelated signals.

1

1.67971275e-4 1

2.15059591e-4 1.01530173e-3 1

4.19255484e-4 4.03864289e-4 2.56863610e-4 1

3.07486032e-4 4.23535476e-4 3.48484672e-4 5.20389082e-5 1

Table 10.3. Absolute values of nonredundant elements of the normalized covariance matrix calculated
from scalar quantized KLT decorrelated signals.

1

1.67971369e-4 1

2.15059518e-4 1.01530166e-3 1

4.19255341e-4 4.03863772e-4 2.56863464e-4 1

3.07486076e-4 4.23536876e-4 3.48484820e-4 5.20396538e-5 1

matrix is scalar quantized into 32 bits. Compared with Table 10.2, values in Table
10.3 are almost identical to those in Table 10.2 with less than 0.0001% distortion
per element. This suggests that, with a 32 bits per element scalar quantizer, we
can almost faithfully reproduce the covariance matrix with negligible quantization
error.

Figures 10.1 and 10.2 illustrate how decorrelation efficiency and the corre-
sponding overhead changes with SQ and VQ, respectively. It is observed that sim-
ple mean square error (MSE) measurement is not a good choice when evaluating
the decorrelation efficiency. A better measure is the average distortion D, which
is the summation of magnitudes of lower triangular elements of the normalized
covariance matrix, that is,

D =
N∑
i=2

i−1∑
j=1

∣∣CN (i, j)
∣∣, (10.4)

where CN is the normalized covariance matrix of signals after KLT decorrelation.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Efficiency of KLT decorrelation 169

Bits per element

4 8 12 16 20 24 28 32

D
ec

or
re

la
ti

on
effi

ci
en

cy

10−3

10−2

10−1

100

101

(a)

Bits per element

4 8 12 16 20 24 28 32

O
ve

rh
ea

d
(b

it
p

er
m

at
ri

x)

101

102

103

(b)

Figure 10.1. (a) The decorrelation efficiency and (b) the overhead bit rate versus the number of bits
per element in SQ.

The overhead in terms of bits per KLT matrix is calculated via

OHs = Bs ×N , (10.5)

OHv = Bv, (10.6)

where Bs denotes the number of bits per element for SQ,N is the number of nonre-
dundant elements per matrix, and Bv denotes the number of bits per codeword for
VQ (recall that one KLT matrix is quantized into one codeword). For five-channel
audio material, N is equal to 15.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

170 Adaptive Karhunen-Loève transform and its quantization efficiency

Bits per vector

2 4 6 8 10 12 14 16

D
ec

or
re

la
ti

on
effi

ci
en

cy

1

1.5

2

(a)

Bits per vector
2 4 6 8 10 12 14 16

O
ve

rh
ea

d
(b

it
p

er
m

at
ri

x)

0

5

10

15

(b)

Figure 10.2. (a) The decorrelation efficiency and (b) the overhead bit rate versus the number of bits
per vector in VQ.

Figure 10.1(a) suggests that there is no significant degradation in de-
correlation efficiency when the number of bits is reduced from 32 bits per ele-
ment to 14 bits per element. However, further reduction in the number of bits per
element will result in a dramatic increase of distortion D given in equation (10.4).
From equation (10.5), we know that the overhead increases linearly as the num-
ber of bits per element increases with a gradient equal to N . This is confirmed
by Figure 10.1(b), in which the overhead is plotted as a function of the number
of bits per element in the logarithmic scale. Compared with Figure 10.1(a), we
observe that the overhead OH increases much more rapidly than the decrease of
the distortion D when the number of bits per element increases from 14 to 32. It

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Efficiency of KLT decorrelation 171

Table 10.4. Decorrelation results with SQ.

Bit/element D Overhead (bit/matrix) Ave MNR (dB/sb)

2 2.14 30 N/Aa

4 9.13e-1 60 56.56

6 2.91e-1 90 56.37

8 7.29e-2 120 56.02

10 2.05e-2 150 56.08

12 7.36e-3 180 56.00

14 5.24e-3 210 55.93

16 4.93e-3 240 55.91

32 4.89e-3 480 55.84

aUsing 2 bits per element, which quantizes each element into values of either 0 or ±1, leads to
problems in later compression steps.

indicates that when transmitting the covariance matrix with a higher bit rate, the
improvement of decorrelation efficiency is actually not sufficient to compensate
the loss due to a higher overhead rate.

The minimum number of bits per element for SQ is 2, since we need one bit
for the sign and at least one bit for the absolute value for each element. To fur-
ther reduce the number of bits per element, VQ is used. Figure 10.2(a) illustrates
that the average distortion D increases almost linearly when the number of bit per
vector decreases from 16 bits per vector to 7 bits per vector, and then slows down
when the bit per vector further decreases. Compared with Figure 10.1, it is verified
that VQ results in smaller quantization distortion than SQ at any given bit rate.
Figure 10.2(b) shows how the overhead varies with the number of bits per covari-
ance matrix. Note that VQ reduces the overhead bit rate by more than a factor of
N (which is 15 for five channel audio) with respect to SQ.

Tables 10.4 and 10.5 show the average distortion D, the overhead information
and the average MNR value for SQ and VQ, respectively, where the average MNR
value is calculated as below:

mean MNRsubband =
∑

channel MNRchannel,subband

number of channels
, (10.7)

average MNR =
∑

subband mean MNRsubband

number of subband
. (10.8)

The test audio material used to generate results in this section is a five channel
performance of “Messiah” with the KLT matrix updated every second. As shown
in Table 10.4, a fewer number of bits per element results in a higher distortion in
exchange for a smaller overhead and, after all, a larger MNR value. Thus, although
a smaller number of bits per element of the covariance matrix results in a larger

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

172 Adaptive Karhunen-Loève transform and its quantization efficiency

Table 10.5. Decorrelation results with VQ.

Bit/vector D Overhead (bit/matrix) Ave MNR (dB/sb)

1 1.92 1 56.73

2 1.87 2 56.61

3 1.81 3 56.81

4 1.78 4 56.87

5 1.73 5 56.12

6 1.62 6 56.23

7 1.58 7 56.88

8 1.47 8 56.96

9 1.37 9 56.42

10 1.28 10 55.97

11 1.16 11 56.08

12 1.04 12 56.28

13 0.948 13 55.83

14 0.848 14 55.72

15 0.732 15 56.19

16 0.648 16 55.87

average distortion D, the decrease of the overhead bit rate actually compensates
this distortion and improves the MNR value for the same coding rate.

A similar argument applies to the VQ case as shown in Table 10.5 with only
one minor difference. That is, the MNR value is nearly a monotonic function for
the SQ case while it moves up and down slightly in a local region (fluctuating
within 1 dB per subband) for the VQ case. However, the general trend is the same,
that is, a larger overhead in KLT coding degrades the final MNR value. We also
noticed that even when using 1 bit per vector, vector quantization of the covariance
matrix still gives good MNR results.

Our conclusion is that it is beneficial to reduce the overhead bit rate used in
the coding of the covariance matrix of KLT, since a larger overhead has a negative
impact on the rate-distortion trade-off.

10.4. Temporal adaptation effect

A multichannel audio program in general comprises of several different periods,
each of which has its unique spectral signature. For example, a piece of music may
begin with a piano preclude followed by a chorus. In order to achieve the highest
information compactness, the decorrelation transform matrix must adapt to the
characteristics of different sections of the program material. The MAACKLT al-
gorithm utilizes a temporal-adaptive approach, in which the covariance matrix is
updated frequently. On one hand, the shorter the adaptive time, the more efficient

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Temporal adaptation effect 173

the interchannel decorrelation mechanism. On the other hand, since the KLT co-
variance matrix has to be coded for audio decoding, a shorter adaptive time con-
tributes to a larger overhead in bit rates. Thus, it is worthwhile to investigate the
trade-off so that a good balance between this adaptive time and the final coding
performance can be reached.

In Figure 10.3, we show the magnitude of the lower triangular elements of the
normalized covariance matrix calculated from decorrelated signals by using dif-
ferent adaptive periods, where no quantization has been applied yet. These figures
suggest that there is no significant improvement of the decorrelation efficiency
when the KLT adaptive time decreases from 10 seconds to 0.05 second. As the
overhead dramatically increases with the shorter adaptive time, the final coding
performance may be degraded. In order to find the optimal KLT adaptive time, a
thorough investigation is performed for both SQ and VQ.

First, we look at how adaptive time affects the overhead bit rate. Suppose n
channels are selected for simultaneous interchannel decorrelation, the adaptive
time is K seconds, that is, each subblock contains K seconds of audio, and M bits
are transmitted to the decoder for each KLT. The overhead bit rate roverhead is

roverhead = M

nK
(10.9)

in bits per second per channel (bit/s/ch). This equation suggests that the overhead
bit rate increases linearly with the number of bits used to encode and transmit the
KLT matrix. The overhead bit rate is, however, inversely proportional to the num-
ber of channels and the adaptive time. If SQ is used in the encoding procedure,
each nonredundant element has to be sent. For n channel audio material, the size
of the covariance matrix is n × n, and the number of nonredundant elements is
n× (n+ 1)/2. If Bs bits are used to quantize each element, the total bit requirement
for each KLT is n(n + 1)Bs/2. Thus the overhead bit rate rSQ

overhead for SQ is equal
to

rSQ
overhead =

(n + 1)Bs

2K
. (10.10)

The overhead bit rate rVQ
overhead for VQ is simpler. It is equal to

rVQ
overhead =

Bv

nK
, (10.11)

where Bv represents the number of bits used for each KLT covariance matrix.
The average MNR value (in dB) and the overhead bit rate (in the logarithm

scale) versus the adaptive time for both SQ and VQ are shown in Figures 10.4(a)
and (b), respectively. The test material is five-channel “Messiah,” with 8 bits per
element for SQ and 4 bits per vector for VQ for KLT decorrelation. The total coding

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

174 Adaptive Karhunen-Loève transform and its quantization efficiency

Eigen-channel

1
2

3
4

5

Eigen-channel
1

2
3

4
5

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.5

1
×10−3

(a)

Eigen-channel

1
2

3
4

5

Eigen-channel
1

2
3

4 5

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.5

1
×10−3

(b)

Eigen-channel

1
2

3
4

5

Eigen-channel
1

2
3

4
5

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.5

1
×10−3

(c)

Eigen-channel

1
2

3
4

5

Eigen-channel
1

2
3

4
5

N
or

m
al

iz
ed

co
va

ri
an

ce

0

0.5

1
×10−3

(d)

Figure 10.3. The magnitude of the lower triangular elements of the normalized covariance matrix
calculated from decorrelated signals, where the adaptive time is equal to (a) 0.05, (b) 0.2, (c) 3, and (d)
10 seconds.

bit rate (including bits for the overhead and the content) is kept the same for all
points in the two curves in Figure 10.4(a). We have the following observations
from these figures.

First, for the SQ case, the average MNR value remains about the same with
less than 0.3 dB variation per subband when the adaptive time varies from 1 to
10 seconds. However, when the adaptive time is decreased furthermore, the over-
head effect starts to dominate, and the average MNR value decreases dramatically.
On the other hand, when the adaptive time becomes longer than 10 seconds, the
average MNR value also decreases, which implies that the coding performance is
degraded if the KLT matrix is not updated frequently enough. For VQ, the chang-
ing pattern of the average MNR value versus the adaptive time is similar as that
of SQ. However, compared with the scalar case, the average MNR value starts to

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Temporal adaptation effect 175

Adaptive time (s)

2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

M
N

R
(d

B
)

52

53

54

55

56

57

SQ
VQ

(a)

Adaptive time (s)

2 4 6 8 10 12 14 16 18 20

O
ve

rh
ea

d
(b

it
/s

/c
h

)

10−2

10−1

100

101

102

103

SQ
VQ

(b)

Figure 10.4. (a) Adaptive MNR results and (b) adaptive overhead bits for SQ and VQ for five-channel
Messiah.

decline earlier at about 5 seconds. This is probably due to the effect that VQ gives
less efficient decorrelation, so that more frequent adaptation of the KLT matrix
will generate a better coding result. As shown in Figure 10.4(a), it is clear that the
average MNR generated by using VQ is always better than that of SQ and the dif-
ference becomes significant when the overhead becomes the dominant factor for
KLT adaptive time less than 1 second.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

176 Adaptive Karhunen-Loève transform and its quantization efficiency

10.5. Complexity analysis

The main concern of a VQ scheme is its computational complexity at the encoder
side. For each D dimension vector, we need O(DS) operations to find the best
matched codeword from a codebook of size S using the full search technique. For
an n channel audio, each covariance matrix is represented by a vector of dimension
n(n + 1)/2. Thus, for each KLT, we need O(n2S) operations. While for the scalar
case, the quantization of each element requires O(1) operations, and for each co-
variance matrix, we need O(n2) operations. Suppose that the input audio is of L
seconds long, and the KLT matrix is updated each K seconds. Then, there will be
totally �L/K� covariance matrices to be quantized.2 This means we need

O(�L/K�n2) = O(Ln2/K) for scalar quantization,

O(�L/K�n2S) = O(Ln2S/K) for vector quantization,
(10.12)

operations.
Thus, for a given test audio source, the complexity is inversely proportional

to KLT adaptive time for either quantization scheme. For VQ, the complexity is
also proportional to the codebook size. Compared with SQ, VQ requires more
operations by a factor of S. To reduce the computational complexity, we should
limit the codebook size and set the KLT adaptation time as long as possible while
keeping the desired coding performance.

Experimental results shown in Section 10.3 suggest that a very small codebook
size is usually good enough to generate the desired compressed audio. By choosing
a small codebook size and keeping the KLT adaptation time long enough, we do
not only limit the additional computational complexity, but also save the overhead
bit requirement. At the decoder side, VQ demands just a table look-up procedure
and its complexity is comparable to that of SQ.

10.6. Experimental results

We tested the modified MAACKLT method by using two five-channel audio
sources “Messiah” and “Ftbl” at different bit rates varying from a typical rate of
64 kbit/s/ch to a very-low-bit-rate of 16 kbit/s/ch. Figures 10.5 and 10.6 show the
mean MNR comparison between SQ and VQ for test audio “Messiah” and “Ftbl,”
respectively, where the KLT matrix adaptation time is set to 10 seconds. The mean
MNR values in these figures are calculated by equation (10.7). In order to show the
general result of scalar and vector cases, a moderate bit rate (i.e., 8 bits per element
for SQ and 4 bits per vector for VQ) is adopted here. From these figures, we see
that, compared with SQ, VQ generates comparable mean MNR results at all bit
rates, and VQ even outperforms SQ at all bit rates for some test sequence such as
“Messiah.”

2�∗� represents the smallest integer which is greater than or equal to ∗.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Conclusion 177

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

50

55

60

65

70

75

SQ
VQ

64 kbit/s/ch

(a)

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

40

45

50

55

60

65

SQ
VQ

48 kbit/s/ch

(b)

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

25

30

35

40

45

50

SQ
VQ

32 kbit/s/ch

(c)

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

10

20

30

40

SQ
VQ

16 kbit/s/ch

(d)

Figure 10.5. MNR result using test audio “Messiah” coded at (a) 64 kbit/s/ch, (b) 48 kbit/s/ch, (c)
32 kbit/s/ch, and (d) 16 kbit/s/ch.

