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ABSTRACT The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the
future, IoFT, the ‘‘cloud’’ will be substituted by the ‘‘crowd’’ where model training is brought to the edge,
allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping
their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in
computational power on IoT devices and the recent advances in decentralized and privacy-preserving model
training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview
of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of
IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference
within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized
model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that
quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in
reshaping different industries through the lens of domain experts. Those industries include manufacturing,
transportation, energy, healthcare, quality & reliability, business, and computing.

INDEX TERMS Internet of Things, federated learning, global model, personalized model, meta-learning,
future applications.

I. INTRODUCTION
A. PREAMBLE
At the early stages of the COVID-19 pandemic, compa-
nies that mass-produce personal protective equipment (PPE)
required long ramp-up times to fulfill the urgent demand [84],
[87]. The ramp-up time took longer than expected as supply
chains across the globe were critically disrupted, with entire
countries in lockdown and essential workers succumbing
to the virus [56]. Realizing this, many citizens and small
businesses tried to bridge the supply gap using readily avail-
able, and low-cost 3D printers [57], [63]. This attempt at
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so-called massively distributed manufacturing [233] helped
fill PPE production gaps to some extent [57], [63]. However,
it also revealed critical impediments to realizing massively
distributed manufacturing in terms of standardizing produc-
tion requirements, guaranteeing quality and reliability, and
attaining high production efficiencies that can rival those
of mass production [233]. For example, a large percent-
age of parts printed by citizens did not meet the quality
requirements [123], [293]. Even when following standard 3D
printing guidelines, several prints failed [292] while others
experienced recurrent defects due to the use of models or
methods that did not account for the specific environment in
which the 3D printer is operating [274]. On the other hand,
citizens that succeeded struggled to effectively broadcast their
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improved models or methods to other users to help improve
quality across the network of manufacturers [71].

Now imagine an alternative future based on a cyber-
physical operating system for massively distributed manu-
facturing. All 3D printers are IoT-enabled through wifi and
smart sensors. In addition, printers now have computation
power through AI chips (many 3D printers nowadays have
such capabilities, ex: Raspberry Pi’s [18], [234]). The printers
collaboratively learn a model for 3D printing PPE accurately
with the help of a central orchestrator, guiding the production
to the desired quality level. To preserve privacy and intel-
lectual property and allow for massive parallelization, raw
data from each 3D printer is never shared with the central
server; instead, printers exploit their compute resources at the
edge by running small local computations and only sharing
the minimal information needed to learn the model. This
model, despite having a global state, is personalized to form a
local model that accounts for individual-level external factors
affecting each 3D printer.

In this alternative reality, responders can 3D print PPE at
the desired quality level with little or no defects. Responders
act quickly due to the massively parallelized efforts from
many 3D printers and the effective utilization of network
bandwidth. In addition, with their personalized 3D print-
ing models, the responders are able to push 3D printers
at faster speeds to shorten printing time while maintaining
quality [76], [215], [234]. Accordingly, the PPE supply gap
is successfully filled until mass production ramps up.

In this future, not only manufacturing benefits. Take
healthcare wearable devices as an example. Compute power
on such devices has been immensely increasing over the
years. Now, personal data need not be uploaded to a central
cloud system to learn an anomaly detection model for health
signals. Instead, the ‘‘cloud’’ is replaced by the ‘‘crowd’’,
where wearable devices store necessary data, perform local
computations and send only needed model updates to the
central authority. This decouples the ability to learn the
model from storing data in the cloud by bringing training
to the device as well, where a model can be learned across
thousands of millions of wearable devices in geographically
dispersed locations.

Let us now switch paradigms and replace smart devices
with ‘‘smart’’ institutes. Different medical institutions can
join efforts and collaboratively learn diagnostic models
without directly sharing their electronic health records,
as imposed by the Health Insurance Portability and Account-
ability Act (HIPAA). Now, diagnostic models can leverage
largely diverse datasets and promote fairness through a decen-
tralized learning framework that mitigates privacy risks and
costs associated with centralized modeling. Learning can be
done across institutes and individuals at multiple scales and
in areas that this has not been possible or allowed before.

The future described above is not a far cry away. It has
already been set into action as the immediate yet bold next
step for the Internet of Things (IoT). It is the cultivation of
Industry 4.0. A cultivation of advances in interdisciplinary

fields in the past two decades: ranging from data science, edge
computing, machine learning, operations research, optimiza-
tion, data acquisition technologies, physics-guided modeling,
and privacy, amongst many others.

In this article, we term this future of IoT as the Internet
of Federated Things (IoFT). The term ‘‘federated’’ refers
to some level of internal autonomy of IoT devices and is
inspired by the explosive interest during the past two years in
Federated Learning (FL): an approach that allows decen-
tralized and privacy-preserving training of models [208].
With the help of FL, the decentralized paradigm in IoFT
exploits edge compute resources in order to enable devices
to collaboratively extract knowledge and build smart analyt-
ics/models while keeping their personal data stored locally.
This paradigm shift not only reduces privacy concerns but
also sets forth many intrinsic advantages including cost effi-
ciency, diversity, and reduced computation, amongst many
others to be detailed in the following sections.

B. PURPOSE AND UNIQUENESS
This paper is a joint effort of researchers across a wide variety
of expertise to address the three questions below:

1) What are the defining characteristics of IoFT?
2) What are key recent advances and potential data-driven

methods in IoFT that allow learning in one of the three
dimensions stated below? what modeling, optimiza-
tion, and statistical challenges do they face? and what
are potential promising solutions?
• A Global model: that maximizes utility across
all devices. The global model aims at capturing
the commonalities and intrinsic relatedness across
data from all devices to improve prediction and
learning accuracy.

• A Personalized model: that tries to personalize
and adapt the global model to data and exter-
nal conditions from each device. This embodies
the principle of multi-task learning, [238] where
each device retains its own model while borrowing
strength across all IoFT devices.

• A Meta-learning model: that learns a global
model which can quickly adapt to a new task with
only a small amount of training samples and learn-
ing steps. This embodies the principle of ‘‘learning
to learn fast,’’ [289] where the goal of the global
model is not to perform well on all tasks in expec-
tation, instead to find a good initialization that can
directly adapt to a specific task.

3) How will IoFT shape different industries and what
are the domain specific challenges it faces for it to
become the standard practice? Through the lens of
domain experts, we shed light on the following sectors:
manufacturing, transportation, energy, healthcare,
quality & reliability, business and computing.

Besides defining the central characteristics of IoFT, our
paper’s focus is summarized in two folds. The first is data-
driven modeling where we categorize FL approaches in
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IoFT into learning a global, personalized, and meta-learning
model and then provide an in-depth analysis on modeling
techniques, recent advances, possible alternative, and statis-
tical/optimization challenges. The second focus is a vision of
IoFT’s potential use cases, application-specific models, and
obstacles within different application domains. Our overarch-
ing goal is to encourage researchers across different industries
to explore the transformation from IoT to IoFT so that critical
societal impacts brought by this emerging technology can be
fully realized.

We note here that some excellent surveys on FL have been
recently released. Most notably, Lim et al. [179] address FL
challenges in mobile edge networks with a focus on com-
munication cost, privacy and security, Niknam et al. [227]
discuss FL application in wireless communications, espe-
cially under 5G networks, Li et al. [173] provide a
thorough overview of implementation challenges in FL,
Yang et al. [329] then categorize different architectures for
FL, Rahman et al. [256] discuss the evolution of the deploy-
ment architectures with an in-depth discussion on privacy
and security, while Aledhari et al. [5] highlight necessary
protocols and platforms needed for such architectures,
Kairouz et al. [133] study open problems in FL and recent
initiatives while providing a remarkable survey on privacy-
preserving mechanisms. Along this line, Lyu et al. [193]
highlight threats and major attacks in FL. While our focus
is on data-driven modeling for IoFT and how various appli-
cation fields will be affected by the shift from IoT to IoFT, the
surveys above serve as excellent complementary work for a
bird’s eye view of FL and hence IoFT.

The remainder of this paper is organized as follows. Sec. II
highlights the past and present features of IoT-enabled sys-
tems leading to IoFT. Secs. III - V provide data-driven mod-
eling approaches for learning a global, personalized, and
meta-learningmodel, along with their challenges and promis-
ing solutions. Finally, Sec. VI poses central statistical and
optimization open problems in IoFT. These open problems
are from both a theoretical and applied perspective. Finally,
Sec. VII provides a vision for IoFT within manufactur-
ing, transportation, energy, healthcare, quality & reliability,
business, and computing.

Throughout this paper, we use IoFT to denote the
future IoT system we envision, while FL denotes the
underlying data analytics approach for data-driven
model learning within IoFT. Also, edge device, local
device, node, user, or client are used interchangeably to
denote the end-user based on the problem context.

C. IoFT WEBSITE AND CENTRAL DIRECTORY
While exploring data-driven modeling approaches to FL in
IoFT, it became clear that real-life datasets (in engineering,
health sciences, etc..) are pressingly needed to fully explore
the disruptive potential of IoFT. While few already exist, they
are based on artificial examples, and the few non-artificial
datasets are mostly focused onmobile applications. However,
for IoFT to become a norm in different industries, real-life

datasets with defining features of the underlying system are
needed to unveil the potential challenges and opportunities
faced within different domains. Only with a deep understand-
ing of the underlying system and domain, one formulates
the right analytics. Towards this end, this paper features a
supplementary website (https://ioft-data.engin.
umich.edu/) managed by the University of Michigan.
The website will serve as a central directory for IoFT-based
datasets and will feature brief descriptions of each dataset
categorized by its respective field with a link to the repos-
itory (research lab website, GitHub account, papers, etc..)
where the data is contained. Our hope is to provide a
means for model validation within different domains, encour-
age researchers to develop real-life datasets for IoFT and
help with the outreach and visibility of their datasets and
corresponding papers.

Website: https://ioft-data.engin.umich.edu/

II. INTERNET OF THINGS: THE PAST, PRESENT AND
FUTURE
IoT-enabled systems possess three defining characteristics:
tangible physical components that comprise the system, con-
nectivity among components that enable data acquisition
and sharing, and data analytics and decision-making capa-
bilities that transform a merely ‘‘connected’’ system into
a ‘‘smart and connected’’ system. These defining features
of IoT enabled systems [40], [207], [252] are shown in
Fig. 1. IoT has brought broad disruptive societal impacts,
particularly on economic competitiveness, quality of life,
public health, and essential infrastructure [195]. Compa-
nies around the globe have invested heavily in IoT, includ-
ing: Google’s Cloud IoT [100], Samsung’s Active wearable
device [276], Amazon’s Webservices solutions [11], Rock-
well’s Connected Enterprise [269], Welbilt’s Smart Home
Appliances, to name a few. The value at stake is more than
15 trillion dollars, a number expected to triple in the next
decade [9].

FIGURE 1. Key components of an IoT enabled system.

The essential feature of an IoT system is that data from
multiple similar units and across multiple components within
the system are collected during their operation, often in real-
time. Since we have observations from potentially a large
number of similar units, we can compare their operations,
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share information, and extract common knowledge to enable
accurate prediction and control. One can argue that such
a notion of IoT dates back a long time before the Indus-
trial Revolution, to the time when artisans producing crafts
in geographically close locations used to gather to share
knowledge and perfect/standardize the quality of their crafted
product [291]. A lot has changed since then.

A. IoT: THE PRESENT
Starting with the industrial revolution came rapid advances
in connectivity, automation, data science, cloud-based sys-
tems, among many others [164], [212]. An IoT sensor price
dropped to $0.48 on average, and wide-area communication
became readily available with around $36.13 billion con-
nected IoT devices in 2018 [165]. Distributed computing
allowed handling larger datasets than what was previously
thought possible and cloud-based solutions for data storage
and processing have becomewidely available for commercial
use (ex: Amazon’s AWS [10] orMicrosoft’s Azure [12]). This
ushered in the present-day era of Industry 4.0 characterized
by IoT-enabled systems [9]. In this present era, a typical IoT-
enabled system structure is shown in Fig. 2. Take for example
GM’s OnStar R© or Ford’s SYNC R© teleservice systems [1],
[90], [235]. Vehicles enrolled for this service have their data
in the form of condition monitoring (CM) signals uploaded
to the cloud regularly. The cloud then acts as a back-office or
data center that processes the data to keep drivers informed
about the health of their vehicle. In the cloud, GM and Ford
train models that can monitor and predict maintenance needs,
amongst others. The data is also used to cross-validate the
behavior of their learned models for continuous improve-
ment. When the need arrives, service alerts are then sent to
drivers.

FIGURE 2. Present day IoT system.

Much like other IoT giants such as Google, Amazon and
Facebook, GM and Ford have long adopted this central-
ized approach towards IoT: (i) gigantic amounts of data are
uploaded and stored in the cloud (ii) models (such as pre-
dictive maintenance, diagnostics, text prediction) are trained
in these data centers (iii) the models are then deployed to
the edge devices. Needless to say, the need to upload large
amounts of data to the cloud raises privacy concerns, incurs
high costs, and benefits large enterprises capable of build-
ing their own private cloud infrastructures at the expense of
smaller entities.

Here, distributed learning is often implemented in central-
ized systems to alleviate the huge computational burden via
parallelization. In such systems, the clients are computing
nodes within this centralized framework. Nodes can then
access any part of the dataset, as data partitions can be con-
tinuously adjusted. In contrast, as described in the following
sections, in IoFT, the data resides at the edge and is not
centrally stored. As a result, data partitions are fixed and
cannot be changed, shuffled, nor randomized.

B. IoT: THE FUTURE
With the tremendous increase in computational power
on edge devices, IoT is on its way to move from the
cloud/datacenter to the edge device, hence the aforemen-
tioned notion of substituting the ‘‘cloud’’ by the ‘‘crowd’’.
In this IoT system of the future (IoFT), devices collabora-
tively extract knowledge from each other and achieve the
‘‘smart’’ component of IoT, often with the orchestration of
a central server, while keeping their personal data stored
locally. This paradigm shift is based on one simple yet pow-
erful idea: with the availability of computing resources at the
edge, clients can execute small computations locally instead
of learning models on the cloud and then only share the
minimum information needed to learn that model. As a result,
IoFT decouples the ability to do analytics from storing data in
the cloud by bringing training to the edge device as well. The
underlying premise is that IoFT devices have computational
(ex: AI chips) and communication (ex: wifi) capabilities.

Let us start with a simple example, assume the central
orchestrator in Fig. 3 wants to learn the mean (ȳ) of a single
feature (y) over all clients. Now assume that clients have some
computational capabilities. To calculate ȳ, client i only needs
to run a small calculation to compute their own mean (ȳi) and
share it, rather than sharing their entire feature vector (yi).
ȳi is a sufficient statistic to learn ȳ.

FIGURE 3. IoFT: IoT system of the Future.

In reality, models are often more complicated and require
multiple communications between the central orchestrator
and clients. For instance, and without loss of generality,
assume that IoFT devices cooperate to learn a deep learning
model through borrowing strength from each other, rather
than using their own knowledge in isolation. In the decen-
tralized realm of IoFT, model learning is often administered
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by a central orchestrator and follows the cycle shown in
Fig. 3. (i) The orchestrator (i.e., the central server) selects a
set of IoFT devices meeting certain eligibility requirements
and broadcasts an initial model to the selected clients. This
model contains the neural network (NN) architecture, initial
weights, and a training program. (ii) IoFT devices perform
local computations by executing the program on their local
data, and each device reports its focused update to the orches-
trator. Here the program can be running stochastic gradient
descent (SGD) on local data, and the focused update can be
updated weights or a gradient. It is worth noting that the client
might choose to encrypt their focused update or add noise to it
for enhanced privacy at this stage. (iii) The central orchestra-
tor collects the focused updates from clients and aggregates
them to update the global model. (iv) This procedure is then
iterated over several rounds until a stopping criterion, such as
validation accuracy, is met. Through this process, the global
model can account for knowledge from all IoFT clients, and
each client can indirectly make use of the knowledge from
other clients. Finally, the learned global model goes through a
testing phase such as quality-A/B testing on held-out devices
and a staged rollout on a gradually increasing number of
devices.

This decentralized paradigm shift, made possible by com-
pute resources at the edge, sets forth many intrinsic advan-
tages that include:
• Privacy: By bringing training to the edge device, users
no longer have to share their valuable information,
instead, it is kept local and never shared.

• Autonomy: IoFT devices can be under independent con-
trol and opt-out of the collaborative training process at
any time. Yet, with enhanced privacy in IoFT, clients
will be more inclined to collaborate and build better
models.

• Computation: As the number of IoT devices skyrock-
ets, computational and storage needs accumulated from
these devices (say smartphones) is far beyond what
any data center or cloud computing system can han-
dle [350]. Instead, by exploiting compute and storage
capacity at the edge, massive parallelization becomes a
reality [121], [286].

• Cost: Focused updates embody the principle of datamin-
imization and contain the minimum information needed
for a specific learning task. As a result, less informa-
tion is transmitted to the orchestrator, which reduces
communication costs and efficiently utilizes network
bandwidth. Also, compute power at the edge device is
now utilized. Hence storage and computational needs
of the orchestrator are minimal. This is in contrast to
distributed systems where massive utilization and syn-
chronization of GPU and CPU power in the cloud is
needed.

• Fast Alerts and Decisions: In IoFT, upon deployment of
the final model to clients, real-time decisions or service
alerts are achieved locally at the edge. In contrast, cloud-
based systems incur a lag in deployment, as decisions

made in the cloud need to be transmitted to the clients
(as shown in Fig. 2).

• Minimal Infrastructure: With the increase in comput-
ing power of IoT devices and the gradual market pene-
tration of AI chips [320], minimal hardware is required
to achieve the transition to IoFT.

• Fast encryption: Encryption of focused updates can
be done readily and with better guarantees compared to
encrypting entire datasets.

• Resilience: Edge devices are resilient to failures at the
orchestrator level due to the existence of a local model.

• Diversity and Fairness: IoFT allows integrating infor-
mation across uniquely diverse datasets, some of which
have been restricted to be shared previously (recall med-
ical institutes example). This diversity and ability to
learn across geographically disperse locations promotes
fairness by combining data across boundaries [29], [38].

Having recently realized its disruptive potential to tradi-
tional IoT, industries are eagerly trying to exploit IoFT in their
operating systems and production. However, these efforts
are in their infancy phase, awaiting broad implementations.
Google pioneered some of the IoFT applications in their
mobile keyboard ‘‘Gboard’’ [43], [106], [257], [331] and
Android messaging [99] to improve next-word predictions
and preserve privacy. Additionally, they introduced a decen-
tralized framework to update android models on their Pixel
phones [208]. In this framework, each android phone updates
its model parameters locally and sends out the updated
parameters to the Android cloud, which trains its central
model from the aggregated parameters. BigTech giants have
since started to catch up and utilize FL in their systems.
Most notably Apple adopted FL in their QuickType keyboard,
‘‘Siri’’ and privacy protection protocols [7], [23]. As well
as Microsoft in their device’s telemetry data [68]. Further,
FL has seen some application in optimizing mobile edge
computing and communication [179], [307], computational
offloading [307] and reliable network communication [275].

Most of the current IoFT applications are present within
the technology industry and specifically tailored for mobile
applications and few others. However, IoFT is expected to
infiltrate all industries that benefit from knowledge sharing,
data analytics, and decision-making. Indeed, the gradual use
of FL in the technology industry has set in motion a timid
yet insuppressible momentum for IoFT application in other
sectors. For instance, in the healthcare field, FL is lately
being used as a medium of collaboration between hospi-
tals to share patients’ electronic records and other medical
data [29], [117], [142], [302]. In Sec. VII, we will present a
deeper vision into how IoFT and FL will shape the future of
various industries; those include manufacturing, transporta-
tion, energy, healthcare, quality & reliability, business, and
computing.

1) CHALLENGES
IoFT as an emerging technology poses significant intellectual
challenges. Interdisciplinary skills across diverse fields are
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needed to bring the great promise of IoFT into reality. Below
we highlight some of the challenges and shed light on their
uniqueness compared to centralized IoT systems. This is by
no means an exhaustive list as IoFT challenges vary widely
across different application sectors as highlighted in Sec. VII.
• Statistical Heterogeneity: IoFT devices often have local
datasets that differ in both size and distribution. Recent
papers have shown the unfortunate wide gap in the
global model’s performance across different devices due
to their heterogeneity in distribution [306], [355] and
size [77]. For instance, IoFT devices may have (i) unique
outputs, labels, or features only observed within certain
IoFT devices. (ii) Similar outputs but with dissimilar fea-
tures (i.e., feature distribution skew) or vice versa. This
statistical heterogeneity directly consequences IoFT’s
ability to reach out to many devices operating under
different external factors and subject to geographic,
cultural, and socio-economic differences. In contrast,
traditional IoT systems offer a key, yet often subtle
fundamental advantage: the ability to handle noninde-
pendent or identically distributed (i.i.d) data by shuf-
fling/randomizing the raw data collected in the cloud
before learning; be it through distributed computing or
learning on a single machine. This is not a luxury that
IoFT possesses; rather, it is a price to pay for enhanced
privacy.

• Personalization and Negative Transfer: In the IoFT
process described in Sec. II-B all clients collaborate
to learn a global model; ‘‘one model that fits all’’.
This integrative analysis of multiple clients implicitly
assumes that these local datasets share some common-
alities. However, with heterogeneity, negative transfer of
knowledge may occur, which leads to decreased perfor-
mance relative to learning tasks separately [151], [169].
One possible solution is through personalized modeling
where global models are adapted for local clients (refer
to Sec. IV for data-driven personalization approaches).
Indeed, personalization may be the fundamental tool
to overcome the heterogeneity barrier intrinsic to IoFT.
Yet developing validation techniques to identify negative
transfer and minimize it is a critical problem in FL.

• Communication Efficiency and Resource Manage-
ment: Communication can be a critical bottleneck for
IoFT, especially with a large number of participants.
Unlike cloud datacenters, edge devices in IoFT often
have limited communication bandwidth with unstable
and slow connection [150]. As a result, IoFT devices
are often unreliable and can drop out due to battery loss
or connectivity loss. Besides that, devices themselves
are heterogeneous in their computational capabilities
and memory budgets. Therefore, resource management
in IoFT is of critical importance. Methods such as
compressed communication [147], [297], client selec-
tion [326] and optimal trade-offs between convergence
rates, accuracy, energy consumption, latency and com-
munications [224], [267] are of high future relevance.

Another possible approach is through incentive design
to encourage reliable clients to participate in the training
process and minimize dropout rates [134].

• Privacy: Privacy remains one of the key challenges
and motivators behind IoFT. IoFT systems are prone to
poisoning attacks on both edge devices and the central
server. Targeted data perturbations [14], [52], [187] to
specific labels/instances or corrupting a large number
of devices (i.e., fake devices) can immensely reduce
accuracy. Further, a malicious server might be able to
reconstruct raw data even through a focused update. As a
result, secure computation, aggregation, and communi-
cation are needed in IoFT [20], [26]. So is adversarial
data modeling to ensure robustness against corrupted
data in case breaches are inevitable [198].

• Bias and Fairness: IoFT systems can raise bias and fair-
ness concerns. For example, sampling reliable phones
with a larger bandwidth (i.e., more expensive phones)
can lead to models mostly representative of people
with certain socioeconomic statuses. Further, it is often
important to build models that are competitive over
different groups or attributes. This becomes a bigger
challenge if such sensitive attributes are not shared.
Therefore, fair FL is an important challenge to tackle
within IoFT [172], [342]

• Other Statistical and Optimization Challenges: We
also refer readers to Sec. VI for both statistical and
optimization challenges/opportunities and Sec. VII for
domain-specific challenges in different sectors.

We here note that Secs. III, IV, V shed light on
data-driven modeling approaches (global, personalized and
meta-learning) aimed to tackle of the challenges above. How-
ever, we exclude (i) privacy and communication efficiency:
since there are excellent surveys focused mainly on these
challenges (refer to Sec. I-B) (ii) resource management: since
literature in that area is still scarce.

2) IoFT STRUCTURES
The underlying structure and overall architecture of IoFT
should be tailored to fit certain applications and overcome
specific challenges. Current IoFT architectures are influenced
by the data composition and the FL learning process. For
instance, in the situation where multiple clients collaborate
to learn a global model with the orchestration of a central
server (as seen in Fig. 3), it is implicitly assumed that local
datasets share a common feature space but have a different
sample space - i.e. different clients. Such data composition is
technically referred to as Horizontally partitioned data [329].
A typical FL system architecture for Horizontally portioned
data (also known as Horizontal FL (HFL)), would exploit the
availability of a common feature space. Notably, horizontally
partitioned data are very common across different applica-
tions, making HFL the common practice in IoFT [43], [106],
[257], [329], [331].

However, not all datasets share a common feature space
which naturally poses the need for a different architecture.
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Vertically partitioned data, which refers to datasets sharing a
different feature space but similar sample space, is another
familiar theme in various applications. Such datasets mostly
appear in scenarios that involve joint collaboration between
large enterprises. Consider as an example two different health
institutes, each owning different health records yet sharing the
same patients. Suppose you wish to build a predictive model
for a patient’s health using a complete portfolio of medical
records from both healthcare institutes. Unlike HFL where
each client trains a local model using their own data, training
a local model requires data owned by other clients since
each client holds a disjoint subset of the data. Accordingly,
a typical FL system architecture for Vertically partitioned
data (also known as Vertical FL (VFL) [329]) is designed
to introduce secure communication channels between clients
to share the needed training data, while preserving privacy
and preventing data leakage from one provider to another. For
this, VFL architecture may involve a trusted, neutral party to
orchestrate the federation. The orchestrator aligns and aggre-
gates data from participants to allow for collaborative model
building using the joint data, see Fig. 4. Nonetheless, VFL
remains less explored than HFL, and most of the currently
developed structures can only handle two participants [108],
[230], [330]. More challenging scenarios can occur when
clients have datasets that share only partial overlap in the
feature and sample spaces. FL in these cases can leverage
transfer learning techniques to allow for collaborative model
training [239], [329].

FIGURE 4. IoFT with vertically partitioned data.

The structures described above are designed to handle chal-
lenges arising from dataset partitioning. However, different
challenges require new structures. One notable commonality
of the above structures is the usage of a central orchestrator
that coordinates the FL process in IoFT. The caveat, however,
is that a central orchestrator is a single point of failure and can
lead to a communication bottleneck with a large number of
clients [177]. Accordingly, fully decentralized solutions can
be explored to nullify the dependency on a central orchestra-
tor. In fully decentralized architectures, communication with

the central server is replaced by peer-to-peer communication,
as seen in Fig. 5. In this setting, no central location receives
model updates/data or maintains a global model over all
clients, however, clients are set to communicate with each
other to reach desired solutions. Notably, such peer-to-peer
networks are better able to achieve scalability in situations
with a large number of clients, thanks to their fully decen-
tralized mechanism [140]; the current success of blockchains
is a clear demonstration of this. Further, they offer additional
security guarantees as it is difficult to observe the system’s
full state [21]. However, such architecture yields performance
concerns. Some clients could be malicious in peer-to-peer
networks and potentially corrupt the network (e.g., violate
data privacy). Others could be unreliable and thus disrupt
the communication channels. Consequently, a level of trust
in a central authority in a peer-to-peer architecture can be of
benefit in regulating the network’s protocols.

FIGURE 5. Peer-to-peer network.

The structures discussed here are by no means comprehen-
sive, and several others exist in the literature (see [133], [173],
[256], [329]). However, the common denominator here is that
IoFT structures spawn from challenges of FL applicability
to different scenarios. As IoFT is poised to infiltrate more
and more fields, domain-specific challenges will dictate its
architecture.

III. LEARNING A GLOBAL MODEL
Hereon, we discuss data-driven approaches for FL within
IoFT. As aforementioned, we classify model building in FL
into three categories: (i) a global model, (ii) a personal-
ized model (iii) a meta-learning model. We then provide an
in-depth overview of data-driven models, open challenges,
and possible alternatives within these three categories.

As will become clear shortly, the current FL techniques
mostly focus on predictive modeling using deep learning
and first-order optimization techniques, specifically stochas-
tic gradient descent (SGD). This is understandable as the
immense data collected within IoFT often necessitates such
an approach. Yet, as we discuss in the statistical/optimization
perspective (Sec. VI) and applications (Sec. VII) sections,
exploring FL beyond predictive models and deep learning
is critical for its wide-scale implementation. Topics such
as graphical models, correlated inference, zeroth and sec-
ond order distributed optimization, validation & hypothesis
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testing, uncertainty quantification, design of experiments,
Bayesian optimization, optimization under conflicting objec-
tives (see in Sec. VII-E), game theory and reinforcement
learning, amongst others, are yet to be explored in the IoFT
realm.

A. A GENERAL FRAMEWORK FOR FL
As highlighted in Fig. 3, IoFT allows multiple clients to
collaborate and learn a shared model while keeping their
personal data stored locally. This shared model is referred
to as the global model as it aims to maximize utility across
all devices. One can view the global model as: ‘‘one model
that fits all’’, where the goal is to yield better performance in
expectation across all clients relative to each client learning a
separate model using its own data.

We start by constructing the objective function of a global
model. Assume there are N clients (or local IoFT devices)
and each client i has ni number of observations. The general
objective of training a global model is to minimize the aver-
age over the objective of all clients:

min
w
F(w) :=

1
N

N∑
i=1

Fi(w), (1)

where Fi(w) is usually a risk function on client i. This risk
function can be expressed as

Fi(w) = E(xi,yi)∼Di [`(fw(xi), yi)] ,

where Di indicates the data distribution of the i-th client’s
data observations (xi, yi), fw is the model to be learned
parametrized by weights w, and `(·, ·) is a loss function.
The risk function is usually approximated by the empir-

ical risk given as Fi(w) = E(xi,yi)∼Di [`(fw(xi), yi)] ≈
1
ni

∑ni
j=1

[
`(fw(xj), yj)

]
. Therefore, learning a global model in

FL aims at minimizing the average of risks over all clients.
However, unlike centralized training, in IoFT client i can only
evaluate its own risk function Fi(w) and the central server
does not have access to the data from the clients. Client and
central server training are thus decoupled.

Given this setting, Algorithm 1 is a general ‘‘computation
then aggregation’’ [352] framework for FL. In each com-
munication round, a central orchestrator selects a subset of
clients (S ⊆ [N ]) and broadcasts the global model infor-
mation to the subset. Each client then updates the global
model using its own local data. Afterwards, clients send their
updated models back to the central orchestrator/server. The
orchestrator aggregates and revises the global model based
on input from clients. The process repeats for several commu-
nication rounds until a stopping criterion, such as validation
accuracy, is met. Note that we use [N ] to denote the set
{1, 2, . . .N }, Di a client’s dataset and the superscript t to
represent the t-th communication round between the central
server and selected clients, where t ∈ {1, ..,T }.

One of the simplest FL algorithms isFedSGD [206], [359],
a distributed version of SGD. FedSGD was initially used
for distributed computing in a centralized regime. FedSGD

Algorithm 1 Framework for Learning a Global Model

1: Input: Client datasets {Di}Ni=1, T , initialization for w
2: for t = 1, 2, · · · T do
3: Orchestrator selects a subset of clients S ⊆ [N ],

broadcasts global model wt , or a part of it, to clients
in S.

4: for each i ∈ S do
5: Clients update model parameters wt+1i =

client_update
(
wt ,Di

)
6: Clients send updated parameters wt+1i to server.
7: end for
8: Orchestrator updates wt by aggregating client updates

wt+1 = server_update
({
wti
})

9: end for

partitions the data across multiple computing nodes. In every
communication round, each node calculates the gradient from
its local data using a single SGD step. The calculated weights
are then averaged across all nodes. As a data-parallelization
approach, FedSGD utilizes the computation power of several
compute nodes instead of one. This approach accelerates
vanilla SGD and has been widely used due to the growing size
of datasets collected nowadays. Furthermore, since FedSGD
only performs one step of SGD on a local node, averag-
ing updated weights is equivalent to averaging gradients
(η denotes steps size):

Ei
[
wt − η∇Fi(wt )

]
= wt − ηEi

[
∇Fi(wt )

]
.

Despite being a viable option, traditional distributed opti-
mization algorithms are often unsuitable in IoFT due to the
large communication cost and the presence of heterogeneity.
FedSGD transmits the gradient vector from one machine to
the other after each single local optimization iterate. This
issue is not critical in centralized distributed training when
computation nodes are usually connected by large band-
width infrastructure. However in IoFT, data lives on the edge
device and not on a computing node. Communication with
the central orchestrator at each gradient calculation is not
feasible and may suffer immensely when the edge devices
have limited communication bandwidth with unstable or slow
connection.

To resolve this challenge, the seminal work of
McMahan et al. [208] proposed a simple solution: FedAvg.
The fundamental idea is that clients run multiple updates
of model parameters before passing the updated weights
to the central orchestrator. Specifically, in FedAvg, clients
update local models by running multiple steps (e.g., E local
steps) of SGD on their local objective minwti Fi(w

t
i ). Upon

receiving updated weights from clients, the server_update
function simply calculates the average of the client models:
wt+1 = 1

|S|
∑

i∈S w
t
i . An illustration contrasting FedAvg

and FedSGD is shown in Fig 6. Here one can also add
flexibility by re-scaling the global update with a step size ηg,

wt+1 = wt + ηg
(

1
|S|
∑

i∈S [w
t
i − w

t ]
)
.
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FIGURE 6. An illustration of FedAvg and FedSGD. Grey arrows represent
gradients evaluated on the local client. Bold red arrows represent a
global model update on the central server in one communication round.
In FedSGD, each client performs one step of SGD, and sends the update to
the server, while FedAvg allows each client to perform multiple SGD
steps before averaging.

Indeed, despite its simplicity, FedAvg has seen wide
empirical success within FL due to its communication effi-
ciency and strong predictive performance on several datasets.
To this day, FedAvg remains a standard benchmark that
is often hard to beat. However, a major observed chal-
lenge was that the performance of FedAvg and FedSGD
degrades significantly [208] when data across clients are
heterogeneous, i.e. non-i.i.d. data. Here one should note that
empirical results have shown that FedAvg requires fewer
communication rounds than FedSGD even in the presence of
heterogeneity [208].

B. TACKLING HETEROGENEITY
As previously discussed, an intrinsic property of IoFT is that
the data distribution across clients is often imbalanced and
heterogeneous. Unlike centralized systems, data cannot be
randomized or shuffled prior to inference as it resides on the
edge. For example, wearable devices collect data on users’
health conditions such as heartbeats and blood pressure. Due
to the many differences across users, the amount of data col-
lected can significantly vary, and statistical patterns of these
data are not alike, often with unique or conflicting trends.
This heterogeneity degrades the performance of FedAvg.
The reason is that minimizing the local empirical risk Fi(w)
is sometimes fundamentally inconsistent with minimizing the
global empirical risk F(w) when data are non-i.i.d. Math-
ematically, it also implies that F(w∗) 6= 1

N

∑N
i=1 Fi(w

∗
i ),

where superscript ∗ indicates an optimal parameter. This
phenomenon is known as client-drift [137]. Notice that if
local datasets are i.i.d., when the size of local datasets
approaches infinity, Fi(w) converges to the global empirical
risk F(w), hence optimal solutions coincide. In the following,
we introduce some works trying to address the heterogeneity
challenge.

One method to allay heterogeneity in FL is regularization.
In the literature, regularization has been a popular method
to reduce model complexity. As less complex models usu-
ally generalize better [16], [92], regularization attains better
testing accuracy. In FL, regularization places penalties on a
set of parameters in the objective function to encourage the

model to converge to desired critical points. Researchers in
FL have proposed several notable algorithms using regular-
ization techniques to train global models with non-i.i.d. data.
Perhaps the most basic one is FedProx [170] which adds
a quadratic regularizer term (a proximal term) to the client
objective:

min
wti

Fi(wti )+
µ

2

∥∥wti − wt∥∥2 .
The proximal term µ

2

∥∥wti − wt∥∥2 in FedProx limits the
impact of client-drift by penalizing local updates that move
too far from the global model in each communication round.
Parameter µ controls the degree of penalization. It was
also seen that FedProx allows each device to have a dif-
ferent number of local iterations Ei, which is especially
useful when IoFT devices vary in reliability and commu-
nication/computation power. Experimental results show that
FedProx can partially alleviate heterogeneity, while reduc-
ing communication cost due to the often faster convergence
and ability of reliable clients to run more updates than others.
Here it is important to note that despite reducing client-drift,
FedProx is still based on in-exact minimization since it does
not align local and global stationary solutions.

Besides FedProx, [3], [149], [283], [352] also develop
a framework to tackle heterogeneity through regularization.
Among this literature, DANE [283] was proposed for dis-
tributed optimization yet is readily amenable to FL settings.
DANE uses a local objective:

min
wti

Fi(wti )−
〈
∇Fi(wt−1)−∇F(wt−1),wti − w

t−1
〉

+
µ

2

∥∥∥wti − wt−1∥∥∥2 , (2)

where µ is also a parameter for weighting the regulariza-
tion and wt−1 is the global update at the previous com-
munication round. Compared with the Fedprox objective,
(2) adds one term that linearly depends on wti . This term
aligns the gradient of the local risk to that of the global
risk. To see it, one can calculate the gradient of (2) as
∇Fi(wti )−

(
∇Fi(wt−1)−∇F(wt−1)

)
+µ

(
wti − w

t−1
)
, where

the term ∇Fi(wt−1)−∇F(wt−1) approximates the difference
between the local and global gradient by its value at the
last communication round. It is shown that objective (2) can
be interpreted as mirror descent. Interestingly, if the local
loss function is quadratic, optimizing (2) can approximate
performing Newton updates.