10.7. Conclusion

To enhance the MAACKLT algorithm proposed earlier, we examined the relation-
ship between coding of the KLT covariance matrix with different quantization
methods, KLT decorrelation efficiency and the frequency of KLT information up-
date extensively in this research. In particular, we investigated how different quan-
tization methods affect the final coding performance by using objective MNR mea-
surements. It is demonstrated that reducing the overhead bit rate generally pro-
vides a better trade-off for the overall coding performance. This can be achieved
by adopting a smallest possible bit rate to encode the covariance matrix together

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

178 Adaptive Karhunen-Loève transform and its quantization efficiency

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

30

40

50

60

SQ
VQ

64 kbit/s/ch

(a)

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

20

30

40

50

SQ
VQ

48 kbit/s/ch

(b)

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

0

10

20

30

40

SQ
VQ

32 kbit/s/ch

(c)

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

)

−10

−5

0

5

10

SQ
VQ

16 kbit/s/ch

(d)

Figure 10.6. MNR result using test audio “Ftbl” coded at (a) 64 kbit/s/ch, (b) 48 kbit/s/ch, (c)
32 kbit/s/ch, and (d) 16 kbit/s/ch.

with moderately long KLT adaptation period to generate the desired coding per-
formance. Besides, a small codebook size in VQ do not increase the computational
complexity significantly.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

11
Progressive syntax-rich
multichannel audio codec

11.1. Introduction

Most of today’s multichannel audio codecs can only provide bitstreams with a
fixed bit rate, which is specified during the encoding phase. When this kind of
bitstream is transmitted over variable bandwidth networks, the receiver can ei-
ther successfully decode the full bitstream or ask the encoder site to retransmit a
bitstream with a lower bit rate. The best solution to address this problem is to de-
velop a scalable compression algorithm, which is able to transmit and decode the
bitstream with a bit rate that can be adaptive to a dynamically varying environ-
ment (e.g., the instantaneous capacity of a transmission channel). This capability
offers a significant advantage in transmitting contents over channels with a vari-
able channel capacity or connections for which the available channel capacity is
unknown at the time of encoding. To achieve this goal, a bitstream generated by
scalable coding schemes consists of several partial bitstreams, each of which can be
decoded on their own in a meaningful way. Therefore, transmission and decoding
of a subset of the total bitstream will result in a valid decodable signal at a lower
bit rate and quality.

MPEG-4 version-2 audio coding supports fine grain bit rate scalablility [98,
61, 65, 66, 47] in its generic audio coder (GAC). It has a bit-sliced arithmetic
coding (BSAC) tool, which provides scalability in the step of 1 kbit/s per audio
channel for mono or stereo audio material. Several other scalable mono or stereo
audio coding algorithms [145, 128, 117] were proposed in recent years. However,
not much work has been done on progressively transmitting multichannel audio
sources. In this work, we propose a progressive syntax-rich multichannel audio
codec (PSMAC) based on MPEG AAC. In PSMAC, the interchannel redundancy
inherent in original physical channels is first removed in the preprocessing stage
by using the Karhunen-Loève transform (KLT). Then, most coding blocks in the
AAC main profile encoder are employed to generate spectral coefficients. Finally,
a progressive transmission strategy and a context-based QM coder are adopted to
obtain the fully quality-scalable multichannel audio bitstream. The PSMAC sys-
tem not only supports fine grain bit rate scalability for the multichannel audio
bitstream, but also provides several other desirable functionalities, such as random

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

180 Progressive syntax-rich multichannel audio codec

access and channel enhancement, which have not been supported by other existing
multichannel audio codecs.

Moreover, compared with the BSAC tool provided in MPEG-4 version-2 and
most of other scalable audio coding tools, a more sophisticated progressive trans-
mission strategy is employed in PSMAC. PSMAC does not only encode spectral
coefficients from MSB to LSB and from low to high frequency so that the de-
coder can reconstruct these coefficients more and more precisely with an increas-
ing bandwidth as the receiver collects increasingly more bits from the bitstream,
but also utilizes the psychoacoustic model to control the subband transmission se-
quence so that the most sensitive frequency area is more precisely reconstructed.
In this way, bits used to encode coefficients in the nonsensitive frequency area can
be saved and used to encode coefficients in the sensitive frequency area. Because
of this subband selection strategy, a perceptually more appealing audio can be re-
constructed by PSMAC, especially at very-low-bit-rates such as 16 kbit/s/ch. The
side information required to encode the subband transmission sequence is care-
fully handled in our implementation so that the overall overhead will not have
significant impact on the audio quality even at very-low-bit-rates. Note that Shen
et al. [117] proposed a subband selection rule to achieve progressive coding. How-
ever, Shen’s scheme demands a large amount of overhead in coding the selection
order.

Experimental results show that, when compared with MPEG AAC, the de-
coded multichannel audio generated by the proposed PSMAC’s MNR progressive
mode has comparable quality at high-bit-rates, such as 64 kbits/s/ch or
48 kbits/s/ch and much better quality at low-bit-rates, such as 32 kbits/s/ch or
16 kbits/s/ch. We also demonstrate that our PSMAC codec can provide better qual-
ity of single-channel audio when compared with MPEG-4 version-2 generic audio
coder at several different bit rates.

The rest of this chapter1 is organized as follows. Section 11.2 gives an over-
view of the proposed syntax-rich design. Sections 11.3 and 11.4 describe how the
progressive quantization is employed in our system. Section 11.5 discusses some
implementation issues. Section 11.6 illustrates the complete compression system.
Some experimental results are shown in Section 11.7. Finally, conclusion remarks
are given in Section 11.8.

11.2. Progressive syntax-rich codec design

In the proposed progressive syntax-rich codec, the following three user defined
profiles are provided.

(1) MNR progressive profile. If the flag of this profile is on, it should be possible
to decode the first N bytes of the bitstream per second, where N is a user specified
value or a value that the current network parameters allowed.

(2) Random access profile. If the flag of this profile is present, the codec will be
able to independently encode a short period of audio more precisely than other

1Part of this chapter represents work published before, see [139, 140, 135, 143].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Progressive syntax-rich codec design 181

Bitstream + Bitstream + Bitstream (High quality)

Bitstream + Bitstream (Median quality)

Bitstream (Low quality)

(a)

Lower quality Higher quality Lower quality

(b)

Lower quality

Lower quality
Higher quality

Lower quality

Lower quality

Surround Left Center Right Surround

(c)

Figure 11.1. Illustration of three user-defined profiles: (a) the MNR progressive profile, (b) the ran-
dom access profile, and (c) the channel enhancement with the enhanced center channel.

periods. It allows users to randomly access a certain part of audio that is more of
interest to end users.

(3) Channel enhancement profile. If the flag of this profile is on, the codec
will be able to independently encode an audio channel more precisely than other
channels. Either these channels are of more interest to end users or the network
situation does not allow the full multichannel audio bitstream to be received on
time.

Figure 11.1 illustrates a simple example of three user defined profiles. Among
all profiles, the MNR progressive profile is the default one. In the other two profiles,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

182 Progressive syntax-rich multichannel audio codec

that is, the random access and the channel enhancement, the MNR progressive fea-
ture is still provided as a basic functionality and decoding of the bitstream can be
stopped at any arbitrary point. With these three profiles, the proposed codec can
provide a versatile set of functionalities desirable in variable bandwidth network
conditions with different user access bandwidths.

11.3. Scalable quantization and entropy coding

The major difference between the proposed progressive audio codec and other
existing nonprogressive audio codecs such as AAC lies in the quantization block
and the entropy coding block. The dual iteration loop used in AAC to calculate the
quantization step size for each frame’s and each channel’s coefficients is replaced
by a progressive quantization block. The Huffman coding block used in the AAC
to encode quantized data is replaced by a context-based QM coder. This will be
explained in detail below.

11.3.1. Successive approximation quantization

The most important component of the quantization block is called successive ap-
proximation quantization (SAQ). The SAQ scheme, which is adopted by most em-
bedded wavelet coders for progressive image coding, is crucial to the design of em-
bedded coders. The motivation for successive approximation is built upon the goal
of developing an embedded code that is in analogy to finding an approximation of
binary-representation to a real number [116]. Instead of coding every quantized
coefficient as one symbol, SAQ processes the bit representation of coefficients via
bit layers sliced in the order of their importance. Thus, SAQ provides a coarse-to-
fine, multiprecision representation of the amplitude information. The bitstream is
organized such that a decoder can immediately start reconstruction based on the
partially received bitstream. As increasingly more bits are received, more accurate
coefficients and higher quality multichannel audio can be reconstructed.

11.3.1.1. Description of the SAQ algorithm

SAQ sequentially applies a sequence of thresholds T0,T1, . . . ,TN+1 for refined
quantization, where these thresholds are chosen such that Ti = Ti−1/2. The ini-
tial threshold T0 is selected such that |C(i)| < 2T0 for all transformed coefficients
in one subband, where C(i) represents the ith spectral coefficient in the subband.
To implement SAQ, two separate lists, the dominant list, and the subordinate list,
are maintained both at the encoder and the decoder sides. At any point of the pro-
cess, the dominant list contains the coordinates of those coefficients that have not
yet been found to be significant. While the subordinate list contains magnitudes
of those coefficients that have been found to be significant. The process that up-
dates the dominate list is called the significant pass, and the process that updates
the subordinate list is called the refinement pass.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Scalable quantization and entropy coding 183

Threshold Original
value

Reconstruct
value

Reconstruct
value

Tk

1.5Tk

1.5Tk − 0.25Tk

Significant pass Refinement pass

Figure 11.2. An example to show how the decoder reconstructs a single coefficient after one significant
pass and one refinement pass.

In the proposed algorithm, SAQ is adopted as the quantization method for
each spectral coefficient within each subband. This algorithm (for the encoder
part) is listed below.

Successive approximation quantization (SAQ) algorithm.
(1) Initialization. For each subband, find out the maximum absolute value

Cmax for all coefficients C(i) in the subband, and set the initial quantization thresh-
old to be T0 = Cmax/2 + BIAS, where BIAS is a small constant.

(2) Construction of the significant map (significance identification). For each
C(i) contained in the dominant list, if |C(i)| ≥ Tk, where Tk is the threshold of
the current layer (layer k), add i to the significant map, remove i from the dom-
inant list, and encode it with ‘1s,’ where ‘s’ is the sign bit. Moreover, modify the
coefficient’s value to

C(i)←�
⎧⎪⎨
⎪⎩
C(i)− 1.5× Tk , ∀C(i) > 0,

C(i) + 1.5× Tk, otherwise.
(11.1)

(3) Construction of the refinement map (refinement). For each C(i) con-
tained in the significant map, encode the bit at layer k with a refinement bit ‘D’
and change the value of C(i) to

C(i)←�
⎧⎪⎨
⎪⎩
C(i)− 0.25× Tk, ∀C(i) > 0,

C(i) + 0.25× Tk, otherwise.
(11.2)

(4) Iteration. Set Tk+1 = Tk/2 and repeat steps 2–4 for k = 0, 1, 2,
At the decoder side, the decoder performs similar steps to reconstruct coef-

ficients’ values. Figure 11.2 gives a simple example to show how the decoder re-
constructs a single coefficient after one significant pass and one refinement pass.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

184 Progressive syntax-rich multichannel audio codec

As illustrated in this figure, the magnitude of this coefficient is recovered to 1.5
times of the current threshold Tk after the significant pass, and then refined to
1.5Tk−0.25Tk after the first refinement pass. As more refinement steps follow, the
magnitude of this coefficient will approach its original value gradually.

11.3.1.2. Analysis of error reduction rates

The following two points have been observed before [78].
(1) The coding efficiency of the significant map is always better than that of

the refinement map at the same layer.
(2) The coding efficiency of the significant map at the kth layer is better than

that of the refinement map at the (k − 1)th layer.
In the following, we would like to provide a formal proof by analyzing the error
reduction capability due to the significant pass and the refinement pass, respec-
tively.

First, we consider the error reduction capability for the bit-layer coding of
coefficient C(i), for all i, in the significant pass. Since the sign of each coefficient
will be coded separately, we will assume C(i) > 0 in the discussion below with-
out loss of generality. Suppose that C(i) becomes significant at layer k. This means
Tk ≤ C(i) < Tk−1 = 2Tk and its value is modified accordingly. Then, error reduc-
tion Δ1 due to the coding of this bit can be found as

Δ1 = C(i)− |C(i)− 1.5× Tk|. (11.3)

Note that, at any point of the process, the value of |C(i)| is nothing else but the
remaining coding error. Since Tk ≤ C(i) < 2Tk , −0.5Tk < C(i) − 1.5Tk ≤ 0.5Tk ,
we have |C(i)− 1.5Tk| ≤ 0.5Tk . Consequently,

Δ1 = C(i)− |C(i)− 1.5× Tk| ≥ 0.5Tk. (11.4)

Now, we calculate the error reduction for the bit-layer coding of coefficient
C(j), for all j, in the refinement pass. Similar to the previous case, we assume
C(j) > 0. At layer k, suppose C(j) is being refined, and its value is modified ac-
cordingly. The corresponding error reduction is

Δ2 = C(j)− |C(j)− 0.25× Tk|. (11.5)

Two cases have to be considered.
(1) If C(j) ≥ 0.25Tk ,

Δ2 = C(j)− C(j) + 0.25Tk = 0.25Tk. (11.6)

(2) If C(j) < 0.25Tk ,

Δ2 = C(j)+C(j)−0.25Tk = 2C(j)−0.25Tk < 0.5Tk−0.25Tk = 0.25Tk. (11.7)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Scalable quantization and entropy coding 185

Thus, we conclude that

Δ2 = C(j)− |C(j)− 0.25× Tk| ≤ 0.25Tk < 0.5Tk ≤ Δ1. (11.8)

Thus, the error reduction for a significant pass is always greater than that of the
refinement pass at the same layer.

Similarly, at layer (k − 1), the error reduction for coefficient C(j), for all j,
caused by the refinement pass is

Δ3 = C(j)− |C(j)− 0.25× Tk−1| ≤ 0.25Tk−1 = 0.5Tk ≤ Δ1, (11.9)

which demonstrates that error reduction in the significant pass at layer k is actually
greater than or equal to that of the refinement pass at layer (k − 1).

According to the above analysis, a refinement-significant map coding is pro-
posed and adopted in our progressive multichannel audio codec. That is, the trans-
mission of kth refinement map of subband i is followed immediately by the trans-
mission of (k + 1)th significant map of subband i.

11.3.1.3. Analysis of error bounds

Suppose the ith coefficient C(i) has a value T0/2R+1 ≤ |C(i)| < T0/2R. Then, its
binary representation can be written as

C(i) = sign×
[
a0

(
T

20

)
+ a1

(
T

21

)
+ a2

(
T

22

)
+ · · ·

]

= sign×
∞∑
k=0

ak

(
T

2k

)
,

(11.10)

where T = T0/2R+1, T0 is the initial threshold, and a0, a1, a2, . . . are binary values
(either 0 or 1).

In the SAQ algorithm, C(i) is represented by:

C(i) = sign×
[

1.5a0

(
T

20

)
+ 0.5b1

(
T

21

)
+ 0.5b2

(
T

22

)
+ · · ·

]

= sign×
[

1.5a0

(
T

20

)
+ 0.5

∞∑
k=1

bk

(
T

2k

)]
,

(11.11)

where ak and bk are related via

ak = 0.5(bk + 1), ∀k = 1, 2, 3, . . . , (11.12)

or

bk =
⎧⎪⎨
⎪⎩

1, ak = 1,

−1, ak = 0,
∀k = 1, 2, 3, (11.13)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

186 Progressive syntax-rich multichannel audio codec

Based on the first M + 1 bits a0, a1, a2, . . . , aM , the reconstructed value R1(i) by
using the binary representation is

R1(i) = sign×
[
a0

(
T

20

)
+ a1

(
T

21

)
+ a2

(
T

22

)
+ · · · + aM

T

2M

]

= sign×
[M∑

k=0

ak

(
T

2k

)]
.

(11.14)

Based on the first M + 1 bits a0, b1, b2, . . . , bM , the reconstructed value R2(i) by
using SAQ is

R2(i) = sign×
[

1.5a0

(
T

20

)
+ 0.5b1

(
T

21

)
+ 0.5b2

(
T

22

)
+ · · · + 0.5bM

T

2M

]

= sign×
[

1.5a0

(
T

20

)
+ 0.5

M∑
k=1

bk

(
T

2k

)]
.