The exact minimization in (2) is sometimes infeasible,
as edge devices usually have limited computation resources.
To resolve the issue, Stochastic Controlled Averaging algo-
rithm (SCAFFOLD) [137] replaces the exact minimization by
several gradient descent steps on the local objective below,

min
wti

Fi(wti )−
〈
cti − c

t ,wti
〉
. (3)

where control variables cti and c are defined as cti =
∇Fi(wt−1i ), i.e. the local gradient at the end of the last com-
munication round, and ct = 1

N

∑
i c
t
i . Objective (3) is akin
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to (2), since
〈
cti − c

t ,wti
〉
also has the alignment effect, except

that it does not have the proxy term µ
2

∥∥wti − wt−1∥∥2. To show
the update rule in communication round t , we use wt,ei to
denote the weight at the e-th local iterate, and set wt,0i = wt .
In round t , the server samples a group of clients S. For client i
in S, the local update of SCAFFOLD is:

wt,e+1i = wt,ei − η(∇Fi(w
t,e
i )− cti + c

t ), (4)

for e ∈ {0, · · · ,E − 1}. After E iterations, clients send
weights wti = wt,Ei and gradients ct+1i = ∇Fi(wti ) to the
server. The server takes the average of control variables
ct+1 = ct+ 1

N

(∑
i∈S

[
ct+1i − ct

])
, and re-scales the updates

for weights by ηg, wt+1 = wt + ηg
|S|
(∑

i∈S [w
t
i − w

t ]
)
. Note

here that ct is taken over all N clients. For those that did
not participate SCAFFOLD re-uses the previously computed
gradients.

The idea behind SCAFFOLD is very intuitive. To solve
(1), the ideal (centralized) update is that each client uses
all client’s data wt+1i = wt − ηg

N

∑N
i=1 ∇Fi(w

t ). However
such update rule is not possible in IoFT due to the need
to communicate the gradients ∇Fi(w) with the orchestrator
at every optimization iterate. To mimic the ideal update,
SCAFFOLD uses cti to approximates ∇Fi(wti ) at using the last
communication round, for all i. Then also ct may approx-
imate the gradient of the global risk, ct = 1

N

∑N
i=1 c

t
i ≈

1
N

∑N
i=1 ∇Fi(w

t
i ). If this approximation holds, the update of

SCAFFOLD becomes similar to ideal (centralized) update.
One caveat in such update scheme is that ct may not always
equal (or approximate) the ideal value 1

N

∑N
i=1 c

t
i . Adding

to that, ct re-uses the previously computed gradients when
clients do not participate. Therefore, when client participation
rate is low, ct can deviate far away from the ideal update
leading to degraded optimization performance.

Empirically, SCAFFOLD requires fewer communica-
tion rounds to converge compared with FedAvg. A very
similar algorithm is Federated SVRG [149], which
applies stochastic variance reduced gradient descent to
approximately solve (3). The update rule is wt,e+1i =

wt,ei − η
(
Si
(
∇Fi(w

t,e
i )− cti

)
+ ct

)
, where Si is a diag-

onal matrix to rescale gradients. Federated SVRG
reduces to SCAFFOLD when one sets Si to the identity
matrix.

As discussed, despite its efficiency on several FL tasks,
SCAFFOLD does not work well in low client participation
cases. To this end, FedDyn [3] uses a specially designed
dynamic regularization to align gradients under partial par-
ticipation. The objective on client i is defined as:

min
wti

Fi(wti )−
〈
∇Fi(wt−1i ),wti

〉
+
µ

2

∥∥∥wti − wt−1∥∥∥2 . (5)

Objective (5) is also closely related to (2). In (2), when the
weightw is near critical points of the global risk F(w),∇F(w)
is close to 0, thus (2) reduces to (5). As a simple fixed points
analysis, when all models start from wt−1i = wt−1 = w∗,
i.e. a critical point of the global loss, the optimal solution

of (5) is still w∗, thus local updates will stay at w∗. FedDyn
is proved to converge to critical points of the global objective
with a constant stepsize. Also, to deal with partial client
participation, FedDyn uses a SAG-style [281] averaging rule
in server_update: instead of only averaging gradients from
clients that participated in the training in one communication
round, FedDyn estimates gradients on disconnected clients
based on historic values and averages all gradients (or gra-
dient estimates). In practice, FedDyn is shown to achieve
similar test accuracy with much fewer communication rounds
compared with FedAvg and FedProx, especially when
client participation rate is low.

A closely related algorithm to FedDyn is Federated
primal-dual (FedPD) [352]. FedPD and FedDyn have dif-
ferent formulations, but end up with the same update rule
under some conditions. In FedPD, the optimization prob-
lem in (1) is reformulated to a constrained optimization
problem

min
w0,{wi}

1
N

N∑
i=1

Fi(wi) subject to w1 = . . . = wN = w0.

(6)

To solve the constrained optimization problem, FedPD
introduces dual variables λ1, · · · , λN , then defines the aug-
mented Lagrangian (AL) for client i to be Fi(wi, λi,w0) =
Fi(wi) + 〈λi,wi − w0〉 +

µ
2 ‖wi − w0‖

2. FedPD uses alter-
native descent on primal and dual variables to optimize Fi.
More specifically, FedPDfirst randomly initializesw0, λi,wi
for all clients. At round t , the algorithm updates wt+1i by
optimizing Fi and fixing λi = λti and w0 = wt0. It then
updates dual variables by λt+1i = λti + µ(wt+1i − wt0,i)
and also wt+10,i = wt+1i +

1
µ
λt+1i . After the local updates,

FedPD makes a random choice with probability 1 − p, that
all clients send updated wt0,i back to the orchestrator which
updates wt+10 =

1
N

∑N
i=1 w

t+1
0,i and broadcasts updated wt+10 .

With probability p, all clients set w0
= wt+10,i and continue

local training. Interestingly, by letting λi = ∇Fi(wt−1i ),
it was shown that FedPD is equivalent to FedDyn with full
client participation on an algorithmic level [351]. However,
different from FedDyn, FedPD does not directly apply to
partial participation settings.

Another algorithm that uses a constrained optimization
formulation is FedSplit [243]. FedSplit [243] applies
Peaceman-Rachford splitting [58], [244]. More specifically,
FedSplit concatenates w1, · · · ,wN into one long vector
W = (wT1 , . . . ,w

T
N )

T and finds the optimal solution of
1
N

∑N
i=1 Fi(wi) on the subspace E = {W|w1 = · · · = wN }.

The problem is also known as consensus optimization [272].
An important concept in consensus optimization is the normal
cone defined as NE (W) = E⊥ for W ∈ E and empty
otherwise. At the optimal solution, the gradient should be in
the normal cone of E :

0 ∈ ∇W
N∑
i=1

Fi(wi)+NE (W).
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FedSplit treats gradient ∇W and normal cone NE as
two operators, and uses Peaceman-Rachford splitting [58]
to find a solution W that satisfies the optimality condition.
After some derivations, the authors propose the following
update rules. At communication round t , clients update their
local weights wti , send them to server and store a local copy.
In the following round, client i receives global update wt , and
calculates:

w
t+ 1

2
i = argmin

wi
Fi(wi)+

µ

2

∥∥wi − (2wt − wti)∥∥2
wt+1i = wti + 2

(
wt − w

t+ 1
2

i

)
.

The server_update simply averages wt+1 = 1
N

∑N
i=1 w

t+1
i .

Intuitively, operator splitting adds a regularization term cen-
tered at 2wt−wti to the local objective. The carefully designed
update rule has two advantages. Firstly it help alleviate client-
drift: FedSplit convergences linearly to critical points of
the global loss on convex problems. Also, it accelerates con-
vergence: the theoretical convergence rate is faster than that
of FedAvg on strongly convex problems.
In addition to algorithms applicable to general federated

optimization problems, there are models designed specif-
ically for neural networks to handle heterogeneity. For
instance, researchers pointed out that re-permutation of neu-
rons may cause declined performance in the aggregation step
of FL. This re-permutation problem is due to the fact that
different neural networks created by a weight permutation
might represent the same function.

For example, consider a simple NN, fw(x) = W2σ (W1x)
where σ is an activation function, fw(x) ∈ Rdy , x ∈ Rdx and
W1 ∈ Rw

×Rdx andW2 ∈ Rdy×Rw are weight matrices. One
can multiply a permutation matrix 5 ∈ Rw

× Rw to W1 and
W2, fw(x) = W25

Tσ (5W1x), and the function remains the
same. However updates on different clients may be attracted
to networks with a different permutation matrix 5. This
can cause averaging over weights to fail. To cope with
this, [343] propose a neuron matching algorithm called Prob-
abilistic Federated Neural Matching (PFNM). PFNM assumes
5iW1 and W25

T
i are generated by a hierarchical probabilis-

tic model whose hyper-parameters are determined by global
weights. Then PFNM uses Bayesian inference to estimate the
hyper-parameters, and reconstructs the global model from the
inference.

However, [303] argue that PFNM can only work on sim-
ple fully connected neural networks. To solve the problem,
they extend PFNM to Federated Matched Averaging (FedMA)
algorithm. FedMA updates weights of a neural network layer
by layer. Firstly, clients train local NNs and send the trained
first layer weights W (1)

i to the orchestartor, where W (1)
i

denotes the weight vector of layer 1 from client i. The server
uses matching algorithms such as the Hungarian algorithm
in PFNM to estimate 5(1)

i that represents the permutation
vector of first layer model weights for client i. Thus,5(1)

i W (1)
i

become the matched weights after re-permutation. The server
then averages the results W

(1)
=

1
N

∑N
i=15

(1)
i W (1)

i , and

broadcasts the averaged W
(1)
. After receiving W

(1)
, clients

continue to train the remaining layers with the first layer fixed
to W

(1)
. A similar match-then-average process repeats for

remaining layers. For FedMA, the number of communica-
tion rounds equals the number of network layers. FedMA is
reported to have strong performance on CIFAR-10 and a well
known language dataset called Shakespeare. Additionally,
the performance of FedMA improves with the increase of
local epochs E , while that of FedAvg and FedProx drops
after a threshold of E due to the discrepancy between local
models (i.e. local weights wander away from each other).
Thus FedMA enables clients to train more epochs between
consecutive communications.

All approaches described above are of a frequentist
nature. However, there has also been a recent push on
improving global modeling through a Bayesian framework.
The intuition is simple; rather than betting our results on
one hypothesis (w) obtained via optimizing the empirical
risk, one may average over a set of possible w or inte-
grate over all w weighted by their posterior probability
P(w|D = {D1, · · · ,DN }). This is the underlying philoso-
phy of marginalization compared to optimization, whereby
in the frequentist approach predictions are obtained through
substituting the posterior by P(w|D) = δ(w = ŵ), where ŵ
is the single optimized weight and δ is an indicator function.
Indeed, this notion of Bayesian ensembling has seen a lot of
empirical success in Bayesian deep learning [124], [196].

One such approach is Fed-ensemble [285]. Fed-
ensemble, is a simple plug-in into any FL algorithm that
aims to learn an ensemble of K -models without additional
communication costs. To do so, Fed-ensemble follows a
random permutation sampling scheme where at each commu-
nication round, every client trains one of the K models and
then aggregation happens for each model separately (using
FedAvg or other FL approaches). This approach corresponds
to a variational inference scheme [27], [347] for estimating a
Gaussian mixture variational distribution whose centers are
randomly initialized at the beginning. Predictions on a new
input x∗ are then obtained by taking an average over the
predictions of the K models

f (x∗) =
1
K

∑
k

fwk (x
?). (7)

Fed-ensemble is also able to quantify predictive uncer-
tainty. Using a neural tangent kernel argument, the authors
show that all predictions from all K models converge to sam-
ples from the same limiting Gaussian process in sufficiently
overparameterized regimes (see Fig. 7) where each mode can
behave like a model trained by centralized training.

Another recent work taking insights from Bayesian infer-
ence is FedBE [42]. It performs statistical inference on the
client-trained models and uses knowledge-distillation (KD)
to update the global model. Intuitively, the goal of KD is
to use high-quality base models from a global distribution
P(w) to direct the global model update. More specifically,
after receiving {wi}i∈S from clients, the server fits them with
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FIGURE 7. An illustration of an ensemble of K = 3 models. The three
model weights on the left figure correspond to the three predictions on
the right. Although the weights are well separated, the predictions admit
the same limiting posterior distribution.

a Gaussian or Dirichlet distribution and then samples from
the estimated distribution to form an ensemble of K models
{w1, · · · ,wK }. Similar to (7), the ensemble prediction on
a new point x∗ is given by yensemble = 1

K

∑K
i=1 fwk (x

∗).
In server_update, the global model fw is trained to mimic the
average prediction of models in the ensemble by minimizing
the discrepancy between the two predictions evaluated on an
additional unlabeled dataset Dadd on the server:

wt+1 = argmin
w

Ex∼Dadd [Div(yensemble(x), fw(x))] ,

where Div denotes a divergence measure, here cross-entropy.
The updated wt+1 is then sent to all clients. The authors
empirically show that the ensemble and knowledge distil-
lation turns out to be more robust to non-i.i.d. data than
FedAvg. This approach however requires storing additional
data on server which is not always feasible.

C. EFFICIENT & EFFECTIVE OPTIMIZATION
Several studies attempt to improve FedAvg by adopting
adaptive optimization algorithms to the FL realm. They show
theoretically or empirically that the improved algorithms
can converge faster and accelerate global model training.
In general, acceleration can be achieved by either improving
the server aggregation step (server_update) or client updates
(client_update). FedAdam and FedYogi [266] bring the
well known Adam [143] and Yogi [265] algorithms to FL
through augmenting the server_update function by adaptive
stepsizes. More specifically, FedAdam and FedYogi use
a second order moment estimate vt to adaptively adjust the
learning rate. v0 is initialized at the beginning. Upon receiving
wti from clients, server calculates 1wti = wti − wt , and
averages them1t =

∑
i∈S

1
|S|1w

t
i . FedAdam updates vt as:

vt = ζvt−1 + (1− ζ )12
t ,

and FedYogi as:

vt = vt−1 − (1− ζ )12
t sign(vt −1

2
t ),

where ζ is a parameter for exponential weighting. The update
rule for both FedAdam and FedYogi is:

wt+1 = wt + η
1t

√
vt + ε

,

where ε is a small constant for numerical stability. Though
the proved theoretical convergence rates of FedAdam and
FedYogi are only comparable to those of FedAvg, the
adaptive methods show strong performance on several FL
tasks. Considering the success of adaptive stepsizemethods in
numerous important fields including language models [301],
GANs [282], [332], amongst others, we believe their use in
FL is promising. A related algorithm in this vein is federated
averaging with server momentum (FedAvgM) [186], which
uses server momentum in the server_update step.

Besides modifying server_update, multitudes of algo-
rithms redesign the client_update function. For instance,
there are some attempts to expedite local training by com-
bining accelerating techniques in optimization.
FedAc [337] is a federated version of an accelerated SGD.

Instead of updating a single variable wi as FedAvg does,
FedAc updates three sequences {wi, (wi)ag , (wi)md } itera-
tively on the client side by the following rules for several
steps: 

(
wti
)md
← ζ1wti + (1− ζ1)

(
wti
)ag

gi← ∇Fi(
(
wti
)md )(

wti
)ag
←
(
wti
)md
− η1gi

wti ← (1− ζ2)wti + ζ2
(
wti
)md
− η2gi.

ζ1, ζ2, η1, η2 are four hyper-parameters. Among them
ζ1, ζ2 are exponential averaging parameters, and η1, η2 are
stepsize parameters. The server averages wti and

(
wti
)ag

from sampled clients, and broadcasts the averaged wt+1 and(
wt+1

)ag
, which clients will take as initialization of wt+1i and(

wt+1i

)ag
in the next communication rounds. The algorithm

then proceeds till convergence. Reference [337] theoretically
prove that FedAc can achieve a linear convergence rate faster
thanFedAvgwhen global riskF(w) in (1) is strongly convex.
Empirical results show that FedAc saves communication
cost when there are many devices in the network.
LoAdaBoost [118] adaptively determines the training

epochs of clients by monitoring the training loss on each
client and adjusting the training schedule accordingly. More
specifically, after one communication round, clients send
training losses, in addition to updated weights to the server.
The server estimates the median of the training loss Fi,
Fmedian := median({Fi}i=1,··· ,N ). In the next round, all clients
train for a certain amount of epochs E ′

2 , where E ′ is the
average budget of epochs. If the training loss is lower than
Fmedian, the local training is deemed to have reached its goal
in this round, and the updated weight will be directly sent
back to server. If the training loss is higher than Fmedian
on client i, then the model underfits client i. As a result,
LoAdaBoostwill train themodel on client i for extra epochs
until the local training loss is lower than Lmedian or the total
epochs exceed 3

2E , whichever comes faster. Such dynamic
training schedules allow LoAdaBoost to take resources of
clients into consideration, thus can better utilize computation
power on edge devices and enable faster training.

156082 VOLUME 9, 2021



R. Kontar et al.: Internet of Federated Things (IoFT)

D. SAMPLING CLIENTS
Due to the often sheer size and unreliability of edge devices
participating within IoFT, not all clients can participate in
each communication round of the training process as shown
in Algorithm 1. Therefore, choosing the appropriate subset S
at each communication round between the orchestrator and
client is of utmost importance in FL. Here we shed light on
some existing schemes, other possible alternatives and their
implications.

We first start by noting that an alternative approach to write
the global objective in (1) is through giving different weights
to client risk function. This is given as

min
w
F(w) :=

N∑
i=1

piFi(w) = Ei[Fi(w)], (8)

where pi is a weight such that pi ≥ 0 and
∑N

i=1 pi = 1.
In IoFT, it is common to have datasets of different sizes. Thus,
a natural choice is to set pi =

ni
n where n is the total data size

across all clients n =
∑N

i=1 ni. Clearly if all clients have the
same dataset size ni, objective (8) reduces to (1).
Indeed, although most algorithms for FL use (1), both

FedAvg and FedProx (among the earliest methods) use (8)
by adding weights pi. FedAvg samples clients S ⊆ [N ]
uniformly with probability Pi = 1

N , and averages client
models with weights proportional to their local dataset size ni:
wt+1 = 1∑

i∈S ni

∑
i∈S niw

t+1
i . On the other hand, FedProx

samples clients with probability Pi = pi =
ni
n and averages

client models with equal weights: wt+1 = 1
|S|
∑

i∈S w
t+1
i .

These sampling probability and weights are chosen to make
client updates unbiased estimates of global updates - i.e.
unbiased estimates of

∑N
i=1 pi∇Fi(w).

However, both sampling schemes may have some draw-
backs. For example, uniform sampling may be inefficient
since the orchestrator can often sample unreliable clients or
clients with very small datasets. Dataset size-based sampling
addresses this issue, but it may raise fairness concerns as
some clients are rarely sampled and trained. This also makes
the training procedure more prone to adversarial clients with
large datasets that can directly impact the training process.