(11.15)

Thus, the error introduced by the binary representation for this coefficient is

E1(i) = ∣∣C(i)− R1(i)
∣∣ =

∣∣∣∣∣
∞∑

k=M+1

ak
T

2k

∣∣∣∣∣

≤
∞∑

k=M+1

T

2k
= T

2M
.

(11.16)

Similarly, the error introduced by SAQ for this coefficient is

E2(i) = ∣∣C(i)− R2(i)
∣∣ =

∣∣∣∣0.5×
∞∑

k=M+1

bk
T

2k

∣∣∣∣

≤ 0.5
∞∑

k=M+1

T

2k
= T

2M+1
.

(11.17)

We conclude that the upper bound of both error E1(i) caused by the binary
representation and error E2(i) caused by SAQ are decaying exponentially when the
incoming number of bits M is increasing linearly.

11.3.2. Context-based QM coder

The QM coder is a binary arithmetic-coding algorithm designed to encode data
formed by a binary symbol set. It was the result of the effort by JPEG and JBIG
committees, in which the best features of various arithmetic coders are integrated.
The QM coder is a lineal descendent of the Q-coder, but significantly enhanced by

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Channel and subband transmission strategy 187

Coefficient sign
bitstream

Coefficient refinement
bitstream

Coefficient significance
bitstream

Subband significance
bitstream

Channel’s header info
bitstream

Program configuration
bitstream

Quantizer
Compressed

file

Figure 11.3. The adopted context-based QM coder with six classes of contexts.

improvements in the two building blocks, that is, interval subdivision and prob-
ability estimation [99]. Based on the Bayesian estimation, a state-transition table,
which consists of a set of rules to estimate the statistics of the bitstream depending
on the next incoming symbols, can be derived. The efficiency of the QM coder
can be improved by introducing a set of context rules. The QM arithmetic coder
achieves a very good compression result if the context is properly selected to sum-
marize the correlation between coded data.

Six classes of contexts are used in the proposed embedded audio codec as
shown in Figure 11.3. They are the general context, the constant context, the sub-
band significance context, the coefficient significance context, the coefficient re-
finement context, and the coefficient sign context. The general context is used in
the coding of the configuration information. The constant context is used to en-
code different channel’s header information. As their names suggest, the subband
significance context, the coefficient significance context, the coefficient refinement
context, and the coefficient sign context are used to encode the subband signifi-
cance, coefficient significance, coefficient refinement, and coefficient sign bits, re-
spectively. These contexts are adopted because different classes of bits may have
different probability distributions. In principle, separating their contexts should
increase the coding performance of the QM coder.

11.4. Channel and subband transmission strategy

11.4.1. Channel selection rule

In the embedded multichannel audio codec, we should put the most important
bits (in the rate-distortion sense) to the cascaded bitstream first so that the decoder

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

188 Progressive syntax-rich multichannel audio codec

can reconstruct the optimal quality of multichannel audio given a fixed number
of bits received. Thus, the importance of channels should be determined for an
appropriate ordering of the bitstream. For the normal 5.1 channel configuration,
it was observed in Chapter 9 that the channel importance order will be eigen-
channel one, followed by eigen-channels two and three, and then followed by
eigen-channels four and five. Between each channel pair, the importance is de-
termined by their energy. This policy is used in this chapter.

11.4.2. Subband selection rule

In principle, any quality assessment of an audio channel can be either performed
subjectively by employing a large number of expert listeners or done objectively
by using an appropriate measuring technique. While the first choice tends to be an
expensive and time-consuming task, the use of objective measures provides quick
and reproducible results. An optimal measuring technique would be a method that
produces the same results as subjective tests while avoiding all problems associated
with the subjective assessment procedure. Nowadays, the most prevalent objective
measurement is the mask-to-noise-ratio (MNR) technique, which was first intro-
duced by Brandenburg [17] in 1987. It is the ratio of the masking threshold with
respect to the error energy. In our implementation, the masking is calculated from
the general psychoacoustic model of the AAC encoder. The psychoacoustic model
calculates the maximum distortion energy which is masked by the signal energy,
and outputs the signal-to-mask-ratio (SMR).

A subband is masked if the quantization noise level is below the masking
threshold so the distortion introduced by the quantization process is not percep-
tible to human ears. As discussed earlier, SMR represents the human auditory re-
sponse to the audio signal. If SNR of an input audio signal is high enough, the
noise level will be suppressed below masking threshold and the quantization dis-
tortion will not be perceived. Since SNR can be easily calculated by

SNR =
∑

i |Soriginal(i)|2∑
i |Soriginal(i)− Sreconstruct(i)|2 , (11.18)

where Soriginal(i) and Sreconstruct(i) represent the ith original and the ith recon-
structed audio signal value, respectively. Thus, MNR is just the difference of SNR
and SMR (in dB), or

SNR =MNR + SMR. (11.19)

A side benefit of the SAQ technique is that an operational rate versus distortion
plot (or, equivalently, an operational rate versus the current MNR value) for the
coding algorithm can be computed online.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Channel and subband transmission strategy 189

Subband

0 5 10 15 20 25 30 35 40 45 50

W
id

th

0

20

40

60

80

100

Figure 11.4. Subband’s width distribution used in AAC for 44.1 kHz and 48 kHz sampling frequencies
and long block frames.

The basic ideas behind choosing the subband selection rules are simple. They
are

(1) the subband with a better rate deduction capability should be chosen
earlier to enhance the performance,

(2) the subband with a smaller number of coefficients should be chosen ear-
lier to reduce the computational complexity, if the rate reduction perfor-
mances of two subbands are close.

The first rule implies that we should allocate more bits to those subbands with
larger SMR values (or smaller MNR values). In other words, we should send out
bits belonging to those subbands with larger SMR values (or smaller MNR values)
first. The second rule tells us how to decide the subband scanning order. We know
that for subband formation in MPEG AAC, the number of coefficients in each
subband is nondecreasing with the increase of the subband number. Figure 11.4
shows the subband width distribution used in AAC for 44.1 kHz and 48 kHz sam-
pling frequencies and long block frames. Thus, a sequential subband scanning or-
der from the lowest number to the highest number is adopted in this work.

In order to save bits, especially at very-low-bit-rates, only information cor-
responding to lower subbands will be sent into the bitstream at the first layer.
When the number of layers increase, increasingly more subbands will be added.
Figure 11.5 shows how subbands are scanned for the first several layers. At the
base layer, the priority is given to lower frequency signals, so that only subbands
numbered up to LB will be scanned. As the information of enhancement layers is
added to the bitstream, the subband scanning upper limit increases (as indicated
by values of LE1, LE2, and LE3 as shown in Figure 11.5) until it reaches the effec-
tive psychoacoustic upper bound of all subbands N . In our implementation, we
choose LE3 = N , which means that all subbands are scanned after the third en-
hancement layer. Here, the subband scanning upper limits in different layers, that

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

190 Progressive syntax-rich multichannel audio codec

Subband scanning for 3rd layer

Subband scanning for 2nd layer

Subband scanning for 1st layer

Subband scanning for base layer
SB 1 SB 2 SB LB SB LE1 SB LE2 SB LE3

Figure 11.5. Illustration of the subband scanning rule, where the solid line with an arrow means all
subbands inside this area are scanned, and the dashed line means only those nonsignificant subbands
inside the area are scanned.

is, LB, LE1, and LE2 are empirically determined values that provide a good coding
performance.

In PSMAC, a dual-threshold coding technique is proposed in the progressive
quantization module. One is the MNR threshold, which is used in subband selec-
tion. The other is the magnitude threshold, which is used for coefficients’ quan-
tization in each selected individual subband. A subband that has its MNR value
smaller than the current MNR threshold is called the significant subband. Simi-
lar to the SAQ process for coefficient quantization, two lists, that is, the dominant
subband list and the subordinate subband list, are maintained in the encoder and
the decoder. The dominant subband list contains the indices of those subbands
that have not yet become significant, and the subordinate subband list contains
the indices of those subbands that have already become significant. The process
that updates the subband dominant list is called the subband significant pass, and
the process that updates the subband subordinate list is called the subband refine-
ment pass.

Different coefficient magnitude thresholds are maintained in different sub-
bands. We would like to deal with the most important subbands first and get the
best result with only a little amount of information from the resource. Moreover,
since sounds in different subbands have different impacts on human ears accord-
ing to the psychoacoustic model, it is worthwhile to consider each subband inde-
pendently, rather than all subbands in one frame simultaneously.

We summarize the subband selection rule below.
Subband selection procedure.
(1) MNR threshold calculation. Determine empirically the MNR threshold

value TMNR
i,k for channel i at layer k. Subbands with smaller MNR value at the cur-

rent layer are given higher priority.
(2) Subband dominant pass. For those subbands that are still in the dominant

subband list, if subband j in channel i has the current MNR value MNRk
i, j < TMNR

i,k ,
add subband j of channel i into the significant map, remove it from the dominant
subband list, send 1 to the bitstream, indicating this subband is selected. Then,
apply SAQ to coefficients in this subband. For subbands that have MNRk

i, j ≥ TMNR
i,k ,

send 0 to the bitstream, indicating this subband is not selected in this layer.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Implementation issues 191

0001 Coefficient SAQ 00001 Coefficient SAQ 1 Coefficient SAQ 00

0 1 2 3 4 5 6 7 8 9 10 11 Subband

Channel i,
layer k

M
N

R

TMNR
i,k

Figure 11.6. An example of the subband selection rule.

(3) Subband refinement pass. For subbands already in the subordinate list, do
coefficient SAQ.

(4) MNR values update. Recalculate and update MNR values for selected sub-
bands.

(5) Repeat steps 1–4 until the bitstream meets the target rate.
Figure 11.6 gives a simple example of the subband selection rule. Suppose that,

at layer k, channel i has the MNR threshold equal to TMNR
i,k . In this example, among

all scanned subbands, that is, subbands 0 to 11, only subbands 3, 8, and 9 have
current MNR values less than TMNR

i,k . Therefore, according to rule 2, three 0 bits
and one 1 bit are first sent into the bitstream indicating nonsignificant subbands
0, 1, 2, and significant subband 3. These subband selecting bits are represented
in the shaded area in Figure 11.6. Similarly, subband selecting bits for subbands
4 to 11 are also illustrated in shaded areas. Coefficients’ SAQ bits of significant
subbands are sent immediately after each significant subband bit as shown in this
example.

11.5. Implementation issues

11.5.1. Frame, subband, or channel skipping

As mentioned earlier, each subband has its own initial coefficient magnitude
threshold. This threshold has to be included in the bitstream as the overhead so
that the decoder can start to reconstruct these coefficients once the layered in-
formation is available. In our implementation, the initial coefficient magnitude
thresholdTi, j(0) for channel i and subband j will be truncated to the nearest power
of 2 that is not less than Cmax

i, j , that is,

Ti, j(0) = 2pi, j , pi, j = �log2 C
max
i, j �, (11.20)

where Cmax
i, j is the maximum magnitude for all coefficients in channel i and sub-

band j.
In order to save bits, the maximum power pmax

i = max (pi, j), for all j, for
all subbands in channel i will be included in the bitstream at the first time when
channel i is selected. A relative value of each subband’s maximum power, that is,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

192 Progressive syntax-rich multichannel audio codec

Coded bitstream

Bitstream multiplex

Filter
bank KLT

Dynamic
range

control

TNS
Intensity
coupling

Progressive
quantization

Noiseless
coding

Perceptual
model

Input audio
signal Syntax control Transformed

coefficients
Data
Data control
Syntax control

Figure 11.7. The block-diagram of the proposed PSMAC encoder.

the difference Δpi, j = pmax
i − pi, j between pmax

i and pi, j , will be included in the
bitstream at the first time when the selected subband becomes significant.

For a frame with a maximum valueCmax
i, j equal to zero, that is, max (Cmax

i, j) = 0,
for all j, which means all coefficients in channel i in this frame have value 0, then
a special indicator will be set to let the decoder know it should skip this frame.
Similarly, if Cmax

i, j has value 0, another special indicator is set to tell the decoder
that it should always skip this subband. In some cases when the end user is only
interested in reconstructing some channels, channel skipping can also be adopted.

11.5.2. Determination of the MNR threshold

At each layer, the MNR threshold for each channel is determined empirically. Two
basic rules are adopted when calculating this threshold.

(1) The MNR threshold should allow a certain number of subbands to pass at
each layer. Since the algorithm sends zero to the bitstream for each unselected sub-
band which is still in the significant subband list, if the MNR threshold is so small
that it allows too few subbands to pass, too many overhead bits will be generated.
As a result, this will degrade the performance of the progressive audio codec.

(2) Adopt a maximum MNR threshold. If the MNR threshold calculated by
using the above rule is greater than a predefined maximum MNR threshold TMNR

max ,
then the current MNR threshold for channel i at kth layer TMNR

i,k will be set to
TMNR

max . This is based on the assumption that a higher MNR value does not provide
higher perceptual audio quality perceived by the human auditory system.

11.6. Complete description of PSMAC codec

The block diagram of a complete encoder is shown in Figure 11.7. The perceptual
model, the filter bank, the temporal noise shaping (TNS), and the intensity blocks
in our progressive encoder are borrowed from the AAC main profile encoder. The
interchannel redundancy removal procedure via KLT is implemented after the in-
put audio signals are transformed into the MDCT domain. Then, a dynamic range

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Experimental results 193

MNR
update

Yes

Finish one layer
for all channels?

Yes

MNR progressive?
Random access?

Channel enhance?

Syntax control
Yes

Finish one layer
for this channel?

No

Transformed
coefficients

Channel
selection

Subband
selection

Coefficients’
SAQ

Exceed bit
budget?

No

No

Context-based
binary QM

coder

Noiseless
coding

Progressive
quantization

Data
Data control
Syntax control

Figure 11.8. Illustration of the progressive quantization and lossless coding blocks.

control block follows to avoid any possible data overflow in later compression
stages. Masking thresholds are then calculated in the perceptual model based on
the KL transformed signals. The progressive quantization and lossless coding parts
are finally used to construct the compressed bitstream. The information generated
at the first several coding blocks will be sent into the bitstream as the overhead.

Figure 11.8 provides more details of the progressive quantization block. The
channel and the subband selection rules are used to determine which subband in
which channel should be encoded at this point, and then coefficients within this
selected subband will be quantized via SAQ. The user defined profile parameter
is used for the syntax control of the channel selection and the subband selection.
Finally, based on several different contexts, the layered information together with
all overhead bits generated during previous coding blocks will be losslessly coded
by using the context-based QM coder.

The encoding process performed by using the proposed algorithm will stop
when the bit budget is exhausted. It can cease at any time, and the resulting bit-
stream contains all lower rate coded bitstreams. This is called the fully embed-
ded property. The capability to terminate the decoding of an embedded bitstream
at any specific point is extremely useful in a coding system that is either rate-
constrained or distortion-constrained.

11.7. Experimental results

The proposed PSMAC system has been implemented and tested. The basic au-
dio coding blocks [62] inside the MPEG AAC main profile encoder, including the
psychoacoustic model, filter bank, temporal noise shaping, and intensity/coupling,

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

194 Progressive syntax-rich multichannel audio codec

Table 11.1. MNR comparison for MNR progressive profiles.

Average MNR values (dB/subband/ch)

Bit rate Herre Messiah

(bit/s/ch) AAC PSMAC AAC PSMAC

16 k −0.90 6.00 14.37 21.82

32 k 5.81 14.63 32.40 34.57

48 k 17.92 22.32 45.13 42.81

64 k 28.64 28.42 54.67 47.84

are still adopted. Furthermore, an interchannel removal block, a progressive quan-
tization block, and a context-based QM coder block are added to construct the
PSMAC audio codec.

Two types of experimental results are shown in this section. One is measured
by an objective metric, that is, the mask-to-noise ratio (MNR), and the other is
measured in terms of a subjective metric, that is, listening test score. It is worth-
while to mention that the coding blocks adopted from AAC have not been modi-
fied to improve the performance of the proposed PSMAC codec for fair compari-
son. Moreover, the test audio that produced the worst performance by the MPEG
reference code was not selected in the experiment.

11.7.1. Results using MNR measurement

Two multichannel audio materials are used in this experiment to compare the per-
formance of the proposed PSMAC algorithm with MPEG AAC’s [62] main profile
codec. One is a one-minute long ten-channel2 audio material called “Messiah,”
which is a piece of classical music recorded live in a real concert hall. Another one
is an eight-second long five-channel3 music called “Herre,” which is a piece of pop
music and was used in the MPEG-2 AAC standard (ISO/IEC 13818-7) confor-
mance work.

11.7.1.1. MNR progressive

The performance comparison of MPEG AAC and the proposed PSMAC for the
normal MNR progressive mode are shown in Table 11.1. The average MNR shown
in the table is calculated by equation (10.7) and (10.8).

Table 11.1 shows the MNR values for the performance comparison of the non-
progressive AAC algorithm and the proposed PSMAC algorithm when working in
the MNR progressive profile. Values in this table clearly show that our codec out-
performs AAC for both testing materials at lower bit rates and only has a small
performance degradation at higher bit rates. In addition, the bitstream generated

2The ten channels include center (C), left (L), right (R), left wide (LW), right wide (RW), left
high (LH), right high (RH), left surround (LS), right surround (RS), and back surround (BS).

3The five channels include C, L, R, LS, and RS.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Experimental results 195

Table 11.2. MNR comparison for random access and channel enhancement profiles.

Channel enhancement

Random access Enhanced channel Other channels

Other area Enhanced area w/o enhance w/ enhance w/o enhance w/ enhance

3.99 13.94 8.42 19.23 1.09 −2.19

by MPEG AAC only achieves an approximate bit rate and is normally a little bit
higher than the desired one while our algorithm achieves a much more accurate
bit rate in all carried out experiments.

11.7.1.2. Random access

The MNR result after the base layer reconstruction for the random access mode
by using the test material “Herre” is shown in Table 11.2. When listening to the re-
constructed music, we can clearly hear the quality difference between the enhanced
period and the rest of the other period. The MNR value given in Table 11.2 verifies
the above claim by showing that the mean MNR value for the enhanced period is
about 10 dB per subband better than the rest of other periods. It is common that
we may prefer a certain part of a music to others. With the random access profile,
the user can individually access a period of music with better quality than others
when the network condition does not allow a full high quality transmission.

11.7.1.3. Channel enhancement

The performance results using test material “Herre” for the channel enhancement
mode is also shown in Table 11.2. Here, the center channel has been enhanced
with enhancement parameter 1. Note that the total bit rate is kept the same for
both codecs, that is, each has an average bit rate of 16 kbit/s/ch. Since we have to
separate the quantization and the coding control of the enhanced physical channel
as well as simplify the implementation, KLT is disabled in the channel enhance-
ment mode. Compared with the normal MNR progressive mode, we find that the
enhanced center channel has an average of more than 10 dB per subband MNR
improvement, while the quality of other channels is only degraded by about 3 dB
per subband.

When an expert subjectively listens to the reconstructed audio, the one with
the center channel enhanced has a much better performance and is more appeal-
ing, compared with the one without channel enhancement. This is because the
center channel of “Herre” contains more musical information than other channels
and a better reconstructed center channel will give listeners better overall quality,
which is basically true for most multichannel audio materials. Therefore, this ex-
periment suggests that with a narrower bandwidth, audio generated by the channel
enhancement mode of the PSMAC algorithm can provide the user a more com-
pelling experience with either a better reconstructed center channel or a channel
which is more interesting to a particular user.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

196 Progressive syntax-rich multichannel audio codec

11.7.2. Subjective listening tests

In order to further confirm the advantage of the proposed algorithm, a formal sub-
jective listening test according to ITU recommendations [1, 2, 3] was conducted in
an audio lab to compare the coding performance of PSMAC and that of the MPEG
AAC main profile codec. The same group of listeners described in Section 9.8.3
participated in the listening test. During the test, for each test sound clips, the sub-
jects listened to three versions of the same sound clips, that is, the original one
followed by two processed ones (one by PSMAC and one by AAC in random or-
der). The subjects were allowed to listen to these files as many times as possible
until they were comfortable to give scores to the two processed sound files for each
test material.

The five-grade impairment scale given in Recommendation ITU-R BS. 1284
[2] was adopted in the grading procedure and utilized for final data analysis. Be-
sides “Messiah” and “Herre,” two ten-channel audio materials called “Band” and
“Herbie” were included in this subjective listening test, where “Band” is a live 16
microphone recording of a marching band playing a rock and roll song in a foot-
ball field, and “Herbie” is a studio recording of a jazz piece remixed for 10.2 from
48 original tracks. According to ITU-R BS. 1116-1 [1], audio files selected for the
listening test were of short duration, that is, 10 to 20 seconds long.

Figure 11.9 shows the score given to each test material coded at four different
bit rates during the listening test for multichannel audio materials. The solid verti-
cal line represents the 95% confidence interval, whereas the middle line shows the
mean value and the other two lines at the boundary of the vertical line represent
the upper and lower confidence limits [104]. It is clear from Figure 11.9 that at
lower bit rate, such as 16 kbit/s/ch or 32 kbit/s/ch, the proposed PSMAC algorithm
outperforms MPEG AAC in all four test materials. While at a higher bit rate, such
as 48 kbit/s/ch or 64 kbit/s/ch, PSMAC achieves comparable or a little degraded
subjective quality when compared with MPEG AAC.

To demonstrate that the PSMAC algorithm achieves excellent coding perfor-
mance even for single-channel audio files, another listening test for mono sound
was also carried out. Three single-channel single-instrument test audio materi-
als, known as “GSPI,” “TRPT,” and “VIOO” were used in this experiment and
the performance between the standard fine-grain scalable audio coder provided
by MPEG-4 BSAC [61, 66] and the single-channel mode of the proposed PSMAC
algorithm was compared.

Figure 11.10 shows the listening test results for the three single-channel au-
dio materials. For cases where no confidence intervals are shown, this means that
all four listeners happened to give the same score to the given sound clip. From
this figure, we can clearly see that at lower bit rates, for example, 16 kbit/s/ch and
32 kbit/s/ch, our algorithm generates better sound quality for all test sequences. At
higher bit rates, for example, 48 kbit/s/ch and 64 kbit/s/ch, our algorithm outper-
forms MPEG-4 BSAC for two out of three test materials and is only slightly worse
for the “TRPT” case.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Conclusions 197

Bit rate (bit/s/ch)

16 k 32 k 48 k 64 k

Q
u

al
it

y

0

1

2

3

4

5 A =MPEG AAC
P = PSMAC

A
P

A

P

A P
A

P

Messiah

Bit rate (bit/s/ch)

16 k 32 k 48 k 64 k

Q
u

al
it

y

0

1

2

3

4

5 A =MPEG AAC
P = PSMAC

A P

A

P
A P A P

Band

Bit rate (bit/s/ch)

16 k 32 k 48 k 64 k

Q
u

al
it

y

0

1

2

3

4

5 A =MPEG AAC
P = PSMAC

A
P

A

P
A P

A P

Herbie

Bit rate (bit/s/ch)

16 k 32 k 48 k 64 k

Q
u

al
it

y

0

1

2

3

4

5 A =MPEG AAC
P = PSMAC

A
P

A
P

A
P

A P

Herre

Figure 11.9. Listening test results for multichannel audio sources.

11.8. Conclusions

A progressive syntax-rich multichannel audio coding algorithm is presented in
this research. This algorithm utilizes KLT in the preprocessing stage to remove in-
terchannel redundancy inherent in the original multichannel audio source. Then,
rules for channel selection and subband selection were developed and the SAQ
process was used to determine the importance of coefficients and their layered in-
formation. At the last stage, all information was losslessly compressed by using the
context-based QM coder to generate the final multichannel audio bitstream.

The distinct advantages of the proposed algorithm over most existing multi-
channel audio codecs not only lie in its progressive transmission property, which
can achieve a precise rate control, but also in its rich-syntax design. Compared
with the new MPEG-4 BSAC tool, PSMAC provides a more delicate subband se-
lection strategy such that the information, which is more sensitive to the human
ear, is reconstructed earlier and more precisely at the decoder side. It was shown
by experimental results that PSMAC has a comparable performance to nonpro-
gressive MPEG AAC at several different bit rates when using the multichannel test
material, while PSMAC achieves better reconstructed audio quality than MPEG-
4 BSAC tools when using single-channel test materials. Moreover, the advantage
of the proposed algorithm over the other existing audio codec is more obvious at
lower bit rates.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

198 Progressive syntax-rich multichannel audio codec

Bit rate (bit/s/ch)

16 k 32 k 48 k 64 k

Q
u

al
it

y

0

1

2

3

4

5

6
B = BSAC
P = PSMAC

B
P

B

P B

P

B

P

GSPI

Bit rate (bit/s/ch)

16 k 32 k 48 k 64 k

Q
u

al
it

y

0

1

2

3

4

5

6
B = BSAC
P = PSMAC

B
P

B

P

B P B
P

TRPT

Bit rate (bit/s/ch)

16 k 32 k 48 k 64 k

Q
u

al
it

y

0

1

2

3

4

5

6
B = BSAC
P = PSMAC

B
P

B

P B

P
B

P

VIOO

Figure 11.10. Listening test results for single-channel audio sources.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

12
Error-resilient scalable audio
codec design

12.1. Introduction

High quality audio communication becomes an increasingly important part of the
global information infrastructure. Compared with speech, audio communication
requires a larger volume of data being transmitted in a timely manner, and a highly
efficient compression scheme for the storage and transmission of audio data is crit-
ical. Extensive research on audio coding has been conducted in both academia
and industry for years. Several standards, including AC-3, MPEG-1, MPEG-2,
and MPEG-4 [18, 8, 60, 58, 64], have been established in the past decade. Ear-
lier standards, for example, MPEG-1, MPEG-2, or AC-3 were primarily designed
for coding efficiency and they only allow a fixed bit rate coding structure. These
algorithms are not ideal for audio delivery over noisy wireless IP networks with a
time-varying bandwidth, since they do not take error resilience and VBR (variable
bit rates) traffic into consideration.

Recent technological developments have led to several mobile systems aim-
ing at personal communications services (PCS), supporting both speech and data
transmission. Mobile uses usually communicate over wireless links characterized
by lower bandwidths, higher transmission error rates, and more frequent discon-
nection in comparison to wired networks. To transmit high quality audio through
an IP network with VBR traffic, a scalable audio compression algorithm, which
is able to transfer audio signals from coarse to fine qualities progressively, is de-
sirable. However, to achieve a good coding gain, most existing scalable techniques
adopt variable-length coding in their entropy coding part, which makes the en-
tire bitstream susceptible to channel noise. The traditional channel coding scheme
only protects bits equally, without giving important bits higher protection, which
results in a situation that a small bit error rate may lead to reconstructed au-
dio with annoying distortion or even unacceptable perceptual quality. Since most
audio compression standards and network protocols, such as the MPEG-4 ver-
sion 2 audio codec, were designed for wired audio communications, they would
not be effective if directly applied to the wireless case. A scalable bitstream with
joint source-channel coding would be truly needed in a wireless audio streaming
system.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

200 Error-resilient scalable audio codec design

MPEG-4 version 2 supports audio fine-grain scalability and error-robust cod-
ing [58, 64]. Its error resilient AAC coder does not have the progressive property.
Its BSAC utilizes segmented binary arithmetic (SBA) coding to avoid error propa-
gation within spectral data. However, this feature alone is not sufficient to protect
the audio data in an effective manner over the wireless channel. Compared to work
on error-resilient image/video coding, the number of papers on error resilient au-
dio coding is relatively small. Data partitioning and reversible variable length codes
were adopted by Zhou et al. in [146] to provide the error-resilient feature to the
scalable audio codec in [145]. Based on the framework in [146], Wang et al. incor-
porated an unequal error protection scheme in [131]. In Chapter 11, we proposed
a progressive high quality audio coding algorithm, which has been shown to out-
perform MPEG-4 version 2’s scalable audio codec. In this work, we extend the
error-free progressive audio codec to an error-resilient scalable audio codec (ER-
SAC) by reorganizing the bitstream and modifying its noiseless coding part. The
proposed error-resilient scalable audio codec actually uses the MPEG advanced
audio coding (AAC) as the baseline together with an error robust scalable trans-
mission module, which is specifically designed for WCDMA channels.

In the proposed ERSAC codec, a dynamic segmentation scheme is first used
to divide the audio bitstream into several variable-length segments. In order to
achieve good error resiliency, the length of each segment is adaptively determined
by the characteristics of WCDMA channels. The arithmetic coder and its proba-
bility table are reinitialized at the beginning of each segment, so that synchroniza-
tion can be achieved at the decoder side even when error occurs. Bits within each
segment are ordered in such a way that more important bits are placed near the
synchronization point. In addition, an unequal error protection scheme is adopted
to improve robustness of the final bitstream, where Reed-Solomon codes are used
to protect data bits, and the parameters of each Reed-Solomon code is determined
by the WCDMA channel condition. Moreover, a frequency interleaving technique
is adopted when data packetization is performed so that the frequency informa-
tion belonging to the same period is sent in different packets. In this way, even if
some packets belonging to the header or the base layer are corrupted, we can still
hear a poorer quality period of sound with some frequency component lost (un-
less packets corresponding to the same period of sound are corrupted at the same
time). We test the performance of our algorithm using several single-channel au-
dio materials under different error patterns of WCDMA channels. Experimental
results show that the proposed approach has excellent error resiliency at a regular
user bit rate of 64 kb/s.

The rest of this chapter1 is organized as follows. Some characteristics of the
WCDMA channel are summarized in Section 12.2. The layered audio coding struc-
ture is described in Section 12.3. Section 12.4 explains the detailed error-resilient
technique in the proposed algorithm. Some experimental results are shown in
Section 12.5 and concluding remarks are given in Section 12.6. Some discussions
and future work directions are addressed in Section 12.7.

1Part of this chapter represents work published before, see [141].

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Layered coding structure 201

12.2. WCDMA characteristics

The third generation (3G) mobile communication systems have been designed for
effective wireless multimedia communication [52]. The wideband direct-
sequence code division multiple access (WCDMA) technology has been adopted
by the UMTS standard as the physical layer for air interface. WCDMA has the
following characteristics.

(1) WCDMA is designed to be deployed in conjunction with GSM.
(2) The chip rate of 3.84 Mcps used leads to a carrier bandwidth of approx-

imately 5 MHz.
(3) WCDMA supports highly variable user data rates; in other words, the

concept of obtaining bandwidth on demand (BoD) is well supported.
(4) WCDMA supports two basic modes of operation: frequency division

duplex (FDD) and time division duplex (TDD).
(5) WCDMA supports the operation of asynchronous base stations.
(6) WCDMA employs coherent detection on uplink and downlink signals

based on the use of pilot symbols or common pilot.
(7) The WCDMA air interface has been crafted in such a way that advanced

CDMA receiver concepts can be deployed by the network operator as a
system option to increase capacity and/or coverage.