To form better sampling schemes and accelerate training,
adaptive sampling techniques have also been proposed. These
FL algorithms update the sampling probability Pti after each
communication round from historical statistics [51], [53],
[162], [323]. Such methods usually sample clients on which
the model fits worse, more often. Intuitively, when a model
incurs high training loss or large gradient norms on client i,
client i is not performing well under the current model and
should be trained for more epochs.

There are a range of choices formeasuring the performance
of a model on the client. Among them, there is a set of
literature that calculates the sampling probabilities adaptively
using gradient norms of the clients [138], [185], [219]. Gen-
erally this can be given as

Pti ∝ exp
(
γ
∥∥∇Fi(wti )∥∥2) ,

where γ is some constant. Other approaches sample clients
based on their training loss [30], [53] where the gradient is
substituted by the local loss Fi(wti ) at the end of each training
round. In this set of literature, exploration and exploitation
schemes are also used to continuously update the sampling
probability. Client selection usually improves model perfor-
mance and speeds up the training process. For example, [162]
can achieve 1.2× to 14.1× speed up in terms of time-to-
accuracy compared with vanilla FedProx or FedYogi.

Due to prevailing statistical and system heterogeneity
among clients, we believe client sampling techniques will
be of great significance when practitioners try to deploy
FL frameworks in IoFT. An effective sampling scheme can
efficiently exploit differences in client’s resources while at
the same time improving training speed and accuracy. Fur-
ther, studying the connections between adaptive sampling and
client re-weighting schemes (see Sec. III-E) used for fairness
is an interesting topic worthy of investigation.

E. FAIRNESS ACROSS CLIENTS
In IoFT, it is crucial to ensure that all edge devices have
good prediction performance. However, the key challenge
is that devices with insufficient amounts of data, limited
bandwidth, or unreliable internet connection are not favored
by conventional FL algorithms. Such devices can potentially
end with bad predictive ability. Besides this notion of indi-
vidual fairness, group fairness also deserves attention in FL.
As FL penetrates many practical applications, it is important
to achieve fair performance across groups of clients charac-
terized by their gender, ethnicity, etc. Before diving into the
literature, we first start by formally defining the notion of
fairness. Suppose there are d groups (e.g., ethnicity) and each
client can be assigned to one of those groups. Group fairness
can be defined as follows.
Definition 1: Denote by {aiw}1≤i≤d the set of performance

measures (e.g., testing accuracy) of a trained model w. For
trained models θ and θ̃ , we say θ is more fair than θ̃

if Var({aiθ }1≤i≤d ) < Var({ai
θ̃
}1≤i≤d ), where Var denotes

variance.
When d = N , this definition is equivalent to the indi-

vidual fairness. Definition 1 is widely adopted in most FL
literature [119], [172], [214], [345], [348]. This notion of
fairness might be different from traditional definitions such as
demographic disparity [85], equal opportunity and equalized
odds [107] in centralized systems. The reason is that those
conventional definitions cannot be extended to FL as there is
no clear notion of an outcome which is optimal for an edge
device [133]. Instead, fairness in FL can be defined as equal
access to effective models (e.g., the accuracy disparity [344]
or the representation disparity [172]). Specifically, the goal is
to train a global model that incurs a uniformly good perfor-
mance across all devices or groups [133].

Despite the importance of fairness, unfortunately, very
limited work exist along this line in FL. As will become clear
shortly, the few works in this area mainly focus on a client
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re-weighting scheme through exploiting the weighted global
objective in (8) instead of (1).
GIFAIR-FL [342] is the first algorithm that can han-

dle both group and individual fairness in FL. Specifically,
it achieves fairness by penalizing the spread in the loss among
client groups. This can be translated to the following opti-
mization problem:

H (w) =
N∑
i=1

piFi(w)+ λ
∑

1≤j<k≤d

∣∣Lj(w)− Lk (w)∣∣ ,
where λ is a regularization parameter and

Lj(w) =
1
|Aj|

∑
i∈Aj

Fi(w)

is the average loss for group j and Aj is the set of indices of
devices who belong to group i. The original formulation of
H (w) can be further simplified as

H (w) =
N∑
i=1

pi

(
1+

λ

pi|Asi |
ri(w)

)

Fi(w) :=
N∑
i=1

piHi(w)

where

ri(w) =
∑

1≤j6=si≤d

sign(Lsi (w)− Lj(w)),

and si ∈ [d] is the group index of device i. ri(w) can be viewed
as a scalar that related to the statistical ordering of Lsi among
client group losses. Therefore, to collaboratively minimize
H (w), each edge device i is minimizing Hi(w), a scaled
version of the original local loss function Fi(w). The central
server will aggregate local parameters and update {ri(w)}Ni=1
at every communication round. From the expression of ri(w),
one can see that a higher value of ri(w) will be assigned to
the client that has higher group loss. Therefore, GIFAIR-FL
will impose higher weights for clients with bad performances.
Furthermore, those weights will be dynamically updated at
every communication round to avoid possible model over-
fitting. Reference [342] has shown that GIFAIR-FL will
converge to an optimal solution or a stationary point even
when heterogeneity exists.

Agnostic federated learning (AFL) [214] is another algo-
rithm that re-weights clients at each communication round.
Specifically, it solves a robust optimization problem in the
form of

min
w

max
max p1,...,pN

N∑
i=1

piFi(w).

AFL computes the worst-case combination of weights among
edge devices. This approach is robust but may be conser-
vative since it only focuses on the largest loss and thus
causes pessimistic performance to other clients. Du et al. [75]

further refine the notation of AFL by linearly parametriz-
ing weight parameters by some kernel functions. Upon that
Hu et al. [116] combine minimax optimization with gradient
normalization to formulate a new fair algorithm FedMGDA+.

Inspired by fair resource allocation for wireless networks
problems, [172] propose the q-FFL algorithm for fairness.
They slightly modify the loss function and add a power q to
each user

min
w

N∑
i=1

pi
q+ 1

Fq+1i (w). (9)

The intuition is that q tunes the amount of fairness: the
algorithm will incur a larger loss to the users with poor per-
formance. Therefore, q-FFL can ensure uniform accuracy
across all users.

To the best of our knowledge, fairness is an under-
investigated yet critical area in the FL setting. We hope
this section can inspire the continued exploration of fair FL
algorithms.

IV. LEARNING A PERSONALIZED MODEL
As highlighted in previous sections, heterogeneity is a fun-
damental challenge for IoFT. IoFT devices often exhibit
highly heterogeneous trends and behaviors due to differences
in operational, environmental, cultural, socio-economic and
specification conditions [152], [153], [341]. For instance,
in manufacturing, operational differences involve changes
in the speed, load, or temperature a product experiences.
As a result, data distribution across edge devices can be
vastly heterogeneous, that one single global model cannot
perform consistently well on all edge devices. This also
has severe fairness implications as devices with limited data
and unreliable connection will not be favored by many FL
algorithms due to higher weights (recall FedAvg and its
variants) given to devices with more data or those that can
participate more often in the training process. Indeed, in the
past few years, multiple papers have shown the wide gap in
a global model’s performance across different devices when
heterogeneity exists [106], [131], [133], [288], [306].

One straightforward solution to address the challenges
above is through personalization. As shown in Fig. 8, instead
of using one global model for all edge devices, person-
alized FL fits tailor-made models for IoFT devices while
levering information across all those devices. The rest of
this section will discuss current personalization approaches,
their drawbacks and potential alternatives. We divide the
personalization techniques into fully personalized and semi-
personalized. For fully personalized algorithms, each edge
device retains its own individualized model, and for semi-
personalized algorithms, models are tailor-made only to a
group of clients. In Sec. V, we will further discuss person-
alization from a meta-learning perspective.

A. FULLY PERSONALIZED
From a statistical perspective, let xi ∼ Px , but let the condi-
tional distributions of yi given xi vary across IoFT devices.
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FIGURE 8. Personalized IoFT.

One can write this as yi ∼ Piy|x
(
fβ i (xi)

)
where clients share

the same f (a linear model, neural network) yet with different
parameters β i. In this situation, the difference in the data
distributions Pix,y = PxPiy|x across clients can be explained
by the difference in Piy|x . This is often referred to as a concept
shift and implies a change in the input-output relationship
across clients [209], [294]. For example, in manufacturing the
same design setting can have different effects on the manu-
factured product given external factors such as operational
speed or load. Also, take the sequence prediction task on
mobile phones as an example: for different users, the word
following ‘‘I live in . . . ’’ should be different [155]. This
example corresponds to a concept shift: x is assumed the
given part of the sentence ‘I live in’, and y is the next word
to predict. In this situation, Piy|x should be customized for
different clients even if x is the same.

This section discusses current approaches to address a
concept shift across clients, their drawbacks, and promising
alternatives. Modeling for a shift in Px is highlighted in our
statistical perspective (Sec. VI-A).
To accommodate client specific concept shifts while lever-

aging global information one can extend the global FL model
in (1) to the following general objective for personalized FL:

min
w,β

F(w,β) :=
1
N

N∑
i=1

Fi(w,β i), (10)

where w are shared global parameters while β = {β i}
N
i=1 is a

set of unique parameters for each client.
The current literature aiming to address a concept shift

can be broadly split into two categories: (i) weight sharing
and (ii) regularization. It will also become clear shortly that
many current approaches follow a train-then-personalize
philosophy which may be dangerous in some instances.

1) WEIGHT SHARING
The first set of literature solves (10) by using different layers
of a neural network to represent w and β i [178], [306]. The
underlying idea is that base layers process the input to learn

a shared feature representation across clients, and top layers
learn task-dependent weights based on the features.
FedPer [306] fits global base layers, and person-

alizes top layers. As an example, a fully connected
multi-layer neural network can be expressed as fw(x) =
Wlσ (Wl−1σ (. . . σ (W1x))), where l are the number of net-
work layers. Recall from Sec. III-B, σ denotes an activa-
tion function and Wj’s are weight matrices. In this example,
FedPer takes W1 to WB as base layers that characterize w,
and WB+1 to Wn as personalized layers that characterize β i
in (10). In one communication round, client i uses SGD to
update w and β i simultaneously. However, different from
FedAvg, only w is transmitted to the server where it is
then aggregated. FedPer is found to perform better than
FedAvg on image classification tasks such as CIFAR-10 and
CIFAR-100. On these datasets, the authors show that having
the last one or two basic residual blocks of Resnet-34 per-
sonalized can yield the best testing performance. Similarly,
LG-FedAvg [178] takes top layers as a global weight w and
base layers as personalized weights β i. The intuition is to
learn customized representation layers for different clients,
and to train a global model that operates on local repre-
sentations. Additionally, by carefully designing the loss of
representation learning, the generated local representation
can confound protected attributes like gender, race, etc.

2) REGULARIZATION
In contrast to splitting of global and local layers, other recent
work treat neural networks holistically and learn personalized
β i’s by exploiting regularization [70], [288].

Perhaps themost straightforwardmethod to personalize via
regularization is to follow a train-then-personalize (TTP)
approach. As the name suggests, this approach trains the
global model on all clients then adapts it to individual devices.
The simplest way for the adaptation is fine-tuning [8], [336],
which is also widely employed in computer vision and natural
language processing [255]. More specifically, in the TTP
approach, we have a two step procedure. Step 1 - Train:
clients collaborate to train a global model w∗ 1

= wT using
FedAvg (or its variants) - recall T is the last communication
round. Step 2 - Personalize: clients make small local adjust-
ments based on their local data to personalize w∗. Notice that
for such methods, β i’s and w are in the same parameter space
thus it’s possible to perform addition or calculate the differ-
ence of these weight vectors. Weight regularizing methods
thus usually allow all theweight vector to differ across clients,
instead of forcing some coordinates of these weight vectors
to be exactly the same.

A simple means for the personalization step is to start from
β i = w∗ and perform a few steps of SGD to minimize
the local loss function minβ i Fi(β i). Indeed, this approach
to fine-tuning is shown to generalize better than fully local
training or global modeling on next word prediction [295]
and image classification tasks (e.g. [83], [190]). In this same
essence, one may exploit regularization to encourage the
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weights of personalized models to stay in the vicinity of
the global model parameters to balance each client’s shared
knowledge and unique characteristics. For instance, using
ideas from FedProx, the personalization step can encourage
β i to remain within a vicinity of the global solution w∗ as
shown below.

min
β i

(
Fi(β i)+

µ

2

∥∥β i − w∗∥∥2) . (11)

Other forms of regularization can also be used. For
instance, by employing the popular elastic weight consol-
idation model (EWC) [144] that is often used in continual
learning, we can control β i as

min
β i

Fi(β i)+ µ2 ∑
j

FI j
∥∥∥βj − w∗j ∥∥∥2

 ,
where FI j are diagonal elements of the Fisher information
matrix.

Some recent approaches [70], [174] have exploited the
ideas above but in an iterative manner, where local and
global parameters in the train-then-personalize step are
obtained by alternating optimization methods. Among them,
Ditto [174] simply proposed the following bi-level opti-
mization problem for client i:

min
β i

Fi(β i)+
µ

2

∥∥β i − w∗∥∥2
s.t. w∗ ∈ argmin

w

1
N

N∑
i=1

Fi(w). (12)

To solve this formulation, Ditto uses the following
update rule. In communication round t , clients firstly receive
a copy of global weight wt which is updated to wt+1i using
multiple (S)GD steps on the local risk function Fi(w); much
like FedAvg. In the meantime, clients i also obtains βi by
multiple descent steps on the regularized loss (12):

β i← β i − η∇Fi(β i)− ηµ
(
β i − w

t) .
At the end of the training round, client i sends only global

weight wt+1i back to server. Server simply averages received
weights wt+1 = 1

N

∑N
i=1 w

t+1
i . Empirically, Ditto has

shown strong personalization accuracy on multiple com-
monly used FL datasets.

In Ditto, the global weight update is independent of
personalized weights and follows the FedAvg procedure.
Hence global weights cannot learn from the performance
of personalized weights. To integrate the update of w and
β i, [70] proposes Moreau envelope FL (pFedMe) for per-
sonalization. pFedMe formulates the following bi-level opti-
mization problem:

min
w

1
N

N∑
i=1

min
β i

[
Fi(β i)+

µ

2

∥∥w− β i
∥∥2] .

pFedMe gets its name because minβ i

[
Fi(β i)+

µ
2∥∥w− β i

∥∥2] is the Moreau envelope of Fi(w). In the inner

level optimization, personalized weights β i minimize the
local risk function in the vicinity of reference point w,
and in the outer level minimization, w is minimized to
produce a better reference point. This objective is closely
related to model-agnostic meta-learning (MAML). Sec V
will cover more details about meta-learning algorithms.
The optimal solution of pFedMe satisfies the relation
β∗i (w) = w− 1

µ
∇Fi(β∗i ). Through some calculus, the gradient

with respect to w is: ∇w[Fi(β∗i (w)) +
µ
2

∥∥w− β∗i (w)
∥∥2] =

µ(β∗i (w) − w). In practice, at one communication round,
selected clients receive global weight w and find an
approximate optimal solution β̃∗i to the inner optimization
problem minβ i

[
Fi(β i)+

µ
2

∥∥w− β i
∥∥2] via SGD or its

variants. Client i then multiplies the update by µηl ,
1wi = µηl(β̃∗i − w), and sends 1wi to the server. µ is set to
15 ∼ 30 in the case studies. The server then averages received
1wi to renew the global model as w← w+ηg

∑
i1wi. ηg is

another hyperparameter whose value is 1 ∼ 4 in experiments.
With proper hyper-parameter choices, the convergence rate
of pFedMe is proved to be faster compared with FedAvg.

Local loopless GD (L2GD) [105] simply sets w to be the
average of β i, w = β = 1

N

∑N
i=1 β i. The objective is:

min
β

1
N

N∑
i=1

[
Fi(β i)+

µ

2

∥∥∥β i − β

∥∥∥2] .
To optimize the objective, L2GD chooses to update
1
N

∑N
i=1 Fi(β i) and 1

N

∑N
i=1

µ
2

∥∥∥β i − β

∥∥∥2 by a random
experiment. More specifically, at round t , with probability
1 − p, each client will perform one step of GD to minimize
local training loss β ti as β ti ← β ti −

η
N (1−p)∇Fi(β). With

probability 1 − p, clients will send updated models β ti
back to the server, unless the model is not updated since
the previous synchronisation. The server_update consists
of two steps: first, the server takes the average of β ti to
obtain β t = 1

N

∑N
i=1 w

t
i ; second, the server calculates

the initialization of client i’s weight on the t + 1-th
communication round as β t+1i =

(
1− αµ

Np

)
β ti +

αµ
Npβ t and

sends it to the corresponding client. Here α is a tunable
hyperparameter.

Finally we shed light on another formulation of the train
then personalize approach provided by [65]. Reference [65]
learn the global parameter w∗ using traditional global mod-
eling approaches, yet, in the personalization step the local
objective is given as

min
β i

Fi(ζiβ i + (1− ζi)w∗), (13)

The tuning parameter ζi balances the importance of the
local and global model. When users data are i.i.d., the authors
argue that the global model will have better generalization
and suggest choosing a smaller ζi. On the other hand, when
data are heterogeneous, they choose to use a larger ζi to
encourage personalization.
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FIGURE 9. Underlying true sine functions from five different clients.

3) A COUNTER-EXAMPLE
The rationale behind regularization approaches is that the
global model learns shared knowledge. Then, by encouraging
local weights to stay close to the global model, every client
can borrow strength from this shared knowledge. Unfortu-
nately, this simple intuition does not apply to all problems.
As a simple counterexample, assume client i’s ground truth
is a sine function:

fθi (x) = sin(2π(x + θi)),

where θi is client-dependent. We assume that among clients,
θi admits a uniform distribution on [0, 1]. Sine functions are
the basis of almost all periodic functions and a phase shift
is common for vibration signals, which usually have strong
similarity and large shifts.

Now, if we train a global model to minimize the population
risk:

min
w

Ei[||fw − fθi ||
2
2].

where fw is a global model parametrized by weight w, and
|| · ||2 is a functional on [0, 1] defined as:

||f ||22 =
∫ 1

0
f (x)2dx.

Then fw should minimize:

argmin
fw

Eθi
[∫ 1

0
(fw(x)− sin(2πx + 2πθi))2 dx

]
= argmin

fw
Eθi

[∫ 1

0
fw(x)2 − 2fw(x) sin(2πx + 2πθi)dx

]
= argmin

fw
Eθi

[∫ 1

0
fw(x)2dx

]
.

Therefore, the unique minimizer is fw(x) = 0 for every x in
[0, 1]. Clearly, a global model does not learn anything from
such a dataset. Now, assume there exists such a weight vector
wzero such that fwzero = 0. Now examine the performance
of personalized FL models. Ditto’s local objective in (12)
becomes a local empirical risk plus a regularization:∫ 1

0

(
fβ i (x)− sin (2πx + 2πθi)

)2 dx + µ
2
||β i − wzero||

2.