Two reference error-resilient simulation studies [67, 68] for the characteriza-
tion of the radio channel performance of the 1.9 GHz WCDMA air interface were
recently carried out by the ITU-Telecommunications Standardization Sector. In
the study of 1998, which is referred to as study #1, only six simulation results for a
fixed data bit rate of 64 kb/s were obtained. In the study of 1999, which is referred
to as study #2, simulation results were extended to four different data bit rates,
including 32 kb/s, 64 kb/s, 128 kb/s, and 384 kb/s. Study #2 also replaced convo-
lutional codes by turbo codes so that an even better channel performance can be
achieved. In this work, we only consider error-resilient coding for single-channel
audio coded at 64 kb/s. The main characteristics of all error patterns correspond-
ing to 64 kb/s contained in the two studies are listed in Table 12.1. Each error pat-
tern file is 11,520,000 bits long corresponding to 3 minutes of data transmission.
The bit error is a binary one. Within a byte the least significant bit is transmitted
first.

12.3. Layered coding structure

12.3.1. Advantages of the layered coding

The most popular and efficient way to construct a scalable bitstream is to use the
layered coding structure. When the information from the first and the most im-
portant layer called the base layer is successfully retrieved from the bitstream at
the decoder side, a rough outline of the entire sound file can be recovered. When
the information from progressively higher level layers, called enhancement layers,
are successfully retrieved from the bitstream, a sound file with increasingly better

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

202 Error-resilient scalable audio codec design

Table 12.1. Characteristics of WCDMA error patterns.

Study # File # File name
Mobile speed Average BER

(km/h) (b/s)

1 0 WCDMA-64 kb-005 hz-4 3 8.2e-5

1 1 WCDMA-64 kb-070 hz-4 40 1.2e-4

1 2 WCDMA-64 kb-211 hz-4 120 9.4e-5

1 3 WCDMA-64 kb-005 hz-3 3 1.4e-3

1 4 WCDMA-64 kb-070 hz-3 40 1.3e-3

1 5 WCDMA-64 kb-211 hz-3 120 9.7e-4

2 6 WCDMA 64 kb 50 kph 7e-04 50 6.6e-4

2 7 WCDMA 64 kb 50 kph 2e-04 50 1.7e-4

2 8 WCDMA 64 kb 3 kph 5e-04 3 5.1e-4

2 9 WCDMA 64 kb 3 kph 2e-04 3 1.6e-4

2 10 WCDMA 64 kb 3 kph 7e-05 3 7.2e-5

2 11 WCDMA 64 kb 3 kph 3e-06 3 3.4e-6

2 12 WCDMA 64 kb 50 kph 6e-05 50 6.0e-5

2 13 WCDMA 64 kb 50 kph 3e-06 50 3.4e-6

quality can be reconstructed. When the bitstream is transmitted over error-prone
channels, such as the wired and/or wireless IP networks, the advantage of the lay-
ered coded bitstream is more notable than the fixed rate bitstreams. For a fixed
rate bitstream, when an error occurs during transmission, the decoder can only
reconstruct the period before the error and the period after the decoder regains
the synchronization caused by the error. The resulting sound file may contain the
lost period of several milliseconds to several seconds long, depending on how long
it takes to regain synchronization at the decoder site. If the bitstream cannot be
resynchronized, the data after the error may be completely lost, which results in
a partially reconstructed sound file. However, when an error occurs during trans-
mission of a layered coded bitstream, unless the error occurs in the base layer,
the decoder can still recover the sound file, but has sound quality degradation in
enhancement layers for some period of time. Experiments suggest that, even if it
contains poorer quality for some period of time, the reconstruct sound file of full
length would give listeners better sensation than a sound file with some completely
lost periods.

12.3.2. Main features of scalable codec

The major difference between the proposed scalable codec design and the tradi-
tional fixed bit rate codec lies in the quantization module and the entropy coding
module. The ERSAC algorithm inherits the basic idea of the progressive quanti-
zation and context-based QM coder in PSMAC algorithm in order to achieve the
fine-grain bit rate scalability. In order to classify and protect bits according to their
importance, bits are reordered so that bits which belong to the same priority are
grouped together for easier protection.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Error-resilient codec design 203

Compared with PSMAC algorithm, the major modification in the progres-
sive quantization module lies in how to transmit those subband significant bits.
In PSMAC, bits which indicate the subband significance are sent together with the
coefficient bits, while in the ERSAC algorithm, these bits are sent in the header.
In PSMAC, the threshold used to determine the subband significance is MNR val-
ues and they are updated after each coding layer, while in ERSAC, SMR values
are adopted for determination of the subband significance in every layer. Thus the
subband selecting sequence might not be the same when using PSMAC and ER-
SAC algorithms for some input audio files. However, experiments show that the
perceptual quality of the reconstructed sound files is quite similar when adopting
these two slightly different subband selection rules.

In ERSAC, at layer i, i ≤ 3, an empirical threshold Ti based on the signal-
to-mask ratio (SMR) is calculated. Only those subbands whose SMR values are
greater or equal to Ti will be selected and become significant. At the next layer,
that is, layer i + 1, the SMR values of newly included subbands together with the
remaining nonsignificant subbands in previous layers will be compared with Ti+1,
and an updated significant subband list will be created.

Figure 12.1 provides an example to show how subbands are selected from
layer 0 to layer 3. To better illustrate this procedure, L0, L1, L2, and L3 are set to
6, 10, 14, and 18, respectively, in this example. If the bit budget is not exhausted
after the third enhancement layer, more layers can be encoded. All subbands will
be included in the significant list from this point on. At the encoder, the subband
significance information is included in the header, where a binary digit “1” rep-
resents a significant subband and “0” represents a nonsignificant subband. Thus,
in the example given in Figure 12.1, the subband significance information bits
should be

0101111011011001100101011. (12.1)

Whenever the encoder finds a significant subband, it visits coefficients
inside this subband, performs progressive quantization on coefficients, and then
does the entropy coding. Here, we adopt the successive approximation quanti-
zation (SAQ) scheme to quantize the magnitude of coefficients and the context-
based QM coder for the noiseless coding of all generated bits. Detailed descrip-
tion of coefficients’ SAQ and context-based QM coder can be found in Chapter 11.

12.4. Error-resilient codec design

12.4.1. Unequal error protection

When a bitstream is transmitted over the network, errors may occur due to chan-
nel noise. Even with channel coding, errors can still be found in received audio
data. In particular, for highly compressed audio signals, a small bit error rate can
lead to highly annoying or perceptually unacceptable distortion. Instead of de-
manding an even lower bit error rate (BER), which is expensive to achieve in a
wireless environment, the use of joint source and channel coders have been studied

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

204 Error-resilient scalable audio codec design

T
h

ird
en

h
an

cem
en

t
layer

Secon
d

en
h

an
cem

en
t

layer

First
en

h
an

cem
en

t
layer

B
ase

layer

0
1

0
1

0
1

1

SB
9

SB
11

SB
14

SB
15

SB
16

SB
17

SB
18

1
0

0
1

1
0

SB
3

SB
9

SB
11

SB
12

SB
13

SB
14

1
0

1
1

0
1

SB
1

SB
3

SB
7

SB
8

SB
9

SB
10

0
1

0
1

1
1

SB
1

SB
2

SB
3

SB
4

SB
5

SB
6

SB
i

SB
i

N
on

sign
ifi

can
t

su
bban

d
i

Sign
ifi

can
t

su
bban

d
i

Fig
u

re
12.1.

A
sim

plifi
ed

exam
ple

ofh
ow

su
bban

ds
are

selected
from

layers
0

to
3.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Error-resilient codec design 205

in [144, 118, 131] and shown to be promising in achieving good perceptual quality
without complex processing.

Most coded audio bitstreams contain certain bits that are more sensitive to
transmission errors than others in audio reconstruction. Unequal error protec-
tion (UEP) offers a mechanism to relate the transmission error sensitivity to the
error protection capability. An UEP system typically has the same average trans-
mission rate as a corresponding equal error protection (EEP) system but offers an
improved perceived signal quality at the same channel signal-to-noise ratio. In or-
der to prevent the complete loss of transmitted audio, the critical bits need to be
well protected from channel errors. Examples of critical bits include the headers
and the most significant bits of source symbols. The loss of header’s information
usually leads to catastrophic sound distortion while an error in the most significant
bit results in higher degradation than that of others. Thus, high-priority bits need
to be protected using channel coding or other methods. However, the redundancy
due to channel coding reduces compression efficiency. A good trade-off between
rates of the source coder and the channel coder has to be considered.

The study of error-correcting codes began in late 1940s. Among several error
correcting codes [87, 82], such as Hamming, BCH, cyclic, and Reed-Muller codes,
the Reed-Solomon code is chosen in our implementation because of its excellent
performance on correcting burst errors, which is the most common case in wire-
less channel transmission. Reed-Solomon codes are block-based error correcting
codes with a wide range of applications in digital communications and storage.
The number and the type of errors that can be corrected by Reed-Solomon codes
depend on code parameters. For a fixed number of data symbols, codes that can
detect and correct a smaller number of bit errors have smaller parity check sym-
bols, thus producing smaller redundancy bits. In this work, data in the compressed
audio bitstreams are protected according to their error sensitivity classes. Exper-
imental results suggest that errors in both headers and the base layer lead to un-
acceptable reconstructed audio quality, while the same amount of errors in the
enhancement layers results in less perceptual distortion as the number of the en-
hancement layers increases. Therefore, bits in the header and the base layer are
given the same highest priority, bits in the first enhancement layer are given the
moderate priority, and bits in the second and higher enhancement layers are given
the lowest priority during the error protection procedure.

To further determine the error correcting capability of Reed-Solomon codes
used for each error sensitivity class, more detailed analysis is performed on all
WCDMA error patterns. Since the Reed-Solomon code is a byte-based error cor-
recting code, the mean and the standard deviation of the byte error rate are cal-
culated for each error file. Files with similar byte error rate characteristics are
combined into one group. All fourteen error patterns are finally divided into four
groups, whose virtual mean and standard deviation values are then empirically
determined. Based on these virtual statistical data, the target error correcting
capability of the Reed-Solomon code is finally calculated by the following formula

etarget(g, c) = meanbyte(g) + fbyte(g, c)× stdbyte(g), (12.2)

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

206 Error-resilient scalable audio codec design

where etarget(g, c), meanbyte(g), and stdbyte(g) are the target error correcting abil-
ity (in percentage), the virtual mean, and the virtual standard deviation of the
byte error rate for group g and error sensitive class c, respectively, and fbyte(g, c) is
a function of group number g and error sensitivity class number c.

12.4.2. Adaptive segmentation

Although the arithmetic coder has excellent coding efficiency and is adopted by al-
most all layer-coded source coding techniques, the arithmetic coder together with
other variable-length codes are known to be highly susceptible to channel errors
due to the synchronization loss at the decoder side, which leads to error propaga-
tion, the loss of some source symbols, and even the crash of the decoder. To prevent
these undesirable results and, at the same time, to consider the redundancy gen-
erated by the UEP scheme, an adaptive segmentation strategy is developed in this
work. That is, the generated bitstream is partitioned into several independent seg-
ments. By “independent” we mean that the entropy coding module at the decoder
side can independently decode each segment. This can be achieved as follows. At
the beginning of each segment, the arithmetic coder is restarted, its probability ta-
bles are refreshed, and some stuffing bits are appended at the end of each segment
so that each segment is byte-aligned. In this way, several independent synchro-
nization points are provided in the bitstream and errors can only propagate until
the next synchronization point, which means that errors will be confined to their
corresponding segments and will not affect the decoding of other segments.

The determination of the segment length is another issue to be addressed.
Since the arithmetic coder has to be restarted and flushed for each segment, seg-
ments with a length too small will considerably degrade the entropy coding ef-
ficiency. Thus, a good trade-off between the coding performance and the error
resilient capability should be studied. The use of the bit error rate as a parameter
to determine the segment length provides an intuitive and straightforward solu-
tion. However, after some exploration, we find that the error distribution pattern
should also be taken into consideration.

Experimental results show that error files with a similar bit error rate may
have a quite different error distribution pattern. We introduce a concept called
the error occurrence period, which is defined as the length (in bits) between two
neighboring errors. Here, it is assumed that there are at least eight or more free bits
between these two neighboring errors. The average error occurrence period and its
standard deviation are calculated for each error pattern file. Files with similar char-
acteristics are grouped together. Then, the virtual mean and the virtual standard
deviation value of the error occurrence period are empirically determined for each
group. Finally, the segment length is calculated via

seglen(g) = meanoccur(g) + foccur(g)× stdoccur(g), (12.3)

where seglen(g), meanoccur(g), and stdoccur(g) are the segment length, the virtual
mean, and the virtual standard deviation of the error occurrence period for group

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Error-resilient codec design 207

g, respectively, and foccur(g) is a function of group number g. Note that the group
number g in equation (12.3) may not be the same as that in equation (12.2).

12.4.3. Frequency interleaving

Traditionally, all bits belonging to the same time position are packed together and
sent into the bitstream. When errors happen in the global header or the data part
of the base layer, the corresponding period of sound data cannot be reconstructed.
Instead, it may have to be replaced by silence or other error concealment technol-
ogy. Simple experiments show that substituting the corrupted period with silence
in a reconstructed sound file generates an unpleasant sound effect. So far, there is
no effective error concealment technology to recover the lost period in audio. In
order to improve the performance in this situation, a novel frequency interleav-
ing method is proposed and incorporated in the ERSAC algorithm. With this new
method, bits corresponding to different frequency components in the same time
position are divided into two groups. Then, even if some packets are corrupted
during transmission, the decoder can still be able to reconstruct a poorer quality
version of the sound with some frequency component missing.

Figure 12.2 depicts a simple example on how the frequency interleaving is
implemented in ERSAC. In this figure, only significant subbands for each layer
in Figure 12.1 are shown. Adjacent significant subbands are divided into differ-
ent groups. Bits belonging to a different group will not be included in the same
packet. This way, bits in different subbands, which correspond to different fre-
quency intervals, are interleaved so that a perceptually better decoded sound file
can be reconstructed when some packets are corrupted.

To show the advantage of the frequency interleaving method, a simple experi-
ment is carried out. During the experiment, we artificially corrupt two packets for
each test sound file. Both packets belong to the data part of the base layer in the
bitstream. The corresponding time positions of these packets are chosen such that
one packet contains information for a smooth period and the other one contains
information for a period with rapid melody variations. With one packet lost in
the base layer, coefficients corresponding to certain frequency areas cannot be re-
constructed. Therefore, the reconstructed sound clips may contain a period with
defects. However, the degree of the perceptual impairment differs a lot from sam-
ple to sample. Table 12.2 lists the experiment results for the frequency interleaving
method.

We see from this table that, for some input sound files, such as the one named
“VIOO,” users can hardly detect the defect of the reconstructed file. For some other
input sound files, such as the one named “TRPT,” users are able to catch the defect
in the smooth period, but the perceptual impairment is in the level of “perceived
but not annoying.” For input sound files like “GSPI,” which has a wide range of
frequency components, users can easily detect the defect that may be somewhat
annoying. On the other hand, if no frequency interleaving is enforced, when cor-
rupted packets reside in the header or the data part of the base layer, no informa-
tion for the corresponding time period can be recovered and the time period can

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

208 Error-resilient scalable audio codec design

T
h

ird
en

h
an

cem
en

t
layer

Secon
d

en
h

an
cem

en
t

layer

First
en

h
an

cem
en

t
layer

B
ase

layer

SB
1

SB
2

SB
3

SB
4

SB
5

SB
6

SB
7

SB
8

SB
10

SB
11

SB
12

SB
13

SB
15

SB
17

SB
18

SB
1

SB
2

SB
3

SB
4

SB
5

SB
6

SB
7

SB
8

SB
10

SB
12

SB
13

SB
1

SB
2

SB
4

SB
5

SB
6

SB
7

SB
8

SB
10

SB
2

SB
4

SB
5

SB
6

SB
i

SB
i

Su
bban

d
i

in
grou

p
A

Su
bban

d
i

in
grou

p
B

Fig
u

re
12.2.

E
xam

ple
offrequ

en
cy

in
terleavin

g.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Error-resilient codec design 209

Table 12.2. Experimental results of the frequency interleaving method.