Not only no useful information about common patterns in
the sine function is shared among clients, the regularization
will further exacerbate the problem by forcing β i close to
wzero which is clearly a bad point as its predicts a zero

everywhere on the function. Similar phenomena can be wit-
nessed on other regularization based train-then-personalize
approaches such as L2GD.
In the example above, data across clients have strong

commonalities as they all share the same functional form
with only one parameter θ explaining their variations. Nev-
ertheless, a train-then-personalize approach or its iterative
counterparts fail due to a faulty global model. So what are
potential alternative approaches ?

4) ALTERNATIVE SOLUTIONS
One approach to circumvent the need for a global model
in FL is through multi-task learning (MTL) which aims to
leverage commonalities across different but related outputs
to improve prediction and learning accuracy [36]. In MTL,
a shared representation across all tasks is built to allow the
inductive transfer of knowledge [152], [339]. Here each task
is a client/edge device.

An illustrative example of MTL vs. train-then-personalize
is shown in Fig. 10. The main difference is that MTL directly
estimates β i without the need to learn a global model w.

FIGURE 10. A comparison between train-then-personalize and
multi-task learning approaches to personalization in IoFT.

Often, the shared representation in MTL is induced via
regularization to facilitate information transfer across tasks.
This can be written as

min
β,�

{
1
N

N∑
i=1

Fi(β i)+R(B, �)
}
,

where β i are the personalized weights, B is a matrix whose
ith row is β i, R is a regularization term and � is an N × N
matrix that models relationships amongst clients.

The formulation above has been studied extensively in cen-
tralized regimes [97], [136], [156], [251], [353]. Yet literature
on MTL in FL is still very limited. One of such approaches is
MOCHA [288] which defines the objective below

min
β,�

N∑
i=1

`(βTi xi, yi)+ µ1Tr
(
BT�B

)
+ µ2 ‖B‖2F ,

where, the first term defines a loss function for linear models,
Tr
(
BT�B

)
induces knowledge transfer such that negative

off-diagonal entries of � encourages the alignment of two
clients’ local weights and ‖·‖F represents a Frobenius norm
for shrinkage. Reference [288] extends the primal-dual for-
mulation in [353] to distribute the update of B over clients
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while keeping � fixed. MOCHA is shown to outperform base-
line algorithms on datasets includingGLEAM,HumanActiv-
ity Recognition, and Vehicle Sensors.

Although the idea of MOCHA is intriguing the objective
is only confined to the problems whose losses are convex,
since the authors use dual algorithms to solve it and strong
duality is not guaranteed for general non-convex functions.
Here, future work that exploitMTL to learn a graphical model
through � may open interesting new research directions in
understanding the underlying commonality structure across
clients.

It is also worth noting that other alternative routes can be
taken instead of MTL. One such route is to first validate
the performance of a the global model prior to personal-
ization. Along this line, Fed-ensemble [285] proposes
an alternative approach for personalization via the learned
K global models described in Sec. III-B. After training a
diverse group of K models, Fed-ensemble evaluates the
loss of model k on a local validation dataset Dvali by F̂k,i =
1
ni

∑ni
j=1 `(fwk (xi,j), yi,j). Then each model wk is assigned a

weight αk,i = exp(−γ F̂k,i)/
∑K

k=1 exp(−γ F̂k,i) where γ is
some constant. The prediction on a new sample x∗ is given
by a weighted ensemble

∑K
k=1 αk,ifwk (x

∗). The intuition is
to check which models perform well on a local dataset, then
assigns higher weights αk,i to better fitted models in the
ensemble.

B. SEMI-PERSONALIZED
A possible alternative to global or fully personalized mod-
eling is semi-personalized modeling. Semi-personalized FL
fits a stylized model for a group of clients. This approach
balances between the need forN individualizedmodels or one
model that fits all. This is highlighted in Fig. 11. Usually these
algorithms cluster clients intoG� N groups and assume the
data distribution of clients inside one group is homogeneous.

FIGURE 11. Degrees of personalization.

Reference [203] proposed an intuitive user clustering
method. The number of clusters G < N is predeter-
mined. Each cluster is represented by a cluster parameter in
{w1, . . .wG}. The objective is:

min
{w1,...wG}

N∑
i=1

min
j∈1,··· ,G

Fi(wj)

The inner level of minimization taken over cluster index j
assigns one client i to the cluster with the lowest training loss,
and the outer level of minimization taken over wj’s optimizes
cluster model weights. Authors propose a HypCluster
algorithm to optimize the objective. In HypCluster, G
is predetermined. In each communication round, all clus-
ter weights are broadcasted to all clients, and each client
chooses one with the lowest loss. Afterwards, clients train
the corresponding model by SGD on their own local dataset.
On EMNIST, HypCluster with G = 2 has higher test
accuracy than FedAvg and AFL [214].

Clustered FL (CFL) [279] clusters clients dynamically.
CFL measures the similarity between two clients in the fol-
lowing manner: suppose in communication round t , the
update of clients i and j is 1wti and 1w

t
j , respectively. The

cosine similarity is defined as αij =

〈
1wti ,1w

t
j

〉
‖1wti‖

∥∥∥1wtj∥∥∥ . For one
communication round, server calculates the cosine similar-
ity intra and across clusters. If clients in one cluster are
homogeneous, the similarity of these clients should be large
compared with similarity across clusters, then CFL simply
performs FedAvg for this cluster. If otherwise, clients inside
one cluster are heterogeneous, the similarity of these clients is
low, and CFLwill divide them into two subclusters. CFL then
repeats the procedure on the two subclusters. As the algorithm
proceeds, clients can automatically be divided into different
subclusters. CFL ends when gradient norms on all clients are
small and no further sub-dividing is needed.

Semi-personalized modeling and client clustering in IoFT
are important questions that still require much further inves-
tigation. In the statistical perspective (Sec. VI) we pose
some open questions that are critical along this research
direction.

V. META-LEARNING
Meta-learning is the science of observing how different learn-
ing algorithms perform on a wide range of tasks and then
learning new tasks more efficiently based on prior experi-
ence [50], [112], [217], [226], [263], [300]. Meta-learning
tries to learn a global model that can quickly adapt to a new
task with only a few training samples and optimization steps.
This process is also known as ‘‘Learning to Learn Fast,’’
where the goal of the model is not to perform well on all tasks
in expectation, instead to find a good initialization that can
directly adapt to a specific task. Therefore, meta-learning can
be viewed as an approach to enable fast personalization and
fine-tuning.

Meta-learning opens a unique opportunity to resolve many
challenges in IoFT, such as scalability, fast adaptability,
and improved generalization. With proper prior knowledge,
a well-trained task can be rapidly generalized to new tasks
with few samples. This few-shot property becomes especially
crucial in IoFT where each device only has a small amount of
data and does not have access to a centralized repository of
all datasets.
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A. FREQUENTIST PERSPECTIVE
From a frequentist perspective, the seminal work of
Finn et al. [88] proposed one of the first model-agnostic
meta-learning (MAML) algorithms. Given N different tasks
{Ti}Ni=1, MAML optimizes a meta-loss function in the form of

min
w

N∑
i=1

FTi (w− η∇FTi (w)). (14)

In (14),w can be viewed as an initialization used to perform
one gradient update and obtain w′ = w− η∇FTi (w). MAML
minimizes the objective

∑
FTi (w

′) given an initial parameter
w. Therefore, the goal of MAML is to find an optimal initial
parameter w∗ such that one gradient step on a new task can
incur maximally effective behavior on that task. This idea is
similar to fine-tuning in which several steps of gradients are
performed given a tuned parameter w∗.

The idea of meta-learning can be naturally extended to
FL where each device is treated as a task and the goal is
to learn an initialization for fast personalization on the edge
devices. Indeed, recently researchers have tried to introduce
the notion of meta-learning to FL to enable personalization
and few-shot learning [173], [209]. Along this line, [39],
[180], and [82] introduceMAML to FL. They reformulate the
global objective of FL as (15). In the meta-learning literature,
this global objective function is also known as meta-loss.
In this section, we will use them interchangeably.

min
w

1
N

N∑
i=1

Fi(w− η
E∑
e=1

∇Fei (w)). (15)

Here, ∇Fei (w) is the gradient after e steps of SGD.
Recall that t refers to the communication round, while e ∈
{0, · · · ,E − 1} denotes the optimization iterates at the edge
device. It is easy to see that (15) is different from the con-
ventional objective function (1). The formulation (15) allows
each user to exploit w as an initial point and update it with
respect to its local data (e.g., running E steps of gradient
descent). When E = 1, the above objective function can be
simplified as

1
N

N∑
i=1

Fi(w− η∇F1
i (w)) =

1
N

N∑
i=1

Fi(w− η∇Fi(w)) (16)

and the gradient on device i can be computed as

∇Fi(w− η∇Fi(w))

=
(
I − η∇2Fi(w)

)
∇Fi(w− η∇Fi(w)). (17)

Based on this formulation, [82] propose the Per-FedAvg
algorithm to efficiently optimize (15). Given an initial param-
eter wt , local user i runs E steps of SGD. For simplicity,
we assume E = 1. Therefore,

wti = wt − η1∇Fi(wt ), (18)

where η1 is the learning rate for each local user. Afterwards,
each local user calculates the gradient evaluated at wti and

the Hessian evaluated at wt . The user then sends the gradient
∇Fi(wti ) and the Hessian ∇

2Fi(wt ) back to the central server.
The central server aggregates them as:

wt+1 = wt − η2
1
N

N∑
i=1

(
I − η1∇2Fi(wt )

)
∇Fi(wti ),

where η2 is a learning rate on the central server. This pro-
cedure is repeated several times till some exit conditions are
met. One notable thing is that, in the central server, the gradi-
ent is evaluated atwti rather thanw

t . This naturally arises from
the meta-loss function (15). Reference [82] demonstrate the
advantages of Per-FedAvg on image classification tasks.
Interestingly, [131] interpret FedAvg as the linear combina-
tion of FedSGD and MAMLwhen ignoring the second-order
term η∇2Fi(w) in (17). Specifically, assume each client runs
E steps of local updates, then the gradient of FedAvg can be
written as

gFedAvg

:=
1
N

N∑
i=1

∇Fi(w) =
1
N

N∑
i=1

E∑
t=1

∇Fei (w)

=

N∑
i=1

1
N
∇F1

i (w)+
N∑
i=1

1
N

E∑
e=2

∇Fei (w)

=

N∑
i=1

1
N
∇F1

i (w)+
N∑
i=1

1
N

E∑
e=2

∇Fi(w− η
e−1∑
j=1

∇F ji (w))

= gFedSGD +
E∑
e=2

gMAML(e− 1), (19)

where gFedSGD is the gradient ofFedSGD and gMAML(e) is the
gradient of MAML with e steps of local updates. Though the
optimization of this linear combination in (19) is not strictly
equivalent to FedAvg (due to the second-order term), this
interpretation sheds light on the intrinsic connection between
FL and meta-learning.

Based on this observation, [131] slightly modify the
Per-FedAvg algorithm as follows: first run FedAvg (or
another conventional FL algorithm) at the early stage of
training and then switch to MAML (in (15)) or Reptile [225]
to fine-tune the model. Through many empirical results, the
authors argue that this combined strategy ensures fast and
stable convergence compared to directly optimizing the fed-
erated MAML objective in (15). Besides, this paper also
delivers an important message: no single FL is a panacea
for all problems, instead, different dataset requires different
inference strategies or a combination of them.

There are also few other variants of meta-learning-
algorithms that can be readily applied to FL. For instance,
MetaSGD [39], [176] specifies a coordinate-wise learning
rate η. Instead of constraining the learning rate to be a fixed
positive scalar, they define η as a vector that is of the same size
as w and each element in it can be positive, negative or zero.
Different from the traditional definition of a learning rate,
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η encodes both the update direction and rate. To understand
the intuition behind η, it is very helpful to first see the
MetaSGD procedure in detail. In MetaSGD, both w and η

are treated as model parameters to optimize. Specifically,
at communication round t , MetaSGD first samples S ⊆ [N ]
clients and divides the data for each client into a training set
Dtrain and validation set Dval. Here, MetaSGD then runs one
step of SGD using ηt and wt on each sampled client to obtain
updated parameters {wti }

N
i=1:

wti ← wt − ηt ◦ ∇Fi(wt )

where ◦ is an element-wise product operation and Fi(wt ) is
the loss function evaluated on the training set at commu-
nication round t . Afterward, MetaSGD updates all model
parameters as

(wt+1, ηt+1)← (wt , ηt )− ηMetaSGD
1
N

N∑
i=1

∇Fval
i (wti )

where ηMetaSGD is a scalar learning rate and ∇Fval
i (wti ) is

the local gradient evaluated on the validation set Dval. Note
that wti is a function of both wt and ηt since wti ← wt −
ηt ◦ ∇Fi(wt ). Therefore, the gradient of Fi(wti ) can be taken
with respect to wt and ηt . From this algorithm, one can
see that η is learned from all tasks to avoid possible model
over-fitting on a specific task. The intuition is that the gradient
∇Fi(wi) on the training set can potentially lead to over-fitting,
especially when the sample size is small. Therefore, η acts
as a regularization role to control the sign and magnitude
of ∇Fi(wi).

B. BAYESIAN PERSPECTIVE
Besides the frequentist perspective on meta-learning, there
are recent yet few efforts to explore Bayesian meta-learning.
Below we discuss some recent advances. We note that
the works discussed below focus on meta-learning and not
FL. However as shown earlier those concepts are naturally
related. We will also provide examples on how to extend the
models to FL.

Bayesian meta-learning simply defines w as a random
variable and takes a Bayesian route to estimate its pos-
terior. This posterior then serves as a ‘‘prior’’ for a new
task. Such an approach would allow uncertainty quantifi-
cation for predictions on both the central server and local
clients [308]. Notably, [334] propose a Bayesian counter-
part of MAML (BMAML) for fast adaption and uncertainty
quantification.

Instead of finding a single parameter to minimize
(15), BMAML aims at finding a posterior distribution of
the parameter such that one can quantify uncertainties.
To achieve so, the gradient method used in MAML is
replaced by one of its Bayesian counterparts - Stein varia-
tional gradient descent (SVGD) [184]. The SVGD method
combines the strengths of SGD and Markov chain Monte
Carlo (MCMC) such that one can sample from a posterior
distribution to quantify uncertainties. As described in [184],

SVGD maintains M instances of model parameters, called
particles. Those particles can be viewed as samples from the
posterior distribution of the model parameter.

Here we detail the BMAML algorithm. At the global opti-
mization iterate t , which is equivalent to the communication
round in the FL, BMAML starts with M initial particles
{wtm}

M
m=1 that are sent to the clients. Each client then appliesE

steps of SVGD to obtain updated parameters as shown below:

{wt,Ei,m}
M
m=1 = SVGD({wtm}

M
m=1;Di, η),

where η and SVGD({wti,m}
M
m=1;D, η) is the SVGD algorithm

that aims to collect samples from the posteriorP(w|Di) during
local training.

Afterwards, the updated task-dependent parameters
{wt,Ei,m}i∈[N ],m∈[M ] are used to calculate the gradient of the
meta-loss

∑
i ∇Fi({w

t,E
i,m}

M
m=1) and perform a one step update

{wt+1m }
M
m=1← {w

t
m}

M
m=1 − η

1
N

∑
i

∇Fi({w
t,E
i,m}

M
m=1).

Recall that the gradient of the meta-loss is evaluated at
the updated particles {wt,Ei,m}

M
m=1 and the global optimization

is performed over {wtm}
M
m=1. The overall idea of BMAML is

very similar to MAML (Eq. (15)): the goal is to train a model
that can quickly adapt to a new task.

Besides BMAML and its variants, there are also many
other studies that formulate meta-learning from a Bayesian
perspective [17], [78], [89], [101], [104], [158], [159], [222],
[242], [262], [270], [298], [334], [361]. Most notably, [298]
and [241] consider applied deep kernel methods to learn
complex task distributions in a few-shot learning setting.
References [159] and [324] introduce deep parameter gen-
erators that capture a wide range of parameter distributions.
However, this method is not amenable to first-order stochastic
optimization methods and therefore may scale poorly.

The works discussed above focus on meta-learning and
not FL. However as shown earlier those concepts are natu-
rally related. To give an example, in the Bayesian MAML,
each local user i can be treated as a task i. During training,
each local user performs SVGD to obtain M updated weight
parameters {wt,Ei,m}

M
m=1. The local user i then sends the gradient

of local loss evaluated at {wt,Ei,m}
M
m=1 to the central server. The

central server collects information from all users and updates
the meta-loss function to obtain {wt+1m }

M
m=1. At the end of

each communication round, the central server broadcasts
{wt+1m }

M
m=1 to all devices. This cycle is repeated until some

exit conditions are met.
Interestingly, there is also a trend that formulates

meta-learning from a stochastic process perspective [94],
[141], [189], [194]. Most notably, [95] introduce neural pro-
cesses (NPs) that combine advantages of neural networks
and Gaussian processes (GPs). Fig. 12 illustrates the idea
behind NPs. Given a point (xi, yi), the algorithm first defines
a representation function 8i = h((xi, yi)) that maps inputs
into a feature space. Here 8 is a NN. Then it defines a latent
distribution over the feature representation. Specifically,
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FIGURE 12. The diagram of neural processes.

z ∼ N (µz(8), Iσz(8)) where 8 = a({8i}
N
i=1) =

1
n

∑
i8i

and a is called the aggregator. In turn this latent distribution
mimics aGP as it defines a prior over8 [317]. Now, given this
latent distribution a conditional decoder g, learned through
variational inference, takes inputs sampled from z and testing
data x∗ to make predictions y∗. One key feature of NP is
that it encodes input data into a single order-invariant global
representation. This representation captures the global uncer-
tainty which allows sampling at a global level. The similarity
to meta-learning in NPs is the fact that we are learning a
prior over the latent representation. This prior then acts as
an starting point for predictions at a new point.

To extend NP to a federated framework, one can develop
some aggregation strategies that allow N edge devices to
collaboratively learn the global feature z. For example, all
edges devices can use FedAvg to train a global encoder h.
This shared encoder is then used to calculate the global latent
distribution z.
As shown above, various meta-learning approaches may be

readily extended to FL. We hope this review will help inspire
continued exploration along this direction as we envision
that meta-learning will have a great impact in IoFT. Further,
exploring and contrasting of meta-learning models in FL
may help guide practitioners chose amongst existing methods
given the data properties and features.

VI. STATISTICAL AND OPTIMIZATION PERSPECTIVE
A. STATISTICAL PERSPECTIVE
Much of the current work on FL within IoFT has focused on
algorithm development, and thus far, there has been little in
the context of developing statistical models. In this subsec-
tion, we discuss challenges and interesting open directions
for FL from a statistical perspective. In particular, several
statistical challenges such as heterogeneity, dependence, and
sample bias under privacy and communication constraints
need to be addressed. Part of the challenge is developing a
suitable modeling framework that allows the assessment and
validation of methods handling the challenges above.

Below, we discuss areas where statistics can make a sig-
nificant contribution. This is by no means an exhaustive list
as IoFT is still in its infancy phase, and new challenges will
arise as IoFT infiltrates new applications.

1) DEPENDENCE (BEYOND EMPIRICAL RISK MINIMIZATION)
Statistical dependence in IoFT is a common challenge since
clients may be dependent (due to geographic or spatial depen-
dence, common features, etc.) or data within each client
may be correlated. Current FL algorithms operate under an
empirical risk minimization (ERM) framework and assume
independence both within and across clients. In correlated
settings, even classic SGD will lead to a biased estimator
of the gradients [50] as the loss function cannot be simply
summed over all data points. Adding to that, correlation needs
to be learned with additional challenges posed by communi-
cation and privacy constraints in IoFT.

Yet here lies a significant opportunity: if learned effec-
tively, a dependence structure across clients can be exploited
to improve prediction, update sampling schemes and better
allocate resources. More specifically, statistical approaches
for dealing with dependence typically involve learning a
suitable dependence structure (e.g. graphical model) amongst
the clients of interest and then exploiting the structure
(e.g., [146], [245], [261]) for inference and prediction. Fol-
lowing this line of thinking, the challenges are to (i) develop
an FL approach to learn a suitable dependence structure
amongst the clients; (ii) exploit the learned dependence
structure for improved inference and prediction within FL;
(iii) develop an FL approach to deal with correlated data
points within each client. While there are numerous tech-
niques to address (i)-(iii) in the standard centralized setting
(e.g., [181], [240], [264]), their applications to IoFT are yet
to be explored.

a: NETWORK LEARNING
Learning networks (especially through graphicalmodeling) is
a problem that has received significant attention and research
in the statistics and machine learning literature [181], [264],
[338]. In IoFT, when there is dependence amongst the clients,
learning a graphical model/network structure potentially
improves overall performance. However, there remains the
open challenge of adapting and implementing these graphical
modeling algorithms that learn pairwise sufficient statistics to
respect communication and differential privacy constraints.
At the heart of the challenge, if our goal is to learn a network
structure amongst nodes, second-order statistics are required
in the computation. From a privacy and communication per-
spective, this requires communication between all pairs of
nodes in order to compute these second-order sufficient statis-
tics. One possible solution is to carry over ideas from differ-
ential privacy to network learning problems. Also, statistical
ideas such as sketching or randomization [73], [74], [200],
[258]) may improve privacy whilst still learning sufficient
statistics.

b: CORRELATION
Handling correlated data within each client is also an essential
challenge as it goes beyond ERM. Here stochastic processes,
such as Lévy processes and auto-regressive models, can play
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an important role. One example is multivariate Gaussian pro-
cess (GPs)models, where a covariancematrix encodes depen-
dence both within and across clients. Yet again, privacy and
communication considerations in IoFT yield decentralized
estimation of a covariance matrix, a challenging task. Here,
one may assume that the covariance matrix/kernel is param-
eterized by a small set of parameters (e.g. Mattern, RBF).
Very recent work has shown that despite biased gradients,
SGD can still converge in correlated settings, specifically
GPs [41]. A natural question to think about is whether a
natural extension exists for FL.

c: VALIDATING DEPENDENCE MODELS
The final challenge associatedwith network learning for IoFT
is to address whether the learned network improves predictive
power, and if so, which approaches are best. For example,
would performing network learning improve predictive per-
formance compared to clustering nodes and doing personal-
ization? Since the ultimate goal is predictive power (although
the network may contain helpful information), this presents
a natural validation metric for network learning methods.
Due to the modeling framework, predictive power can be
validated theoretically using refined bounds that incorporate
dependence, simulation studies and real data examples.

2) UNCERTAINTY QUANTIFICATION & BAYESIAN METHODS
As seen in Secs. III-V, very few approaches are able to quan-
tify uncertainty. Besides, Fed-ensemble and Fed-BE,
FL methods have mainly focused on point predictions. Yet
a model should acknowledge the confidence in its predic-
tion. Therefore, further exploration into Bayesian methods
is important for the application of IoFT within different
domains.

One possible route is to place a prior over w (and possibly
personalized weights βi) P(w,β i) and try to estimate the pos-
terior P(w,β i|D = {D1, · · · ,DN }). Clearly, if fw(x) is a com-
plex function such as a neural network, P(w,β i|D) is usually
intractable, yet onemay hope to extract some samples from it.
Here recent advances in approximate posterior sampling such
as Stochastic Gradient Langevin Dynamics (SGLD) [315]
or Stein Variational Gradient Sescent (SVGD) [184] may
be possible solution techniques. Besides the approximate
sampling schemes above, hierarchical Bayes may be worth
investigating, as IoFT has an inherent hierarchy between the
orchestrator and clients. The challenge to be addressed here
is how to estimate a hierarchical Bayes model in a decen-
tralized fashion that preserves edge privacy and minimizes
communication.

As an alternative to a prior on model parameters, one
can take a functional route by directly specifying a prior on
the functional space fw(x); commonly done using Gaussian
processes (GP). Indeed, GPs have a long history of success in
engineering applications [103], [132], [250], [313] and their
success in IoFTmay pave the way for many new applications.
However, the challenge is that GPs are based on correlations
and do not conform to the ERM paradigm FL is currently

based on. Interestingly, learning a prior on the functional
space may also help in personalization and meta-learning.
A learned GP innately acts as a prior through which predic-
tions are obtained by conditioning on new data.

3) STATISTICAL HETEROGENEITY & PERSONALIZATION
In IoFT, statistical heterogeneity is a central challenge as
individual devices may have different data patterns and
potentially collect different amounts and types of data.
As highlighted in Secs. IV and V, personalization (and meta-
learning) are one way to overcome the heterogeneity chal-
lenge by allowing clients to retain their individualizedmodels
while still borrowing strength from each other. However,
personalization poses many exciting challenges and open
questions. Below we list a few.

i. It is essential to investigate when a personalized model
is needed and understand the trade-off between a global
model and device-specific features. Intuitively, when
there is significant heterogeneity among clients, fit-
ting personalized models would be better than using a
global model. Also, as pointed in [151], when data is
highly heterogeneous, negative transfer of knowledge
may occur where each client can generate better models
using their data in isolation compared to sharing knowl-
edge with other clients. Reference [178] conducted
some analysis on additive models that matched this
intuition. Yet, literature on approaches that characterize
the heterogeneity of data and decide onwhether person-
alization is needed is largely missing.

ii. Following the idea above, one can also decide on how
many personalized models to build. As described in
Sec. IV-B, this entails inferring the number of clients
clusters where data within each cluster is homoge-
neous. A key question remains: how to cluster clients in
IoFT? Clients usually send back a set of weights or gra-
dients, however, are these summary statistics sufficient
to recover true client clusters? If not, what sufficient
statistics can achieve such a goal, and do they guarantee
privacy? Here one may pose a question: what client
statistics are needed such that clustering (say using
K-means) using all data (D) in a centralized regime and
clustering using the client statistics in IoFT will yield
similar outcomes.

iii. Personalization may come at the price of privacy.
Reference [357] shows that input images can be recon-
structed from unperturbed gradient signals, which
opens the possibility of gradient attacks. Precautions
like adding noise or quantization can somewhat reduce
the risk. However, some experiments [312] have shown
that there exists trade-offs between privacy and per-
formance. Therefore, it is essential to understand this
trade-off better and propose methods that can improve
both simultaneously. Differential privacy may be a
valuable tool along this line [312].

iv. A probabilistic approach to personalization is still
needed. Ideas such as random effects have built the
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statistical foundation for incorporating unit-to-unit het-
erogeneity. They may be of great value if extended to
the decentralized IoFT settings.

4) VALIDATION AND HYPOTHESIS TESTING
To this point, there has been little work in FL on suitable sta-
tistical validation and hypothesis testing procedures. While
there may be a general reluctance to impose statistical models
since they are never truly correct and there are advantages
to being model-agnostic; imposing statistical models pro-
vides several potential benefits. First and foremost, modeling
provides a way to develop and assess a hypothesis testing
approach.

Most, if not all, prior work on FL has focused on deep
learning algorithms due to their predictive power. If we
are interested in questions associated with statistical estima-
tion and inference, it makes sense to extend FL to incor-
porate models that are interpretable in addition to having
good predictive capabilities. Algorithms that come to mind
include kernel methods (see e.g. [13], [148], [259], [260]),
Gaussian processes (see e.g. [102], [151], [261], [340]) and
other approaches. Like deep neural networks, all of these
approaches exhibit non-linearities and function complexity
while being more amenable to statistical inference.

One example of a statistical model was given in Sec. IV
where one can model the conditional distribution as:

yi ∼ Piy|x
(
fwi (xi)

)
,

Here, clients share the same f (a linear model, kernel,
Gaussian process, neural network) yet with different param-
eters wi which allows for personalization. This represents N
semi-parametric models [24] and a key question is what struc-
ture to impose on thewi’s which incorporate the degree of sta-
tistical heterogeneity and dependence? Assumptions such as
graphical models, low-rank models, sparse models and many
others may be incorporated (e.g., [32], [110]). Graphical
models naturally lend themselves to network learning while
low-rank models naturally lend themselves to clustering of
nodes.

5) OTHER OPEN QUESTIONS
a: DOMAIN ADAPTATION
The joint distribution of data pairs for client i is given as
Pix,y = PxPiy|x . Current models assume that x ∼ Px across
clients yet there is a change in the conditional distribution
Piy|x , i.e. input-output relationship across clients. What hap-
pens if there is a covariate shift,Pix , across clients. Indeed, this
is not uncommon in IoFT as different clients may observe a
wide range of unseen input on other clients (e.g. unique defect
types of failure modes). Here domain adaptation may play a
key role where the input is first mapped to a shared feature
space, and then inference is made on the feature embeddings.
A simple example is:

fβ i,w(x) = gw ◦8β i (x),

where8 is a personalized encoder that projects to the feature
space and g is a global decoder with shared parameters w
across all clients.

b: DECENTRALIZED & COLLABORATIVE DESIGN OF
EXPERIMENTS (DOE)
DOE is critical within many domains [37], [49], [135], [322],
[325]. In the realm of IoFT, a key question is how can
DOE be achieved? For instance, for expensive experiments
or computer models, DOE often uses a sequential strategy
to find the next-to-sample design points that best help in
estimating an unknown response surface [120] or providing
statistical inference. In IoFT, such an expensive computer
experiment may reside on the central server or perhaps each
client has its own computer model. To this end, how can
decentralized DOE be achieved? How can sequential designs
learn a global computer model, given that clients may be of
different fidelities [122]? How can computer models borrow
strength from each other for better calibration [249] while
preserving privacy? How can we distribute the experimental
design process across clients given resource limitations of
each client? Such questions will be of key importance in IoFT
and open a new area of exploration for DOE. These same
questions extend to Bayesian optimization which also aims
at optimal sequential sampling, yet with the goal of finding
optima of an unknown response surface.

c: VERTICAL IoFT
Current literature is mainly focused on horizontal IoFTwhere
the edge denotes different clients. Yet more exploration
should be oriented towards vertical IoFT, where we have the
same client (ex: patient), yet information is stored across
different system components (ex: hospitals). Here, feature
extraction shall play a critical role, where features from dif-
ferent components are extracted and then jointly trained for
a holistic model. Techniques such as sketching or random
embeddings may be of use to preserve data privacy.

B. OPTIMIZATION PERSPECTIVE
Several optimization algorithms have been proposed in recent
years to learn a global or personalized model collaboratively
within IoFT; see Secs. III-V for details. However, significant
theoretical and computational hurdles associatedwith solving
such problems remain unresolved. In this section, we dis-
cuss FL from an optimization perspective. More specifically,
we categorize the main existing streams of work and provide
insights on potential open directions.

Several algorithms have been recently proposed tomitigate
the issue of heterogeneity. A class of these algorithms add
a local regularization term to the client’s objectives. Popu-
lar examples of such algorithms include FedProx [170],
FedDyn [3], DANE [283] and its federated counterpart
FedDANE [171], SCAFFOLD [137], FedPD [352]. While
existing methods tackle heterogeneity by adding a regu-
larization term, it is worth exploring algorithms that add
adaptive ball constraints when minimizing local objectives.
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Such methods can control the variability of local parameters
and can align the stationary solutions of local and global
objectives when the radius of the ball constraints converges
to zero in the limit.

The convergence guarantees and complexity rates of many
of these algorithms were established under a variety of
assumptions; see [133], [137], [352]. When the clients are
identical,FedAvg coincides withFedSGD [206], [359] (also
known as local SGD) and both converge asymptotically.
In the (strongly)-convex case with i.i.d data, FedAvg con-
verges to a global solution with optimal complexity order.
Despite its success in many applications, the former algo-
rithm suffers when applied to FL settings with non-i.i.d data.
More specifically, in the presence of heterogeneity, the dis-
crepancy between the average local client optimum and the
global optimum results in a drift in local updates, often called
client drift. This drift can significantly affect the convergence
guarantees and complexity rate of the algorithm. In partic-
ular, [352] provides a problem instance for which FedAvg
with constant step-size diverges to infinity. Reference [137]
show that the client-drift effect in unavoidable even if we
use full batch gradients and all clients participate in each
communication round.

To mitigate the issue of heterogeneity, FedProx uses
a proximal term that suppresses the variance among local
client solutions. The method is shown to converge without
any boundedness assumptions on the local gradients. Despite
more stable convergence, the method is still based on inexact
minimization since it does not align local and global sta-
tionary solutions. When all clients have the same optima,
and full batch gradients are used, FedAvg and FedProx
have the same complexity rate. Other algorithms that directly
tackle client-drift in FL appear in the work of [137], [352],
and [3]. These algorithms are shown to converge without any
bounded client gradient assumptions. Among them, FedDyn
requires fewer communication rounds between the central
orchestrator and clients compared to SCAFFLOD.
Another FL method class uses an adaptive choice of step

size for the client and server optimizer steps. This approach is
motivated by the practical benefits that repeatedly appeared
in adaptive optimization when training machine learning
models. Examples of FL-versions of such algorithms are
FedAdam and FedYogi [266]. We refer the readers to
Sec. III-C for a more breadth and depth discussion on the
algorithms presented above.

1) OPEN DIRECTIONS
Despite the focus on algorithm development and their corre-
sponding optimization mechanisms, there are potential opti-
mization questions still to be explored for FL.

a: CHOICE OF THE NUMBER OF LOCAL STEPS E
One popular example of algorithms proposed for FL is
FedSGD, a distributed version of SGD. While utilizing par-
allel computations yields efficient training for large data-
sets, such methods incur high communication cost since they

require passing the gradient vector of clients to the server
at every iteration. To remedy the high communication cost,
FedAvg was proposed. As detailed in previous sections, this
method applies multiple local SGD steps in each communica-
tion round before updating the global parameter at the server.
Despite being widely used in practice, several recent results
have shown degrading performance in the presence of hetero-
geneity [355]. One particular issue is that client heterogeneity
can introduce a wide discrepancy between local and global
objectives, resulting in a drift in local updates. While a higher
number of local updates E reduces the communication cost,
it can magnify this client drift. Similarly, a low E directly
implies a high communication cost. Hence, the choice of
E presents a trade-off between convergence stability and
communication cost. Some interesting open questions worth
investigating are i) How shouldwe choose the number of local
steps E? ii) In the presence of heterogeneity, can we choose
a different Ei across clients? iii) Can we utilize an underlying
client heterogeneity structure to decide on Ei?

b: HIGHER ORDER ALGORITHMS
Almost all existing FL algorithms belong to the class of
first-order methods. Designing second-order methods tai-
lored for FL remains an exciting area to explore. This class
of algorithms can potentially perform better than first-order
algorithms when the objective is highly non-linear or
ill-conditioned. Such methods aim at effectively using the
curvature information for faster convergence. To overcome
the computational drawback of computing the Hessian, esti-
mating the curvature using first-order information is well-
studied in quasi-newton methods, as well as their stochastic
variants [34]. Motivated by their potential superior perfor-
mance in several applications and under special structural
properties of the objective, a natural potential research direc-
tion is investigating FL variants of second-order methods.

c: ZEROTH-ORDER ALGORITHMS
These methods utilize a heuristic derivative-free approach for
updating the sequence of optimization iterates. Such meth-
ods can be helpful in problems with access to only noisy
evaluations of the objective function [59], [268]. Several
recently arising machine learning applications [48], [273]
have brought significant attention to zeroth-order algorithms.
Studying FL variants of zeroth-order algorithms is a poten-
tial research direction that can pave the path for interesting
FL applications.

d: MIN-MAX OPTIMIZATION
Developing new methods for solving min-max optimiza-
tion problems in FL settings is still premature and is worth
investigating. Min-max optimization problems have recently
appeared in a wide range of applications, including adver-
sarial training of Neural Network, fair inference [15], [172],
[214], training GANS [98], and many others. A wide-variety
of algorithms have been proposed to solve these problems
in non-FL settings. Most commonly, stochastic gradient
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descent-ascent (SGDA) that applies an ascent step followed
by a descent step at every iteration is used in practice. Apply-
ing SGDA and its variations is undesirable in FL since it
requires communication at each iteration. A natural research
direction is to investigate FL variants of such methods. One
potential direction that can be explored when the maximiza-
tion problem is (strongly)-concave is using duality theory to
minimize the model parameters and the dual variables jointly.

e: RESOURCE ALLOCATION & CONSTRAINED
OPTIMIZATION
As mentioned in Sec. II, we do not cover approaches for
resource allocation in IoFT since literature in this area
is scarce. However, in IoFT, clients themselves are het-
erogeneous in their capabilities in computation, memory,
processing power, connectivity, amongst others. Modeling
approaches should account for edge resources while at the
same time ensuring uniform or comparable model perfor-
mance across clients regardless of their capabilities. Resource
allocation for optimal trade-offs between convergence rates,
accuracy, energy consumption, latency, and communications
are of high future relevance.

Along this line, client resources may be posed as
constraints in the local and global objectives. However, con-
strained optimization is still to be investigated in IoFT. While
deep learning models usually do not place constraints on
the parameters, we envision that constrained optimization
will arise within domain-specific applications. Similar and
unique constraints across clients pose interesting questions
on redefining local and global updates and understanding
theoretical guarantees in such settings.

f: FULL DECENTRALIZATION
At the current stage, most developedmethods for IoFT rely on
a central orchestrator. Full decentralization is a step forward,
where clients collaborate directly with each other without
the guidance of an orchestrator (see Fig. 5). This may add
an additional layer of privacy as it is difficult to observe
the system’s full state. With the increased penetration of
blockchain applications, IoFT may become fully decentral-
ized. Yet, many of the FL techniques described in this paper
will need to be re-thought to make this possible. Also, besides
statistical and optimization challenges, there lies fundamen-
tal challenges of trust and privacy as malicious clients may
corrupt the network and violate privacy without a central
authority taking corrective action. Consequently, a level of
trust in a central authority in a peer-to-peer network can
benefit in regulating the network’s protocols.