Input file

Affected area VIOO TRPT GSPI

Noticeable only Noticeable but Noticeable and

Smooth area when listened to not annoying somewhat

carefully annoying

Area with rapid Hardly Hardly Noticeable but

melody variations noticeable noticeable not annoying

only be played back by silence if there is no concealment technique involved. We
can decisively conclude that a sound file with a sudden silence period inserted is
much more annoying than the one constructed by the proposed frequency inter-
leaving method.

12.4.4. Bitstream architecture

The bitstream architecture of the proposed algorithm is illustrated in Figure 12.3.
The entire bitstream is composed of a global header and several layered informa-
tion. Bits contained in lower layers represent information of perceptually more
important coefficients’ values. In other words, the bitstream contains all lower bit
rate codes at the beginning of the bitstream so that it can provide different QoS to
different end users. We look at the details of each layer. Within each layer, there are
many variable-length segments, and each segment can be independently decoded.
At the beginning of each segment, there is a segment header. These segment header
bits are utilized to indicate the synchronization point. The data part within seg-
ments is partitioned into several packets. One packet is considered as a basic unit
input into the Reed-Solomon coding block, where parity check bits are appended
after data bits. At the end of each segment, there are some stuffing bits so that the
whole segment is byte-aligned.

12.4.5. Error control strategy

When the end user receives a bitstream, the Reed-Solomon decoder is employed to
detect and correct any possible errors that had occurred during channel transmis-
sion. Once an error that cannot be corrected is detected, its position information,
such as the layer number, the segmentation number, and the packet number will
be marked. If the concerned error occurs in the global header or the data part of
the base layer, all bits belonging to the corresponding time position will not be
reconstructed and this period of sound will be replaced with silence. Some error
concealment strategy may be involved to make the final audio file sound smoother.
However, if the same error occurs in the data part of any of the other enhancement
layers, all bits belonging to the corresponding time position will not be used to re-
fine the spectral data so that this error will not cause unpleasant distortions.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

210 Error-resilient scalable audio codec design

Data P

HS Packet #1 Packet #2 . . . Packet #i . . . Packet #k S

Independent

synchronization point

Segment #1 Segment #2 . . . Segment #i . . . Segment #n

HG Base layer 1st enhancement layer . . . ith enhancement layer . . .

P: parity check
S: stuffing

HS: segment header

HG: global header

Figure 12.3. The bitstream architecture.

Experimental results show that errors that cannot be corrected in layer two
or higher have little impact on the final audio file. Normal listeners can hardly
perceive any impairment, if not listening carefully. If these errors are in layer one,
normal listeners may perceive a little but not annoying impairment in the final
audio file. There is another type of error that happens to bits belonging to the
segment header. When this type of error occurs, it may cause the decoder to lose
synchronization and stop decoding earlier than expected. In this scenario, the er-
ror affects more frames which can be well beyond one specific segment and the
resulting audio file may correspond to a lower rate reconstructed audio file with
poorer quality.

12.5. Experimental results

The proposed ERSAC system has been implemented and tested. The basic audio
coding blocks [62] of the MPEG AAC main profile encoder, including the psy-
choacoustic model, filter bank, and temporal noise shaping are adopted to gener-
ate spectral data. An error-resilient progressive quantization block and a context-
based QM coder block are added at the end to construct the error-robust scalable
audio bitstream. Three single-channel sound files, that is, GSPI, TRPT, and VIOO,
which are downloaded and processed from the MPEG sound quality assessment
material (SQAM, http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/),
are selected to test the coding performance of the proposed algorithm. The mask-
to-noise ratio (MNR) values are adopted here as the objective sound quality mea-
surement.

Figure 12.4 and Table 12.3 show the experimental results for three test ma-
terials using different WCDMA error pattern files, where the mean MNR and the
average MNR values are calculated by equations (10.7) and (10.8).

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Experimental results 211

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

/s
u

bb
an

d)

GSPI

30

40

50

60

70

80

90

100

110

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

/s
u

bb
an

d)

TRPT

20

40

60

80

100

Subband

5 10 15 20 25

M
ea

n
M

N
R

(d
B

/s
u

bb
an

d)

VIOO

−20

0

20

40

60

Figure 12.4. Mean MNR values of reconstructed audio files through different WCDMA channels.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

212 Error-resilient scalable audio codec design

Table 12.3. Average MNR values of reconstructed audio files through different WCDMA channels.

Error pattern Error pattern Ave. MNR (dB/subband)

file # file name GSPI TRPT VIOO

0 WCDMA-64 kb-005 hz-4 83.24 57.82 46.57

1 WCDMA-64 kb-070 hz-4 82.97 57.82 46.57

2 WCDMA-64 kb-211 hz-4 83.18 57.82 46.53

3 WCDMA-64 kb-005 hz-3 83.25 57.64 46.25

4 WCDMA-64 kb-070 hz-3 83.24 57.49 46.47

5 WCDMA-64 kb-211 hz-3 83.24 57.77 46.43

6 WCDMA 64 kb 50 kph 7e-04 82.72 57.24 46.38

7 WCDMA 64 kb 50 kph 2e-04 83.36 57.80 46.31

8 WCDMA 64 kb 3 kph 5e-04 81.96 56.82 46.23

9 WCDMA 64 kb 3 kph 2e-04 83.39 57.86 46.45

10 WCDMA 64 kb 3 kph 7e-05 83.39 57.86 46.61

11 WCDMA 64 kb 3 kph 3e-06 83.24 57.82 46.57

12 WCDMA 64 kb 50 kph 6e-05 83.39 57.86 46.58

13 WCDMA 64 kb 50 kph 3e-06 83.24 57.82 46.57

Based on results shown in Figure 12.4 and Table 12.3, we have the following
observations.

(1) No error: there are no errors that cannot be corrected (in GSPI error pat-
tern 0, 4, 5, 9, 10, 11, 12, 13; TRPT error pattern 0, 1, 2, 9, 10, 11, 12, 13; VIOO
error pattern 0, 1, 10, 11, 13). This happens when either there is no error during
the period when the bitstream is transmitted over the WCDMA channel or there
are errors but they have been corrected by ERSAC’s error detection scheme. Since
more than half of the experiment cases belong to this category, it shows that the
proposed ERSAC algorithm has an excellent error-resilient capability.

(2) Error case 1: error occurs in the global header and the data part of the base
layer (none is observed in our experiment). When this happens, the decoder has
no way to reconstruct the affected period of the sound file. Then, this period will
be error concealed by the repetition of data in the previous period.

(3) Error case 2: error occurs in the segment header (none is observed in our
experiment). When this happens, the decoder may lose synchronization and will
not be able to continue decoding the proceeding bitstream, which means the de-
coder will stop refining all coefficients’ values. If this happens in lower layers, for
example, layer 0 or layer 1, the reconstructed audio should have poor quality and
the end user may easily perceive the distortion. However, if this happens in higher
layers, for example, layer 2 or higher, errors will not have big impact on the recon-
structed sound file.

(4) Error case 3: error occurs in the data part of layer 1 or higher (observed
in all remaining cases). When this happens, the decoder will stop refining coeffi-
cients in the affected period, and the reconstructed sound file has slightly degraded
quality, which belongs to the perceptible distortion degree, but not annoying.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Discussion and future work 213

12.6. Conclusions

We presented an error-resilient scalable audio coding algorithm, which is an ex-
tension of our previous work on progressive audio compression. Compared with
other existing audio codecs, this algorithm not only preserves the scalable prop-
erty, but also incorporates an error-robust scheme specifically designed for
WCDMA channels. Based on the characteristics of the simulated WCDMA chan-
nel, a joint source-channel coding method was developed in this work. The novelty
of this technique lies in its unique unequal error protection, adaptive segmenta-
tion coding structures, and the frequency interleaving technique. Experimental
results showed that the proposed ERSAC achieved a good performance using all
simulated WCDMA error pattern files at a regular user bit rate of 64 kb/s.

12.7. Discussion and future work

12.7.1. Discussion

12.7.1.1. Frame interleaving

Error-resilient algorithms designed for image or video codec normally contain a
block interleaving procedure, where bits belonging to adjacent areas are packed
separately so that any propagated error within packets will not affect a large area.
This is done because human eyes are more sensitive to low frequency compo-
nents while less sensitive to high frequency components when errors are spread
to a larger area. Similarly, the frame interleaving technique can also be considered
for error-resilient audio codec design. However, unlike image or video, experimen-
tal results show that human ears are capable of catching spreading impairment in
sound files. In fact, a longer evenly distorted period is less annoying and more
tolerable than an unsmooth sound period with distortion frequently on and off.
Therefore, no frame interleaving is adopted in the proposed algorithm; packets are
just sent according to their original time sequence.

12.7.1.2. Error concealment

Several error concealment techniques were proposed for speech communications
[40, 72, 132, 127, 107], such as SOLA, WSOLA, frame repetition, waveform sub-
stitution, and so forth. However, these methods are not suitable for high quality
audio because of different applications for speech and audio. The main purpose
of speech is communication while the main purpose of audio is entertainment.
Thus, as long as people can understand, some noise in the background of speech
is tolerable. However, this is certainly not the case for high quality audio. One
common practice of existing speech error concealment methods is the addition of
background noise. As a result, the error-concealed speech has good intelligibility
while just having some additional noise in the background. However, adding noise
in the audio file is normally not tolerated, which makes none of the available error
concealment methods suitable for high quality audio.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

214 Error-resilient scalable audio codec design

12.7.2. Future work

In our current work, the ERSAC algorithm has only been implemented for single-
channel material, and it can be extended to accommodate stereo or even multi-
channel error-resilient codecs. Although only mono or stereo audio applications
are needed in today’s wireless communication systems, we can foresee the need of
sending multichannel audio files over wired or wireless networks in the future.
Thus, error-resilient multichannel audio coding is still a research topic. When
input sound files with more than one channel are incorporated into the error-
resilient codec, channel dependency should be taken into account, and could be
utilized to develop an efficient error concealment strategy.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Bibliography

[1] Recommendation ITU-R BS. 1116-1, Methods for the Subjective Assessment of
Small Impairments in Audio Systems Including Multichannel Sound Systems.

[2] Recommendation ITU-R BS. 1284, Methods for the subjective assessment of
sound quality—general requirements.

[3] Recommendation ITU-R BS. 1285, Pre-Selection Methods for the Subjective
Assessment of Small Impairments in Audio Systems.

[4] CCIR Document TG 10/2 6 (Rev. 2), CCIR Listening Tests for the Assessment
of Low Bit Rate Audio Coding Systems, 1991.

[5] CCIR Recommendations 562-3, Subjective Assessment of Sound Quality, Rec-
ommendations of the CCIR X (1990), Part 1.

[6] IEC Publication 581, High Fidelity Audio Equipment and Systems; Minimum
Performance Requirements. Part 10: Headphones, 1986.

[7] CCIR Recommendation 708, Determination of Electro-Acoustical Properties of
Studio Monitor Headphones, Recommendations of the CCIR X (1990), Part
1.

[8] ATSC Document A/52, Digital Audio Compression Standard (AC-3).
[9] E. Allamanche, R. Geiger, J. Herre, and T. Sporer, “MPEG-4 low delay audio

coding based on the AAC codec,” in Proc. 106th Audio Engineering Society
Convention, Munich, Germany, May 1999, AES preprint 4929.

[10] Y. Ando, Concert Hall Acoustics, Springer, Berlin, Germany, 1985.
[11] D. Kirby and K. Watanabe, Report on the formal subjective listening tests of

MPEG-2 NBC multichannel audio coding, ISO/IEC/SC29/WG11 N1419, Ma-
ceió, Reio de Janeiro, Brazil, November 1996.

[12] MPEG Audio, MPEG-2 AAC Stereo Verification Test Results, ISO/MPEG
N2006, February 1998.

[13] J. Blauert, Spatial Hearing, MIT Press, Cambridge, Mass, USA, 1983.
[14] A. D. Blumlein, Improvements in and relating to sound-transmission, sound-

recording and sound-reproducing systems, 1931, UK Patent 394325.
[15] M. Bosi, K. Brandenburg, S. Quackenbush, et al., “ISO/IEC MPEG-2 ad-

vanced audio coding,” in Proc. 101st Audio Engineering Society Convention,
Los Angeles, Calif, USA, November 1996, AES preprint 4382.

[16] M. Bosi and R. E. Goldberg, Introduction to Digital Audio Coding and Stan-
dards, Kluwer Academic, Norwell, Mass, USA, 2003.

[17] K. Brandenburg, “Evaluation of quality for audio encoding at low bit rates,”
in Proc. 82nd Audio Engineering Society Convention, London, UK, March
1987, AES preprint 2433.

[18] K. Brandenburg and M. Bosi, “ISO/IEC MPEG-2 advanced audio coding:
overview and applications,” in Proc. 103rd Audio Engineering Society Conven-
tion, New York, NY, USA, September 1997, AES preprint 4641.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

216 Bibliography

[19] E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs,
NJ, USA, 1973.

[20] ITU Recommendation BS.708, Determination of the Electro-Acoustical Prop-
erties of Studio Monitor Headphones, 1990.

[21] R. A. Campbell and A. M. Small, “Effect of practice and feedback on fre-
quency discrimination,” Journal of the Acoustical Society of America, vol. 35,
pp. 1511–1514, 1963.

[22] X. Chen, Advanced Mathematical Statistics, Press of University of Science and
Technology of China, Hefei, China, 1999.

[23] D. H. Cooper and T. Shiga, “Discrete-matrix multichannel stereo,” Journal of
the Audio Engineering Society, vol. 20, no. 5, pp. 346–360, 1972.

[24] M. Davis, “The AC-3 multichannel coder,” in Proc. 95th Audio Engineering
Society Convention, New York, NY, USA, October 1993, AES preprint 3774.

[25] M. Dietz, L. Liljeryd, K. Kjorling, and O. Kunz, “Spectral band replication,
a novel approach in audio coding,” in Proc. 112th Audio Engineering Society
Convention, Munich, Germany, May 2002, AES preprint 5553.

[26] M. Dietz and S. Meltzer, CT-aacPlus—a state-of-the-art audio coding scheme,
2002, Coding Technologies, EBU Technical Review.

[27] EBU document Tech. 3276 (2nd edition), Listening conditions for the assess-
ment of sound programme material, 1998.

[28] H. Fletcher, Speech and Hearing in Communication, Acoustical Society of
America, Woodbury, NY, USA, 1995.

[29] W. H. Equitz, “A new vector quantization clustering algorithm,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 37, no. 10, pp. 1568–1575, 1989.

[30] N. Faller, “An adaptive system for data compression,” in Proc. Record of the 7th
Asilomar conference on Circuits, Systems and Computers, pp. 593–597, Pacific
Grove, Calif, USA, November 1973.

[31] H. Fastl, “Temporal masking effects: I. Broad band noise masker,” Acustica,
vol. 35, no. 5, pp. 287–302, 1976.

[32] L. Fielder, M. Bosi, G. Davidson, M. Davis, C. Todd, and S. Vernon, “AC-2
and AC-3: low-complexity transform-based audio coding,” in Collected Pa-
pers on Digital Audio Bit Rate Reduction, pp. 54–72, Audio Engineering Soci-
ety, New York, NY, USA, 1995.

[33] H. Fletcher, “Auditory perspective—basic requirements,” Elect. Eng., vol. 53,
pp. 9–11, 1934.

[34] H. Fletcher and W. A. Munson, “Loudness, its definition, measurement, and
calculation,” Journal of the Acoustical Society of America, vol. 5, no. 2, pp. 82–
108, 1933.

[35] D. Frerichs, New MPEG-4 High-efficiency AAC Audio, Coding Technologies,
White paper.

[36] H. Fuchs, “Improving joint stereo audio coding by adaptive inter-channel
prediction,” in Proc. IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, pp. 39–42, New Paltz, NY, USA, October 1993.