VII. APPLICATIONS
In the previous sections, we have discussed defining features
of IoFT and data-driven modeling approaches for decen-
tralized inference. Yet, IoFT both shapes and is shaped by
the application it encompasses. This boils down to a crucial
question: how will IoFT shape different industries, and what
domain-specific challenges it faces to become the standard

practice? Through the lens of domain experts, we shed the
light on the following sectors: manufacturing, transporta-
tion, energy, quality & reliability, computing, healthcare,
and business. To keep notation simple, this section slightly
exploits earlier notation.

A. MANUFACTURING
The fourth industrial revolution (Industry 4.0), which is
undergirded by smart technologies like IoT, has brought dis-
ruptive impacts on the manufacturing industry [19], [166].
In the United States alone, 86 percent of manufacturers
believe that smart factories built on Industry 4.0 will be
the primary driver of competition by 2025. Furthermore,
83 percent believe that smart factories will transform the way
products are made [314]. However, only five percent of US
manufacturers surveyed in a recent study reported the full
conversion of at least one factory to ‘‘smart’’ status, with
another 30 percent reporting they are currently implementing
initiatives related to smart factories [157]. This means that
nearly two out of three (65 percent) manufacturers surveyed
report no progress on initiatives that they overwhelmingly
point to as their primary driver of near-term competitiveness
in five years [157].

Distrust is listed as one of the dominant factors inhibiting
the spread of Industry 4.0 [218]. The current paradigm of
IoT where data is agglomerated in a central server does not
foster trust. Instead, it breeds concerns about privacy and
security [31]. Also, several time-sensitive applications could
be advanced by Industry 4.0 but are inhibited by the current
IoT paradigm. For example, through cloud computing, manu-
facturingmachines could benefit from advanced control algo-
rithms that significantly improve their performance [234].
However, with an IoT infrastructure reliant on the exchange
of data with a centralized server, internet latency becomes a
significant challenge [232]. Moving large amounts of data to
and from a central server also demands high internet band-
width. Another major challenge of the current IoT landscape
is that it is poised to benefit large enterprises at the expense
of small and medium-sized enterprises. Given the concerns
around privacy and security, companies are inclined to use
private rather than public cloud infrastructures [111]. There-
fore, smaller companies are unlikely to have the capital to set
up and maintain their own private cloud infrastructure. Even
if they can set one up, they are unlikely to generate sufficient
data volumes for meaningful big data analytics.

IoFT could help overcome the aforementioned challenges
and create lots of new opportunities in present-day manufac-
turing. For example, it could enable vertical integration of IoT
across a manufacturing ecosystem, which is key to capturing
value from Industry 4.0 [218]. The ability for entities to
keep their data private while collaborating on a shared model
could allow original equipment manufacturers (OEMs), for
instance, to integrate their data analytics with those of their
suppliers to help improve quality across their entire supply
chain. This benefits the OEMs as well as their suppliers.
Similarly, developing a shared model without compromising
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FIGURE 13. Cyber-physical operating system connecting and coordinating
customers, micro-manufacturing units and smart logistics to enable
massively distributed manufacturing. Reprinted from C Okwudire and H
Madhyastha, Science 372, 341 (2021); Graphic: C. Bickel.

privacy could help level the playing field between large
and small enterprises. Small companies who cannot afford
a private cloud infrastructure can benefit from public cloud
infrastructures without sharing their data. Moreover, even if
they do not have large enough datasets for analytics, they
can benefit from the data of other entities through a shared
model. Furthermore, data analytics for time-sensitive appli-
cations can be run at the edge [216], closer to the device
or machine, to reduce latency while also benefiting from a
shared cloud-basedmodel across several machines [197]. The
same benefit extends to bandwidth-intensive applications.

IoFT will also be a key enabler of futuristic paradigms
like massively distributed manufacturing (MDM), briefly
described in Sec. 1. MDM involves the manufacture of prod-
ucts by a large, diverse, and geographically dispersed but
coordinated network of individuals and organizations with
agility and flexibility, but at near-mass-production quality,
productivity, and cost-effectiveness [233]. A cyber-physical
operating system (CPOS), which intelligently, efficiently,
and securely coordinates large networks of cloud-connected,
autonomous, and geographically-dispersed manufacturing
resources will be needed to support MDM. The importance
of operating systems to support present-day distributed man-
ufacturing has been highlighted in recent works, together with
ideas on how to realize them [62], [93]. However, in the
context of MDM, some distinguishing features of CPOS
are that: it will optimally allocate manufacturing jobs to
the resources connected to it and leverage distributed and
democratized delivery systems, like Uber/Lyft and drones, for
logistics. It will apply machine learning to the data gathered
from sensors to help assure and improve quality and optimize
operations. Furthermore, it will leverage the ingenuity of
humans via crowdsourcing of ideas to improvemanufacturing
operations across networks of manufacturers. It will leverage
cybersecurity measures to protect the intellectual property

and privacy of participants. CPOS will thus allow the col-
laboration of large, autonomous, heterogeneous, and geo-
graphically dispersed networks of manufacturers to rapidly
respond to production demands and disruptions with agility
and flexibility while ensuring high quality, productivity, and
cost-effectiveness [233].

IoFT will allow CPOS to maintain the autonomy, pri-
vacy, and security of all the participants in MDM while
enabling them to develop shared models that improve quality
(and other performance metrics) across the entire system.
MDM, enabled by CPOS and IoFT, promises to improve
the responsiveness and resilience of manufacturing to urgent
production demands (e.g., in emergencies like pandemics);
promote mass customization and cost-effective low-volume
production; gainfully employ lots of ordinary citizens in
manufacturing (e.g., through the gig economy); and reduce
the environmental footprint of manufacturing, by producing
items closer to their points of use.

In a nutshell, Industry 4.0 is poised to transform the
manufacturing industry, but it would need a transition from
traditional IoT to IoFT for its promise to fully materialize.
IoFT will help alleviate issues around privacy, security, cost,
data scarcity, communication latency, and bandwidths that are
slowing down the adoption of IoT solutions in the manufac-
turing industry. It will also help catalyze new paradigms of
manufacturing, for example, massively distributed manufac-
turing. To facilitate the transition of the manufacturing indus-
try from traditional IoT to IoFT, the challenges discussed in
Sec.II have to be addressed in the context of manufacturing.

B. TRANSPORTATION
The prevalence of smart personal devices and the emer-
gence of connected vehicle technology provide a plethora of
opportunities for vehicles, travelers, and the transportation
infrastructure to be in constant communication. This connec-
tivity promises a safer and more sustainable transportation
system with enhanced levels of mobility and accessibility.
Connectivity allows subsystems that were previously mod-
eled and optimized separately to be modeled as a single sys-
tem, thereby capturing their interactions. This comprehensive
modeling approach allows for increasing system through-
put, which results in many benefits for travelers (e.g., lower
prices, less congestion, more reliable travel times, lower
levels of greenhouse gas emissions) and the transportation
system (less pressure on the infrastructure). Take the example
of traffic signal control systems. Traffic signal controllers are
traditionally optimized locally, either per intersection or set
intersections within an arterial. This optimization is based on
local information: as vehicles approach an intersection, they
activate loop detectors deployed in the pavement, sending
a signal to road-side controllers. The controller then opti-
mizes the traffic signal to minimize total delay. In an arterial
setting, the optimization of the controllers at downstream
intersections could be further informed by the state of the
upstream intersections. Connected vehicle (CV) technology
provides two unique opportunities for traffic signal control:
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FIGURE 14. Network-level intersection control.

(1) controllers can be optimized proactively before vehicles
arrive at intersections using the messages received from con-
nected vehicles; and (2) arterial-level optimization can be
advanced to network-level optimization by customizing basic
safety messages (BSMs) transmitted by vehicles to include
route-choice information or estimating this information based
on standard BSMs ([4], [213], [311]).

Despite the benefits that connectivity can offer, the existing
methodologies are generally not scalable to allow for fast
decision-making in connected systems. This lack of scalabil-
ity creates a critical bottleneck in leveraging connectivity in
transportation applications, especially since the state of the
environment in transportation systems changes dynamically.
Yet here lies a critical opportunity for transportation systems:
with more compute power on edge devices (ex: AI chips
in autonomous cars), we may can exploit these resources to
decentralize model training.

Take the example of a sharedmobility system, such as ride-
sourcing, ridesharing, or micro-mobility service. Although
the principle of sharing resources has been used in trans-
portation systems for several decades (e.g., transit or car-
pooling), the advent of smart and connected personal devices
led to the unprecedented growth in shared mobility systems.
Consider the well-known ride-sourcing company, Uber. From
an operational point of view, Uber can be considered a
fleet operator. However, traditional optimization-based fleet
dispatching schemes are not scalable for Uber as it scales
up its operation to entire cities, states, and countries. Uber
can fulfill ride requests in densely-populated urban regions
using myopic solution methodologies (e.g., dispatching the
closest vehicle to a request’s pick-up location) with short
wait times, providing a high level of service. However, as the
demand level diminishes in suburban areas, using myopic
matching schemes leads to degradation of level of service,
prompting Uber not to offer its services when demand follows
below a threshold. The need for using a decentralized solu-
tion methodology for solving centralized matching problems
in shared mobility systems has been acknowledged in the

literature. The proposed solutions typically falls under one
of the two categories of decomposition methods [61], [145],
[205], [354] or partitioning and clustering approaches [246],
[296]. Both families of solutions attempt to solve a large-scale
optimization problem by means of solving smaller sub-
problems, typically by adopting an iterative procedure that
allows for asymptotically approaching the optimal solution.

Despite successfully striking a balance between solution
quality and time, there are still practical challenges that limit
the applicability of these methods. These challenges include
the lack of a guarantee in finding a feasible solution within a
specified period and the high set-up cost of the problem in a
dynamic environment that is fast evolving. These challenges
can be addressed through IoFT by exploiting edge resources
to achieve massive model parrallelization where the com-
putational burden is divided between local devices. Besides
that, IoFT reduces communication and storage needs and can
continuously update the model in real-time.

Besides that, due to the high computational complexity
of optimization-based approaches, there has been a recent
surge in interest to leverage deep learning in transportation
applications (e.g., [168], [223]). The benefit of deep learn-
ing models is that once trained, their evaluation typically
takes a fraction of a second, rendering them effective for
real-time applications. However, training high-performing
models requires immense amounts of data. In turn, FL can
provide an elegant solution through efficiently training a
global model by incorporating focused updates from sev-
eral local (possibly heterogeneous) datasets, thereby enabling
training generalizable deep learning models. Also, recent
advances in FL can account for data heterogeneity through
personalization, where each client retains a fine-tuned model
based on its local data. These advances would facilitate
using high-performing deep learning models to make oper-
ational decisions in dynamic systems. For example, adopt-
ing FL could allow Uber to learn a global matching policy
customized for regional operations with minimal additional
training to capture local idiosyncrasies. Such regional models
are likely to outperform myopic algorithms that use only
spatiotemporally local data.

The application of IoFT in transportation systems is not
limited to connected intersections and shared mobility sys-
tems. Other existing applications that rely on spatiotemporal
gathering of peers, such as vehicle platooning [163] and P2P
wireless power transfer [2], can be enabled by IoFT. To effec-
tively operate such systems, fast decision-making is neces-
sary. FL can bridge the inherent trade-off between solution
accuracy and computational complexity of finding a solution
in such applications. Additionally, it is anticipated that the
CAV technology will give rise to new applications that lever-
age connectivity and, therefore, require fast decision-making.

In addition to improving system throughput, IoFT can
be used in transportation systems for privacy preservation
purposes. In the age of autonomous vehicles, training models
that can predict the motion of different traffic agents, e.g.,
vehicles, pedestrians, cyclists, etc., is of utmost importance.
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FIGURE 15. Recent developments in energy infrastructure and technology.

Typically, roadside sensors, such as cameras, can be used to
obtain historical trajectories based on which trajectory pre-
diction models can be trained. However, transmitting camera
recordings or other identifiable data to a central server may
create privacy concerns. IoFT can address these concerns
as it allows for processing the data in the edge device, and
only sending focused updates (such as gradients) needed for
updating the global model to the server. Similarly, using FL,
other models that rely on sensitive traveler data, such as mode
choice, destination choice, and route choice models, can be
effectively trained.

C. ENERGY
Modern society increasingly depends on complicated elec-
tric power systems. The US end-use of electricity reached
3.99 trillion kilowatt-hours (kWh) in 2019, and the total
demand is expected to increase in the next decades [79],
[81], [201]. Rapid developments in energy infrastructure and
technology provide numerous opportunities for implement-
ing new energy applications and services to meet demand,
as depicted in Fig. 15. In particular, the market share of
variable renewable energy sources, such as wind and solar,
which provide local and distributed energy, grew to 19% in
2019 [79], [201]. It is expected that the electricity generation
from renewables will double over the next 30 years [80].
Advanced communication capabilities, smart meter instal-
lations, mobile internet, and other smart technologies are
enabling grid-responsive demand response and management
services, such as shedding, shifting, and modulating load
in peak and off-peak periods while minimizing occupant
discomforts [91], [127], [167], [221], [237]. Additionally,
increased use of battery storage technology and the growing
penetration of electric vehicles will also change electricity
supply and usage patterns [188], [304].

Facing the massive transformation, IoT can provide
system-wide, integrated approaches to managing modern
power systems. The IoT infrastructure’s ability to capture and
analyze data-intensive systems like the energy system can
play a key role in managing renewables, demand response
programs, electric vehicles, and other elements. Data collec-
tion and the use of intelligent algorithms canmonitor and con-
trol the energy supply chain, including production, delivery,

and consumption, so that suitable, cost-effective decisions
can be made to balance supply and demand with minimal dis-
ruption to system operations. From the perspective of energy
supply, since energy generation is an asset-intensive industry,
data analytics can improve the efficiency of power produc-
tion [113], [356]. On the demand side, buildings equipped
with smart monitoring and communication devices can ana-
lyze end users’ energy consumption, identify their needs, and
transform consumers into prosumers, adjusting their demand
in response to system conditions [113], [220], [356].

While IoT can empower data-intensive analytics by
providing an integrated platform to collectively gather and
process data, applying data science methods to analyze com-
plex energy systems in the centralized IoT platform is not
practical due to many untraceable complexities, making the
IoFT paradigm more suitable.

First, massive data generated from sensors, actuators, and
other devices in energy systems require real-time data analy-
sis in high-dimensional regimes. For instance, conditionmon-
itoring sensors, such as the vibration sensors in wind turbine
gearboxes, produce frequent high-dimensional observations,
and smart meters in residential, commercial, and industrial
buildings produce massive amounts of end-user data in high
frequency. In the standard cloud-based IoT framework, where
centralized cloud/data centers collect and process data, the
energy consumption for big data processing is substantial,
thus possibly negating the benefits of IoT for the energy
industry.

Second, transmitting all the energy data to the central
cloud can cause communication latency. Considering that
the electric power end-use demand needs to be satisfied in
real-time, such latency poses a severe risk to energy sys-
tem operations. In power grid operations, the ancillary ser-
vice allows the grid operator to maintain a balance between
supply and demand at all times [360]. The ancillary ser-
vice ranges in duration, ramping requirements, and mag-
nitude [271], [349]. These ancillary services become more
important as renewable energy sources rapidly replace fossil
fuel generation. Wind and solar, the fastest-growing renew-
ables, are characterized by significant variability, often with
limited predictability [6], [33]. Smart and grid-interactive
buildings can provide such grid flexibility by adjusting their
end-use patterns [25], [210]. Storages are also an attrac-
tive option for providing ancillary services. Communication
latency causes ineffective coordination of these ancillary ser-
vice resources and negatively affects grid reliability. As such,
fast local updates for enhanced electricity supply and demand
predictions are essential for successful ancillary service
implementation.

Lastly, the modern power system is characterized by dis-
tributed energy due to the growing penetration of renewables,
storage, and demand response. In these distributed systems,
individual stakeholders such as utilities and consumers can
perform their own decision-making [35], [114], [280]. For
example, utilities that manage their own renewable facilities
may not want to share information with others to maximize
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their profit. Those who participate in the demand response
programs may wish to adjust their end-use demand upon grid
request without revealing their energy use patterns to others
due to privacy issues. The decentralized IoFT framework pro-
vides the right platform for such decentralized and distributed
decision-making.

While IoFT can remedy the limitations of the central-
ized IoT by building individual models locally at each
end node, there are several challenging issues. First, end
nodes often have limited computing power to train data
science/machine learning models. As discussed above, sen-
sors, actuators, and smart meters produce massive data.
Inefficient computation at end nodes can delay predictive
decision-making, fault diagnosis/condition monitoring, and
change point detection, among others [33], [54], [327]. New
data science methods are needed to optimally guide the
model learning process for achieving computational effi-
ciency with theoretical and practical implications in the IoFT
paradigm.

Next, unlike traditional power supply with fuel-based gen-
erators and end-users who passively consume energy, modern
power systems consist of highly heterogeneous units with
distinct supply/demand characteristics. On the demand side,
technologies such as smart devices, demand management
programs, and electric vehicles affect end-use patterns 24/7.
On the supply side, energy units become more diverse and
heterogeneous. Unlike traditional fuel-based sources, each
renewable facility has distinctive power generation char-
acteristics (e.g., facility layout, turbine type, each wind
farm [335]). While the personalized learning discussed in
Sec. IV can address the heterogeneity to some extent, man-
aging a large number of heterogeneous supply/demand units
with distinct energy characteristics is challenging. Hence,
personalized prediction needs to be translated into effective
collaborative management.

Finally, energy consumption is significantly affected by
ambient environmental and other localized conditions [228].
Peak demand predictions vary 1.5–2% for every 0.5◦C differ-
ence in predicted temperature [22], [229]. Electricity needs
vary due to many spatially localized characteristics, such
as densely populated areas experiencing urban heat island
effects in summer that increase electricity demand compared
to suburban and rural areas [125], [202], and EV charg-
ing stations exhibiting different charging patterns depending
on localized characteristics. Renewable generations are also
directly influenced by local weather and geographical con-
ditions [126]. Expanding the use of IoFT for environmental
modeling will require modeling the spatially and temporar-
ily correlated environmental conditions while incorporating
local heterogeneous characteristics.

In summary, modern power system faces technical
challenges including computational scalability, efficiency,
heterogeneity, localized characteristics, and distributed man-
agement. IoFT has the potential to address these chal-
lenges, and the successful development and implementation
of IoFT will make the energy system (and its end users)

‘‘smarter’’ in terms of efficiency, flexibility, and economic
competitiveness.

D. HEALTHCARE
Healthcare stands to benefit significantly from IoFT because
several unique contextual factors suggest that the status
quo has failed when it comes to deploying machine learn-
ing (ML): (i) many existing models fail to generalize;
(ii) legal and ethical implications limit the appetite to share
data; (iii) the vendors who administer the electronic health
records (EHRs) that contain patients’ data have an outsized
influence on model deployment; (iv) national network-based
research efforts started to adopt decentralized methods. This
section will describe how these factors impact healthcare
differently from other sectors and illustrate areas where IoFT
is likely to thrive in this domain.