[37] R. G. Gallager, “Variations on a theme by Huffman,” IEEE Trans. Inform.
Theory, vol. 24, no. 6, pp. 668–674, 1978.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Bibliography 217

[38] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,
Kluwer Academic, Norwell, Mass, USA, 1991.

[39] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Uni-
versity Press, Baltimore, Md, USA, 1983.

[40] D. J. Goodman, G. B. Lockhart, O. J. Wasem, and W.-C. Wong, “Wave-
form substitution techniques for recovering missing speech segments in
packet voice communications,” IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. 34, no. 6, pp. 1440–1448, 1986.

[41] B. Grill, “A bit rate scalable perceptual coder for MPEG-4 audio,” in Proc.
103rd Audio Engineering Society Convention, New York, NY, USA, September
1997, AES preprint 4620.

[42] B. Grill and B. Teichmann, “Scalable joint stereo coding,” in Proc. 105th Audio
Engineering Society Convention, San Francisco, Calif, USA, September 1998,
AES preprint 4851.

[43] T. Grusec, L. Thibault, and R. J. Beaton, “Sensitive methodologies for the
subjective evaluation of high quality audio coding systems,” in Proc. Audio
Engineering Society UK DSP Conference, London, UK, September 1992.

[44] W. M. Hartmann, Signals, Sound, and Sensation, American Institute of
Physics, Woodbury, NY, USA, 1997.

[45] J. E. Hawkins Jr. and S. S. Stevens, “The masking of pure tones and of speech
by white noise,” Journal of the Acoustical Society of America, vol. 22, no. 1, pp.
6–13, 1950.

[46] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ, USA,
3rd edition, 1996.

[47] J. Herre, E. Allamanche, K. Brandenburg, et al., “The integrated filterbank-
based scalable MPEG-4 audio coder,” in Proc. 105th Audio Engineering Society
Convention, San Francisco, Calif, USA, September 1998, AES preprint 4810.

[48] J. Herre and J. D. Johnston, “A continuously signal-adaptive filterbank for
high quality perceptual audio coding,” in Proc. IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, October
1997.

[49] J. Herre and J. D. Johnston, “Exploiting both time and frequency structure in
a system that uses an analysis/synthesis filterbank with high-frequency reso-
lution,” in Proc. 103rd Audio Engineering Society Convention, New York, NY,
USA, September 1997, AES preprint 4519.

[50] J. Herre and J. D. Johnston, “Enhancing the performance of perceptual au-
dio coders by using temporal noise shaping (TNS),” in Proc. 101st Audio En-
gineering Society Convention, Los Angeles, Calif, USA, November 1996, AES
preprint 4384.

[51] J. Herre and D. Schulz, “Extending the MPEG-4 AAC codec by perceptual
noise substitution,” in Proc. 104th Audio Engineering Society Convention, Am-
sterdam, The Netherlands, May 1998, AES preprint 4720.

[52] H. Holma and A. Toskala, WCDMA for UMTS, Radio Access for Third Gen-
eration Mobile Communications, John Wiley & Sons, New York, NY, USA,
revised edition, 2001.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

218 Bibliography

[53] T. Holman, “Channel crossing,” Studio Sound, pp. 40–42, February 1996.
[54] T. Holman, “The history and future of surround sound,” in Surround Profes-

sional Workshop, Los Angeles, Calif, USA, December 2003.
[55] J.-Y. Huang and P. M. Schultheiss, “Block quantization of correlated Gauss-

ian random variables,” IEEE Trans. Commun., vol. 11, no. 3, pp. 289–296,
1963.

[56] D. Huffman, “A Method for the construction of minimum redundancy
codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[57] International Standardization Organization (ISO), Method for Calculating
Loudness Level, R532, ISO, New York, NY, USA, 1966.

[58] ISO/IEC, Information Technology—Coding of Audio-Visual Objectis—Part 3.
ISO/IEC IS 14496-3:2001.

[59] ISO/IEC 13818-3:1994, Generic Coding of Moving Pictures and Associated Au-
dio Information—Part 3: Audio, 1994.

[60] ISO/IEC JTC1/SC29/WG11 N1650, IS 13818-7 (MPEG-2 Advanced Audio
Coding, AAC).

[61] ISO/IEC JTC1/SC29/WG11 N2205, Final Text of ISO/IEC FCD 14496-5 Ref-
erence Software.

[62] ISO/IEC JTC1/SC29/WG11 N2262, ISO/IEC TR 13818-5, Software Simula-
tion.

[63] ISO/IEC JTC1/SC29/WG11 N2425, MPEG-4 Audio verification test results:
Audio on Internet.

[64] ISO/IEC JTC1/SC29/WG11 N2803, Information Technology—Coding of
Audio-Visual Objects—Part 3: Audio Amendment 1: Audio Extensions.
ISO/IEC 14496-3:1999/AMD 1:2000.

[65] ISO/IEC JTC1/SC29/WG11 N2803, Text ISO/IEC 14496-3 Amd 1/FPDAM.
[66] ISO/IEC JTC1/SC29/WG11 N4025, Text of ISO/IEC 14496-5:2001.
[67] ITU-T SG-16, WCDMA Error Patterns at 64 kb/s, June 1998.
[68] ITU-T SG-16, WCDMA Error Patterns, January 1999.
[69] N. Iwakami and T. Moriya, “Transform domain weighted interleave vector

quantization (TwinVQ),” in Proc. 101st Audio Engineering Society Conven-
tion, Los Angeles, Calif, USA, November 1996, AES preprint 4377.

[70] N. Iwakami, T. Moriya, and S. Miki, “High-quality audio-coding at less than
64 kbit/s by using transform-domain weighted interleave vector quantization
(TwinVQ),” in Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’95), vol. 5, pp. 3095–3098, Detroit, Mich, USA,
May 1995.

[71] N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1984.

[72] N. S. Jayant and S. Christensen, “Effects of packet losses in waveform coded
speech and improvements due to an odd-even sample-interpolation proce-
dure,” IEEE Trans. Commun., vol. 29, no. 2, pp. 101–109, 1981.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Bibliography 219

[73] J. D. Johnston and A. J. Ferreira, “Sum-difference stereo transform coding,”
in Proc. IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP ’92), vol. 2, pp. 569–572, San Francisco, Calif, USA, March
1992.

[74] J. D. Johnston, J. Herre, M. Davis, and U. Gbur, “MPEG-2 NBC audio-stereo
and multichannel coding methods,” in Proc. 101st Audio Engineering Society
Convention, Los Angeles, Calif, USA, November 1996, AES preprint 4383.

[75] S. Kim, S. Park, and Y. Kim, “Fine grain scalability in MPEG-4 audio,”
in Proc. 111th Audio Engineering Society Convention, New York, NY, USA,
November–December 2001, AES preprint 5491.

[76] D. Kirby and K. Watanabe, “Formal subjective testing of the MPEG-2 NBC
multichannel coding algorithm,” in Proc. 102nd Audio Engineering Society
Convention, Munich, Germany, March 1997, AES preprint 4383.

[77] D. E. Knuth, “Dynamic huffman coding,” Journal of Algorithms, vol. 6, no. 2,
pp. 163–180, 1985.

[78] H.-J. Wang and C.-C. Jay Kuo, Multithreshold wavelet codec (MTWC), Doc.
No. WG1N665, Sidney, Australia, November 1997.

[79] S.-S. Kuo and J. D. Johnston, “A study of why cross channel prediction is not
applicable to perceptual audio coding,” IEEE Signal Processing Lett., vol. 8,
no. 9, pp. 245–247, 2001.

[80] J. Lee, “Optimized quadtree for Karhunen-Loeve transform in multispectral
image coding,” IEEE Trans. Image Processing, vol. 8, no. 4, pp. 453–461, 1999.

[81] M. R. Leek and C. S. Watson, “Learning to detect auditory pattern compo-
nents,” Journal of the Acoustical Society of America, vol. 76, no. 4, pp. 1037–
1044, 1984.

[82] S. Lin and D. J. Costello Jr., Error Control Coding: Fundamentals and Applica-
tions, Prentice-Hall, Englewood Cliffs, NJ, USA, 1983.

[83] C.-M. Liu, W.-C. Lee, and C.-T. Chien, “Bit allocation for advanced audio
coding using bandwidth-proportional noise-shaping criterion,” in Proc. 6th
International Conference on Digital Audio Effects (DAFx ’03), London, UK,
September 2003.

[84] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform. Theory,
vol. 28, no. 2, pp. 129–137, 1982.

[85] R. A. Johnson and G. K. Bhattacharyya, Statistics: Principles and Methods,
John Wiley & Sons, New York, NY, USA, 4th edition, 2001.

[86] J. MacQueen, “Some methods for classification and analysis of multivari-
ate observations,” in Proc. 5th Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–297, Berkeley, Calif, USA, 1967.

[87] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, The Netherlands, 1977.

[88] J. C. Makous and J. C. Middlebrooks, “Two-dimensional sound localization
by human listeners,” The journal of the Acoustical Society of America, vol. 87,
no. 5, pp. 2188–2200, 1990.

[89] SQAM—Sound Quality Assessment Material,
http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

220 Bibliography

[90] J. Max, “Quantizing for minimum distortion,” IRE Transactions on Informa-
tion Theory, vol. 6, no. 1, pp. 7–12, 1960.

[91] A. A. Mayer, “Researches in acoustics,” Philosophy Magazine, vol. 11, pp. 500–
507, 1876.

[92] A. Mouchtaris, S. S. Narayanan, and C. Kyriakakis, “Virtual microphones for
multichannel audio resynthesis,” EURASIP Journal on Applied Signal Process-
ing, vol. 2003, no. 10, pp. 968–979, 2003, Special Issue on Digital Audio for
Multimedia Communications.

[93] J. Ojanpera and M. Vaananen, “Long term predictor for transform domain
perceptual audio coding,” in Proc. 107th Audio Engineering Society Conven-
tion, New York, NY, USA, September 1999, AES preprint 5036.

[94] S. E. Olive and F. E. Toole, “The detection of reflections in typical rooms,”
Journal of the Audio Engineering Society, vol. 37, no. 7-8, pp. 539–553, 1989.

[95] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 1999.

[96] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Proc. IEEE,
vol. 88, no. 4, pp. 451–515, 2000.

[97] K. K. Paliwal and B. S. Atal, “Efficient vector quantization of LPC parameters
at 24 bits/frame,” IEEE Trans. Speech Audio Processing, vol. 1, no. 1, pp. 3–14,
1993.

[98] S.-H. Park, Y.-B. Kim, S.-W. Kim, and Y.-S. Seo, “Multi-layer bit-sliced bit-
rate scalable audio coding,” in Proc. 103rd Audio Engineering Society Conven-
tion, New York, NY, USA, September 1997, AES preprint 4520.

[99] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Stan-
dard, Van Nostrand Reinhold, New York, NY, USA, 1993.

[100] F. Pereira and T. Ebrahimi, Eds., The MPEG-4 Book, Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 2002.

[101] K. C. Pohlmann, Principles of Digital Audio, McGraw-Hill, New York, NY,
USA, 4th edition, 2002.

[102] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press,
Cambridge, UK, 2nd edition, 1992.

[103] J. Princen and A. Bradley, “Analysis/Synthesis filter bank design based on
time domain aliasing cancellation,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. 34, no. 5, pp. 1153–1161, 1986.

[104] R. A. Damon Jr. and W. R. Harvey, Experimental Design ANOVA, and Re-
gression, Harper & Row, New York, NY, USA, 1987.

[105] R. Rebscher and G. Theile, “Enlarging the listening area by increasing the
number of loudspeakers,” in Proc. 88th Audio Engineering Society Convention,
Montreux, Switzerland, March 1990, AES preprint 2932.

[106] D. W. Robinson and R. S. Dadson, “A re-determination of the equal-
loudness relations for pure tones,” British Journal of Applied Physics, vol. 7,
no. 5, pp. 166–181, 1956.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Bibliography 221

[107] S. Roucos and A. Wilgus, “High quality time-scale modification for speech,”
in Proc. IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP ’85), vol. 10, pp. 493–496, Tampa, Fla, USA, April 1985.

[108] J. Saghri, A. Tescher, and J. Reagan, “Practical transform coding of multi-
spectral imagery,” IEEE Signal Processing Mag., vol. 12, no. 1, pp. 32–43, 1995.

[109] D. Salomon, Data Compression: The Complete Reference, Springer, New
York, NY, USA, 2nd edition, 2000.

[110] K. Sayood, Introduction to Data Compression, Morgan Kaufmann, San Fran-
sisco, Calif, USA, 2nd edition, 2000.

[111] B. Scharf, “Partial masking,” Acustica, vol. 14, pp. 16–23, 1964.
[112] P. Scheiber, “Multidirectional sound system,” U.S. Patent 3746792, 1973.
[113] P. Scheiber, “Quadrasonic sound system,” U.S. Patent 3632886, 1973.
[114] G. M. Schuster and A. K. Katsaggelos, Rate-Distortion Based Video Com-

pression, Kluwer Academic, Boston, Mass, USA, 1997.
[115] C. E. Shannon, “A mathematical theory of communication,” Bell System Tec.

J., vol. 27, no. 3, pp. 379–423, 623–656, 1948.
[116] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coeffi-

cients,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3445–3462, 1993.
[117] Y. Shen, H. Ai, and C.-C. J. Kuo, “A progressive algorithm for perceptual

coding of digital audio signals,” in Proc. 33rd Annual Asilomar Conference on
Signals, Systems, and Computers, vol. 2, pp. 1105–1109, Pacific Grove, Calif,
USA, October 1999.

[118] D. Sinha and C.-E. W. Sundberg, “Unequal error protection methods for
perceptual audio coders,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’99), vol. 5, pp. 2423–2426, Phoenix,
Ariz, USA, March 1999.

[119] W. B. Snow, “Basic principles of stereophonic sound,” SMPTE Journal,
vol. 61, pp. 567–589, 1953.

[120] R. Sperschneider, “Error resilient source coding with variable length codes
and its application to MPEG advanced audio coding,” in Proc. 109th Audio
Engineering Society Convention, Los Angeles, Calif, USA, September 2000,
AES preprint 5271.

[121] J. Steinberg, “Physical factors,” Bell System Technical Journal, vol. 13, pp.
245–258, January 1934.

[122] J. W. Strutt and L. Rayleigh, “On the perception of sound direction,” Philos.
Magazine, vol. 13, pp. 214–232, 1907.

[123] Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length
codes,” IEEE Trans. Commun., vol. 43, no. 234, pp. 158–162, 1995.

[124] E. Terhardt, “Calculating virtual pitch,” Hearing Research, vol. 1, no. 2, pp.
155–182, 1979.

[125] S. P. Thompson, “On the function of the two ears in the perception of
space,” Philos. Magazine, vol. 13, pp. 406–416, 1882.

[126] C. Todd, G. Davidson, M. Davis, L. Fielder, B. Link, and S. Vernon, “AC-
3: flexible perceptual coding for audio transmission and storage,” in Proc.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

222 Bibliography

96th Audio Engineering Society Convention, Amsterdam, Holland, February–
March 1994, AES preprint 3796.

[127] W. Verhelst and M. Roelands, “An overlap-add technique based on wave-
form similarity (WSOLA) for high quality time-scale modification of
speech,” in Proc. IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP ’93), vol. 2, pp. 554–557, Minneapolis, Minn, USA,
April 1993.

[128] M. S. Vinton and E. Atlas, “A scalable and progressive audio codec,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP ’01), vol. 5, pp. 3277–3280, Salt Lake City, Utah, USA, May 2001.

[129] J. S. Vitter, “Design and analysis of dynamic Huffman codes,” Journal of the
Association for Computing Machinery, vol. 34, no. 4, pp. 825–845, 1987.

[130] R. Waal and R. Veldhuis, “Subband coding of stereophonic digital audio sig-
nals,” in Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’91), vol. 5, pp. 3601–3604, Toronto, Canada, May 1991.

[131] G. Wang, Q. Zhang, W. Zhu, and J. Zhou, “Channel-adaptive error protec-
tion for scalable audio streaming over wireless Internet,” in Proc. IEEE Global
Telecommunications Conference (Globecom ’01), vol. 3, pp. 2045–2049, San
Antonio, Tex, USA, November 2001.

[132] O. J. Wasem, D. J. Goodman, C. A. Dvorak, and H. G. Page, “The effects of
waveform substitution on the quality of PCM packet communications,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 36, no. 3, pp. 342–348, 1988.

[133] R. L. Wegel and C. E. Lane, “The auditory masking of one pure tone by
another and its probable relation to the dynamics of the inner ear,” Physical
Review, vol. 23, pp. 266–286, 1924.

[134] D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Transporting real-time video over the
Internet: challenges and approaches,” Proc. IEEE, vol. 88, no. 12, pp. 1855–
1877, 2000.

[135] D. Yang, H. Ai, and C.-C. J. Kuo, “Progressive multichannel audio codec
(PMAC) with rich features,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP ’02), vol. 3, pp. 2717–2720, Or-
lando, Fla, USA, May 2002.

[136] D. Yang, H. Ai, C. Kyriakakis, and C.-C. J. Kuo, “Exploration of Karhunen-
Loeve transform for multichannel audio coding,” in Digital Cinema and Mi-
crodisplays, vol. 4207 of Proceedings of SPIE, pp. 89–100, Boston, Mass, USA,
November 2000.

[137] D. Yang, H. Ai, C. Kyriakakis, and C.-C. J. Kuo, “An inter-channel redun-
dancy removal approach for high-quality multichannel audio compression,”
in Proc. 109th Audio Engineering Society Convention, Los Angeles, Calif, USA,
September 2000, AES preprint 5238.

[138] D. Yang, H. Ai, C. Kyriakakis, and C.-C. J. Kuo, “Adaptive Karhunen-
Loeve transform for enhanced multichannel audio coding,” in Mathemat-
ics of Data/Image Coding, Compression, and Encryption IV, with Applications,
vol. 4475 of Proceedings of SPIE, pp. 43–54, San Diego, Calif, USA, July 2001.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Bibliography 223

[139] D. Yang, H. Ai, C. Kyriakakis, and C.-C. J. Kuo, “Embedded high-quality
multichannel audio coding,” in Media Processors 2001, vol. 4313 of Proceed-
ings of SPIE, pp. 74–85, San Jose, Calif, USA, January 2001.

[140] D. Yang, H. Ai, C. Kyriakakis, and C.-C. J. Kuo, “Design of progressive
syntax-rich multichannel audio codec,” in Media Processors 2002, vol. 4674
of Proceedings of SPIE, pp. 121–132, San Jose, Calif, USA, January 2002.

[141] D. Yang, H. Ai, C. Kyriakakis, and C.-C. J. Kuo, “Error-resilient design of
high-fidelity scalable audio coding,” in Digital Wireless Communications IV,
vol. 4740 of Proceedings of SPIE, pp. 53–63, Orlando, Fla, USA, April 2002.

[142] D. Yang, H. Ai, C. Kyriakakis, and C.-C. J. Kuo, “High-fidelity multichannel
audio coding with Karhunen-Loeve transform,” IEEE Trans. Speech Audio
Processing, vol. 11, no. 4, pp. 365–380, 2003.

[143] D. Yang, H. Ai, C. Kyriakakis, and C.-C. J. Kuo, “Progressive syntax-rich
coding of multichannel audio sources,” EURASIP Journal on Applied Signal
Processing, vol. 2003, no. 10, pp. 980–992, 2003, Special Issus on Digital Au-
dio for Multimedia Communications.

[144] C. W. Yung, H. F. Fu, C. Y. Tsui, R. S. Cheng, and D. George, “Unequal
error protection for wireless transmission of MPEG audio,” in Proc. IEEE
International Symposium on Circuits and Systems (ISCAS ’99), vol. 6, pp. 342–
345, Orlando, Fla, USA, May–June 1999.

[145] J. Zhou and J. Li, “Scalable audio streaming over the internet with network-
aware rate-distortion optimization,” in Proc. IEEE International Conference
on Multimedia and Expo (ICME ’01), pp. 567–570, Tokyo, Japan, August
2001.

[146] J. Zhou, Q. Zhang, Z. Xiong, and W. Zhu, “Error resilient scalable audio
coding (ERSAC) for mobile applications,” in Proc. IEEE 4th Workshop on
Multimedia Signal Processing, pp. 307–312, Cannes, France, October 2001.

[147] T. Ziegler, A. Ehret, P. Ekstrand, and M. Lutzky, “Enhancing MP3 with
SBR: features and capabilities of the new MP3PRO algorithm,” in Proc. 112th
Audio Engineering Society Convention, Munich, Germany, May 2002, AES
preprint 5560.

[148] E. Zwicker and H. Fastl, Psychoacoustics, Facts, and Models, Springer, Berlin,
Germany, 1990.

[149] J. Zwislocki, “A theory of central auditory masking and its partial valida-
tion,” Journal of the Acoustical Society of America, vol. 52, pp. 644–659, 1972.

[150] J. Zwislocki, F. Maire, A. S. Feldman, and H. Rubin, “On the effects of prac-
tice and motivation on the threshold of audibility,” Journal of the Acoustical
Society of America, vol. 30, pp. 254–262, 1958.

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Index

Symbols
A-law, 25, 26

μ-law, 25, 26

t distribution, see also distribution

A
A/D

conversion, 1, 2, 21

converter, 3

AAC, 4, 82, 83, 86, 91–130, 133–197, 200, 210

AAC LPC, 110

AAC LTP, 110, 116

AAC-LD, 106, 109, 110

LC, 92, 93, 108, 116

LTP, 108

main, 83, 92, 93, 101, 102, 179, 192, 193,
196, 210

SSR, 92–94

AC-3, see also Dolby AC-3

advanced audio coding, see also AAC

aliasing, 7, 9, 11, 95, 97, 111, 123

arithmetic coding, 35, 42–43, 51, 83, 106, 112,
117, 179

adaptive arithmetic coding, 48–50

underflow, 47, 48

artifact, 22, 82, 96, 109, 111

audio

audio codec, 1, 3, 4, 65, 84, 85, 89, 92, 112,
118, 126, 179, 199

audio coder, 4, 82, 84, 95, 108, 127, 179,
180, 196

audio rendering, 13, 14

audio signal processing, 1, 5

channel configuration, 150, 188

immersive audio, 13, 18

multichannel audio, 1, 3, 12, 91, 99

B
backward compatible, 91, 108, 118

bit allocation, 21, 32–34, 148

BSAC, 83, 92, 106, 112, 116–118, 127, 179,
180, 196, 197, 200

C

cell

bounded cell, 27

granular cell, 27

overload cell, 27

unbounded cell, 27

CELP, 81, 85, 89, 113, 116

centroid, 27, 31, 32

channel

10.2 channel, 13, 18

5.1 channel, 13, 14, 17, 18, 118, 125, 135

channel pair, 99–101, 128, 136, 147,
150–152, 157–159, 188

eigen-channel, 128, 129, 133–162, 188

LFE channel, 15, 16

multichannel, 1, 3, 12, 14–16, 18, 19, 77, 82,
91, 99, 100, 125–130, 133–163, 165–172,
179–197, 214

single-channel, 135, 180, 214

stereo-channel, 14

two-channel, 15, 16, 82

code

code rate, 27, 42

code vector, 27, 29

codebook, 27–32, 86, 103, 104, 109, 111,
166, 167, 176, 178

codeword, 21–32, 40–176

Reed-Solomon code, 200, 205

coding

embedded coding, 112, 113, 116

entropy coding, 3, 18, 35, 92, 102, 103, 106,
107, 123, 124, 182, 199, 202, 203, 206

lossless coding, 35, 77, 82, 83, 99, 102, 116,
130, 193

lossy coding, 125

noiseless coding, see also lossless coding

progressive coding, 180

sinusoidal coding, 84

source coding, 206

compandor, 25, 26

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

226 Index

confidence
confidence interval, 73, 75, 160, 161, 196
confidence limit, 73, 160, 196

convolution, 7
covariance, 31, 134–162, 165–177
cue, 14

localization cues, 13, 14
perceptual cues, 13

cutoff frequency, 8, 9

D
D/A, 3

conversion, 3
delay, 66, 82, 106, 109–111

algorithmic delay, 109, 110
coding delay, 82, 109
look-ahead delay, 82, 110

distribution, 21–24, 66, 71–73, 103, 104
t distribution, 73
marginal distribution, 29
normal distribution, 71, 73
uniform distribution, 21, 24, 25, 29

Dolby
Dolby AC-3, 125–127, 135, 199
Dolby Stereo, 15

E
eigen

eigen-channel, see also channel
eigenvalue, 31, 135, 139, 154, 164
eigenvector, 31, 134, 135, 143, 152–154, 163,

164
embedded

embedded bitstream, 127, 193
entropy, 3, 36, 37, 42, 94, 116, 124

entropy coder, 84
entropy coding, see also coding

error
error concealment, 86, 111, 127, 207, 209,

213, 214
error control, 209
error protection, 86, 87, 130, 200, 203, 205,

213
error resilience, 86, 118, 199
error resilient, 78, 86, 87, 112, 118, 200, 206
error robustness, 78, 86, 111
error-prone channel, 78, 86, 111, 202
error-prone network, 80
mean square error, see also MSE
overload error, 23, 24
quantization error, 22–25, 30, 166, 168
round-off error, 23
transmission error, 199, 205

ERSAC, 128, 130, 199–214

Euclidean
Euclidean distance, 29, 30
Euclidean norm, 31, 164
Euclidean space, 26

F
fidelity, 23, 89, 162
Fourier transform, 4, 5, 7–9, 134
function

Dirac delta function, 6
impulse function, 6, 7
probability density function, 29, 148, 149

G
generalized Lloyd algorithm, see also Lloyd

H
HEAAC, 83, 89, 92
heap, 50
HILN, 83–85
Huffman

adaptive Huffman coding, 41
Huffman code, 38–42, 44, 102
Huffman codebook, 103, 104, 111
Huffman codeword, 86, 112
Huffman coding, 35, 38–182
Huffman table, 41, 102, 103
Huffman tree, 38–41

HVXC, 81–86

I
IMDCT, 95, 96
impairment, 69, 160, 196, 207, 210, 213
impulse

impulse function, see also function
impulse train, 5–7

information
information theory, 35–36
self-information, 35–37

intensity stereo coding, 99–101, 120

J
joint stereo coding, 99

K
Karhunen-Loève expansion, 163–164
Karhunen-Loève transform, 33, see also KLT
KLT, 128–130, 133–162, 165–179, 192,

195, 197

L
LBG, see also generalized Lloyd algorithm
LFE, see channel

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

Index 227

Lloyd
generalized Lloyd algorithm, 32
Lloyd iteration, 32

loudness, 59–62, 64
equal loudness contour, 61
equal loudness level, 61

LPC, 81, 84, 99, 106, 108–110
LTP, 107–108, 110

M
M/S stereo coding, 99, 100
MAACKLT, 128, 129, 133–163, 165–177
masking

backward masking, 63, 64
forward masking, 63, 64
interaural masking, 64
masking threshold, 63, 65, 94, 98, 99, 119,

120, 147, 188, 193
monaural masking, 64
partial masking, 62
temporal masking, 63, 64

MDCT, 95, 96, 111, 114, 128, 142, 192
mean, 33, 34, 69–75, 134, 147, 148, 151, 152,

155, 157, 158, 160, 161, 163, 164, 176,
195, 196, 205, 206, 210

MNR, 65, 130, 155–162, 166–177, 180–195,
203–212

MNR progressive, 180–182, 194, 195
modulation, 1, 6
MPEG, 77–89, 91–125, 128–130, 133, 150, 160

MPEG-1, 77, 91, 199
MPEG-2, 77, 82, 91, 92, 99–101, 106–108,

137, 155, 162, 199
MPEG-4, 77–89, 92, 127, 179, 180, 196, 197,

199, 200
MPEG-AAC, see also AAC

MPEG-4, 124
MSE, 168

N
normal distribution, see also distribution
Nyquist

Nyquist frequency, 12
Nyquist rate, 12
Nyquist sampling theorem, 12

P
partition, 27–32
perceptual

perceptual audio codec, 4, 59, 62, 119, 122
perceptual audio coder, 59
perceptual audio coding, 59, 61, 94, 98,

112, 126
perceptual cues, see also cue

perceptual noise substitute, see PNS

PNS, 106–107
progressive

MNR progressive, see also MNR
progressive coding, see also coding

PSMAC, 128, 130, 179–197, 202, 203
psychoacoustic, 59, 94, 99, 102, 103, 106

psychoacoustic coding, 82
psychoacoustic model, 84, 93, 94, 99, 107,

109, 180, 188, 190, 193, 210

Q
QM coding, 35, 51–53

conditional exchange, 54, 56
context-based QM coder, 130
context-based QM coder, 179, 182, 186, 187,

193, 194, 197, 202, 203, 210
interval inversion, 53, 54
LPS, 51–56
MPS, 51–56
probability estimation, 55–57, 187
renormalization, 52–56

quality
indistinguishable, 16, 82, 125, 157
indistinguishable quality, 91, 119
quality assessment, 188, 210
telephone quality, 2

quantization
nonuniform quantization, 21, 25
scalar quantization, 21, 26, 29–31, 165, 166
successive approximation quantization,

see also SAQ
uniform quantization, 21, 25, 26
vector quantization, 21–176

quantizer
linear quantizer, 21
linear staircase quantizer, 21, 22
midrise quantizer, 22–24
midrise staircase quantizer, 21
midtread quantizer, 22–25
nearest-neighbor quantizer, 28
nonuniform quantizer, 25, 26, 102
scalar quantizer, 21, 22, 29–31, 129, 166, 168
uniform quantization, 21
uniform quantizer, 21–23, 26
vector quantizer, 26–31, 129, 165, 166
Voronoi quantizer, 28, 29

R
random access, 130, 180, 182, 195
rate

bit error rate, 199, 203, 206
data rate, 95, 201
rate-distortion, 172, 187

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

228 Index

rate (continued)
sampling rate, 2, 6, see also sampling,

Reed-Solomon code, see also code

S
sampling

sampling frequency, 2, 3, 5, 7, 9, 12, 93, 103
sampling period, 5
sampling rate, 12

SAQ, 182–197, 203
SBA, 118, 200
SBR, 83, 118–124
scalable

bandwidth scalable, 81
bit rate scalable, 81
channel scalable, 129
scalable coding, 112–115, 157, 179

sign test
loose sign test, 162
strict sign test, 161, 162

SMR, 188, 189, 203
SNR, 116, 188
sound

reverberant sound, 142, 158
sound field, 14, 15
sound localization, 13
sound pressure level, 59–61, 67, 68
surround sound, 12–17, 118

standard deviation, 31, 71–73, 148, 205, 206
subband, 130, 172, 174, 180–197, 203–207
subwoofer, 16
surround

stereo surround, 15

T
T/F, 91, 113, 123
temporal noise shaping, see also TNS
threshold

hearing threshold, 59, 61
TNS, 98, 99, 101, 111, 192
training

training sequence, 31, 167
training vector, 31, 167

TTS, 87–88
TwinVQ, 82–109

V
variance, 33, 34, 39–40, 69–72, 136, 139, 140,

143, 167

W
WCDMA, 130, 200–202, 205, 210–213

A print edition of this book can be purchased at
http://www.hindawi.com/spc.1.html

http://www.amazon.com/dp/9775945240

http://www.hindawi.com/spc.1.html
http://www.amazon.com/dp/9775945240