ML models are commonly used in early warning systems,
diagnostic systems for radiology and pathology, and inter-
pretingmedical device output, such as in electrocardiography.
While the medical literature contains numerous examples of
apparently high-performing models, many of these studies
suffer from poor generalization, which can either be demon-
strated through an independent examination of its methods
(by applying the PROBAST tool [319]) or through external
validation of the findings. This was particularly evident early
in the COVID-19 pandemic, where nearly all studied models
in an extensive systematic review were considered poorly
generalizable. Although the pandemic has affected millions
of people in the U.S. alone, most health systems did not
have a sufficient number of patients, or adequate diversity,
to ensure model generalizability. The lack of generalizability
is not merely theoretical; it has also been systematically
demonstrated. In a recent study examining over a thousand
cardiovascular clinical prediction models, 81% of valida-
tion studies found worse performance than was reported
originally [316].

Generalizability improves when models are developed
using pooled data from multiple health systems. Under
the Health Insurance Portability and Accountability
Act (HIPAA) Privacy Rule, healthcare data may be shared
for the purposes of research if identifiers have been
removed, or under certain circumstances, if patients have
authorized the use of their data for research after approval
by an institutional review board [231]. In most instances,
data sharing between health centers also require legal
agreements known as ‘‘data use agreements’’ or ‘‘business
associates agreements’’. Even with such agreements in place,
sharing of data between health systems may go against the
expectations of the general public [248]. Thus, pooling data
from multiple health systems while enabling better ML
models may potentially damage public trust. Indeed, when
a 2019 partnership between Ascension and Google was
reported on by the Wall Street Journal, it resulted in public
outcry [60].

The difficulty faced by health centers in combining data
with other health systems has led to a vacuum that EHR
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FIGURE 16. IoFT in healthcare.

vendors have largely filled. Indeed, two of the most widely
used healthcare ML models in the U.S. include the Epic
Deterioration Index (owned by Epic Systems in Verona, Wis-
consin) and the APACHE-IV scores (owned by Cerner Cor-
poration, Kansas City, Missouri) [287], [358]. Both models
were developed using data from the EHR systems of multiple
hospitals. Because EHR vendors have direct access to patient
data (on behalf of their clients), they are well-positioned not
only to combine data for analysis (with permission) but also
to deploy the resulting models within their EHRs.

This siloing of data, while in the best interests of patients,
has led to significant challenges in the development of
high-quality, non-proprietary, freely available models. The
healthcare informatics community has responded to this
challenge, but there is still a long road ahead. In 2009,
the development of the Shared Health Research Information
Network (SHRINE) enabled federated querying of clinical
data repositories [310]. Conceptually, federated querying of
multi-hospital data allows researchers to identify optimal
sites for MLmodel development based on rapid multi-system
sample size determinations [309]. A federated querying sys-
tem, known as the 4CE Consortium, was rapidly deployed to
support COVID-19 research [28]. Along this line, IoFT has
been applied to the development of multi-hospital models in
healthcare [139], [278], [284]. In these setting FL was used
to allow health systems to share access to a model library and
deployment engine without directly sharing data, as depicted
in Fig. 16.

IoFT will be important in healthcare because it enables the
creation of high-quality ML models without privacy risks.
However, IoFT will have to contend with Food and Drug
Administration (FDA) regulations that treatML algorithms as
a type of software-as-medical-device (SaMD). Initial appli-
cations of IoFT in health will likely be limited to class I
and II medical devices, including ML models used primarily
to inform care decisions. Class III-IV medical devices (e.g.,
cardiac pacemakers) require extensive review and premarket
approval by the FDA. Class I-II devices only require pre-
market notification demonstrating equivalence with a legally
marketed device. As a result, IoFT will likely be applied in

supporting early warning systems in hospitals, automating
order entry, and smart scheduling of patient visits. In each
of these scenarios, global patterns exist but differ locally to
the extent that the combination of global and local models
will likely achieve superior results without sacrificing patient
privacy.

E. BUSINESS
Capturing and maintaining relationships between businesses
raise many challenges for IoFT, and new methods to meet
them are needed. To get an insight into these challenges,
consider a business (the principal) that has the following
decision to make: shall it build a facility to supply a particular
item, or shall it ‘outsource’ it to another business (the agent)?
In the former option, all the risks are carried by the principal,
while in the latter these are shared with the agent. In the
economy of today dominated by fast technological devel-
opments, outsourcing is often preferred. Despite the advan-
tage of risk-sharing, outsourcing comes at a cost. The agent
has more information about its operations and can use this
information in its favor and at the expense of the principal,
which is generally termed as ‘moral hazard’ in the economics
literature [160], [290].

The example above highlights several key aspects of this
relationship:

(i) First: Businesses are often intrinsically federated and
are reluctant to share their proprietary business secrets. This
federation forces decentralization of decisions. Thus, all the
advantages of IoFT like localized computing, data privatiza-
tion, security, and information privacy can be realized, along
with the benefits of risk-sharing.

(ii) Second: A key challenge is that in business applica-
tions, agents may have different and often competing objec-
tives. This becomes a new challenge for FL. Indeed, the
models in Secs. III - V are focused on maximizing a common
objective. But if such a formulation does exist and some-
how includes agents’ conflicting objectives, its successful
implementation is contingent on true reporting by the agents.
Otherwise, the principal has to monitor the agents’ operations
continuously. Depending on the situation, monitoring may
be impossible or too expensive and thus may nullify the
advantage of decentralization of operations.

(iii) Third: The principal can make arrangements with
many independent agents, and each one of these may have an
arrangement with other independent businesses supplying its
services. This creates an organizational structure of relation-
ships, forming a hierarchical structure of agents (i.e., a rooted
tree with agents at various distances (levels) from the root).
Here agents at intermediate levels (excluding the root agent
and the agents at the end) play two roles: a principal to its
subordinate nodes and an agent to the lower level node. This
adds an additional level of complication for the use of FL in
such business setups.

Though businesses are usually organized in a federated
nature and are ideally suited for FL, the full potential of
IoFT can only be realized if the above-stated problems are
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FIGURE 17. Example of decentralized decisions.

effectively solved. There are some recent encouraging devel-
opments towards this end. Below we highlight one possible
solution.

In the single-agent case, an answer to this problem has
been proposed by [277] by the design of a mechanism that
mitigates moral hazard and effectively decentralizes decision
making. In a continuous dynamic setup, at the epoch t the
principal observes a noisy signal, x(t) about the ‘effort’ of
the agent and compensates c(t) to the agent based on this
signal. It is shown that in case the signal noise is generated
by a Brownian motion (a Gaussian process), there exists a
‘control’ variable y(t) that can affect the noise of the signal
to a level at which the principal can make a good decision
about the compensation for the agent. In a more realistic set-
ting, the principal may create such relationships with several
agents, each with private information, data, and objectives.
There may also be interactions between agents’ decisions,
i.e., decisions by an agent may affect the outcomes of other
agents’ actions, and they may have conflicting objectives
with each other and with the principal’s, making the moral
hazard problem harder to mitigate. This case has been studied
by [192] who integrated the notion of Nash equilibrium into
this model. Thus, if all the agents’ decisions form a Nash
equilibrium, no agent can gain by falsifying information
when all the other agents do not. This mitigates themoral haz-
ard, and the decisions arrived at can be implemented. Fig. 17
shows a representation of decentralized decision-makingwith
two agents.

A brief overview of the solution methodology for a
dynamic optimization problem in continuous time over a
finite or an infinite horizon is as follows: the optimization
problem faced by the principal is to find a policy which
maximizes its expected discounted profit over the horizon,
i.e., for the infinite horizon case:

arg min
{y(s), c(s) : s≥0}

E
∫
∞

0
e−rP×sfP

(
x(s), y(s), c(s)|α(s)

)
ds

where rP, fP and αP are respectively the discount factor,
profit function and data of the principal; under the individual
rational constraint that each agent’s expected discounted
profit over the horizon exceeds some predetermined mini-
mum amount. When Brownian motions drive all randomness
in the formulation, it can be seen that when the optimal
policy is followed, the expected discounted profits of the
principal and the agents are martingales. Using the principle

of Bellman, this formulation is decomposed into federated
optimization problems that are independently solved by each
agent, while the principal solves a constrained Hamilton-
Jacobi-Bellman (HJB) optimal control problem. The HJB
solves for the continuation value (‘value’ function of dynamic
programming) of the principal as a function of the state vari-
ables, which include the continuation values of each agent.
It is obtained by using Ito’s formula on the function and the
fact that the expected profit of the principal is a Martingale
when an optimal policy is adapted. In the case of a hierarchi-
cal system, agents at the intermediate levels independently
solve both an optimization and a constrained HJB problem,
thus achieving a key goal of IoFT.

In conclusion, the above-described decomposition mech-
anism between the principal and possibly several agents
facilitates the use of federated learning. Each participant can
effectively use the data collected from its operations and
determine the profits, given the compensation it receives
from the principal. The method described above is but
one possible solution. The use of data-driven reinforcement
learning is another viable option. Through this example,
we hope to encourage researchers to explore decentralized
decision-making within IoFT further.

F. QUALITY ENGINEERING
IoT as an enabling technology for real-time data sharing has
stimulated a new paradigm in quality engineering, which
expands quality control from the design and manufactur-
ing stages to the whole product life cycle. For example,
GE Prognostic Health Management Plus (PHM+) system
uses its onboard sensors to collect engines’ operating data
during flight. These data are communicated through its secure
network and analyzed by the central server to provide proac-
tive maintenance services. Similarly, the automotive industry
uses vehicles’ onboard sensors to monitor vehicles’ real-
time driving performance, allowing for early warnings of
potential problems. Additionally, they can deploy integrated
vehicle-based safety systems (IVBSS) [86] to improve cus-
tomers’ driving experience and safety. Throughout the prod-
uct life cycle, quality assurance is highly demanded for
customer satisfaction, which is especially imperative for
expensive or safety-sensitive products. Further, these in-field
operational data can provide quick feedback for continuous
quality improvement.

Online monitoring and fault diagnosis, which uses onboard
sensors on products or in-situ process sensing signals during
manufacturing, is one of the most critical research issues
in quality engineering. Currently, most collected process
sensing signals or quality inspection are multistream wave-
form signals; an image or video signals with very high
frequencies [254], [305], [321]. Those require massive band-
width and time to transmit the original data between local
devices and the central orchestrator. More importantly, qual-
ity control requires fast decisions and real-time detection of
anomalies. Therefore, decision-making ought to be on the
edge and not on a central system. The shift towards IoFT,
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FIGURE 18. Quality control example in IoFT with missing anomalies.

will allow tackling both of these challenges. In IoFT, compute
resources at the edge are used so that only summary statistics
and low dimensional information is transmitted to the central
server (or perhaps a peer in a peer-to-peer network). Also,
models reside on the edge and can be deployed immediately.
Therefore, the IoFT platform shows distinctive advantages
in quality control for reducing the communication load and
making real-time decisions.

That being said, there are some unique research issues
to advance quality control methodologies under the IoFT
platform. Below we iterate a few:

1) INSUFFICIENT DATA
Quality control models, such as anomaly detection or fault
diagnosis models [182], [183], are poised to greatly ben-
efit from IoFT. In statistical process control (SPC), many
edge devices or clients may lack sufficient data to build a
normal operating baseline for abnormal change detection.
For instance, (i) clients may not have observed the full set
of possible anomalies as shown in Fig. 18 (ii) new prod-
ucts/processes possess few data, so does small-scale clients
(such as the 3D printing citizens in the Sec. I-A) and low
volume manufacturing of rare and expensive products (ex:
planes). IoFT as an emerging technology offers a medium
to borrow strength across different clients for better SPC
models while preserving copyrights and privacy. For instance,
throughmeta-learning within IoFT, clients may directly adapt
to new products/processes. Also, through domain adaptation,
clients can learn across defect types observed only on some
clients.

2) CONTINUAL LEARNING
IoFT allows knowledge to be readily shared. As a result, qual-
ity control models (e.g., anomaly detection) may be contin-
uously updated to register new defects or improve detection
and diagnosis accuracy for old ones [64]. Continuous process

improvement requires updates of quality control models over
the entire life cycle of a product.

3) HUMAN FEEDBACK AND EXPERT KNOWLEDGE
Upon the detection of an anomaly, most operators will do a
post-inspection about the diagnosis results (i.e., false positive
or false negative). Improving models upon such expert feed-
back will be of importance to IoFT. Indeed, much like data in
IoFT, human knowledge is often decentralized, with different
entities having expert knowledge on different elements of a
system. Therefore, modeling approaches that combine expert
knowledge, human feedback and data-driven models are
needed. Such models have evolved recently under the notion
of expert or physics-guided data-driven modeling. However,
they are yet to be explored under the IoFT paradigm.

4) QUALITY CONTROL
As described in Sec. VII-A, quality control will immensely
benefit from a shared library of knowledge, be it a library
of in-control behaviors, common anomalies, root causes, etc.
Many companies are reluctant to collaborate in building such
a library due to privacy constraints. IoFT may bring this end
goal to fruition.

In conclusion, quality control is set to greatly benefit from
IoFT. Yet many challenges still need to be tackled to realize
its potential.

G. COMPUTING
Intending to gain insights without exposing raw data, large
technology companies such as Google, Apple, and Firefox
started to deploy FL for computer vision and natural lan-
guage processing tasks across user devices [44], [67], [109],
[331]; others, including NVIDIA, apply FL to create medical
imaging AI [175]; smart cities perform in-situ image training
and testing on AI cameras to avoid expensive data migra-
tion [115], [130], [191]; and video streaming solutions use FL
to interpret and react to network conditions [328]. However,
we believe that these applications of FL are only scratching
the surface, given that the applications of ML in computing
are even broader, many of which can be deployed more
widely and improved by leveraging FL. In the following,
we present an incomplete overview of FL’s many existing
and potential applications in computing. The common theme
across many of them is enabling information sharing between
multiple administrative domains without sharing raw private
data.

1) DATABASES
Indexes play a critical role in speeding up query process-
ing in database management systems (DBMS). In recent
years, learned indexes are gaining popularity, whereby an
ML model replaces traditional index structures including
B-Tree, Hash-Table, Bitmap, and so on. These learned
indexes can be classified into two broad categories: static,
read-only indexes [154] focus more on read-heavy work-
loads, while updatable indexes [69] can handle lookups as
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well as inserts and deletes common inwrite-heavyworkloads.
Nonetheless, all of these works focus on applying ML to
a single administrative domain, which restricts the use of
learned indexes to scenarios that have already been observed
within the domain and leaves them with potentially weaker
performance on previously unseen workloads. Applying FL
in this context will help collaborative training among mul-
tiple competing domains without sharing raw data. Indexes
are only a part of the many research challenges faced in
the database literature, and ML and FL can have possible
applications in, among others, transaction processing, lock
management, query planning/optimization, and cardinality
estimation.

2) NETWORKING
Networks are inherently distributed, and networking proto-
cols are no exception. As a result, FL is a natural fit for
many networking problems whereML can be applied and has
already been applied in limited scope (e.g., not being able to
copy all data to a centralized location). Over the past decade,
many networking problems have relied on ML techniques;
for example, to infer datacenter topology [55], to determine
hyperparameters for congestion control algorithms [318], for
Internet-scale congestion control using deep reinforcement
learning [128], for leveraging single and multiple paths in
an adaptive manner [72], [96], and for routing [299]. They
primarily relied on a single trust domain (e.g., a data center,
an Internet AS, etc.) where everything is controlled by and
cooperates with a single entity within which data can be
shared. FL can expand the scope of many of these algorithms
to be applied at a broader scale via privacy-preserving learn-
ing that may incentivize multiple domains to collaborate to
learn a global model and then personalize to their own needs.

3) CLOUD COMPUTING
To cope with the increasing number of Internet users as well
as IoT and edge devices, large organizations leverage tens
to hundreds of data centers and edge sites. Collecting data
related to end-user sessions, monitoring logs, and perfor-
mance counters, and thereafter analyzing and personalizing
this data can significantly improve the overall user expe-
rience. Traditional approaches to ML require collecting all
these data to a centralized cloud data center, which is often
impossible due to bandwidth constraints and data privacy
regulations. IoFT is the natural choice in this context to
address both of these concerns [161], [253].

4) VIDEO ANALYTICS
Cameras deployed for traffic control and surveillance contin-
uously record and analyze large volumes of recorded videos
using video analytics [115], [129], [346], which has been
made possible by recent advances in computer vision. A key
challenge in this context is training large models, typically
in datacenters, before they are deployed in the wild. Tradi-
tional centralized training is expensive and narrow; the latter
follows from the fact that the models are trained on relatively

small training datasets. With the advent of smart cameras in
the edge, i.e., cameras with onboard or nearby computing
capabilities, we can leverage FL to train models with much
bigger training datasets, which can significantly improve the
accuracy of the models and keep them continuously updated.

5) VIDEO STREAMING
Videos constitute the bulk of the Internet traffic today, and live
video streaming is amajor contributor to this category. Client-
side video players typically employ a variety of adaptive
bitrate (ABR) algorithms to optimize users’ quality of expe-
rience. Recent advances in ABR algorithms include using
reinforcement learning to generate context-specific ABR
algorithms [204] to more recently demonstrating that gen-
erating many such algorithms does not necessarily perform
better than using FL to generate one model that works in con-
junction with classic video streaming techniques [328]. A key
research direction here would be adopting federated rein-
forcement learning to leverage the best of both approaches,
and find a balance between the global and personalized ABR
algorithms.

H. RELIABILITY
Reliability engineering is concerned with the failure behavior
of a system under stated conditions. A failure can be catas-
trophic, meaning a complete, sudden, and often unexpected
system breakdown, leading to significant or even total loss
of system performance. It can also be a degradation-induced
soft failure (e.g., the capacity drop of a lithium-ion battery).
There are several ways to evaluate the reliability of a product,
though generally, evaluation based on reliability data is most
common. Reliability data are usually in the format of lifetime
data or degradation data. However, in these datasets, failure
data is scarce, given that most products are highly reliable
and do not fail often. Nevertheless, IoFT, with its privacy-
protecting protocols, provides a unique opportunity to over-
come the challenges of scarce data in reliability engineering.

Throughout the ages, reliability data have been classi-
fied as sensitive information by companies. With millions
of products released in the marketplace by manufacturers,
it is no secret that reliability data is both extensive and
comprehensive. Yet, its sensitivity hinders its usability. IoFT
provides a unique opportunity to enable knowledge sharing
from available datasets without compromising its privacy in
such a scenario. For instance, edge compute resources can
be exploited to replace existing reliability databases (e.g.,
product lifetime) with summary statistics (or prior) distri-
bution of modeling parameters for each product/component.
Further, scenarios exist where products have only a few lead
manufacturers (e.g., the smartphones industry). In here, the
designs from different manufacturers are distinct, implying
a certain degree of heterogeneity [333]. For a smartphone
manufacturer, the reliability information from previous gen-
erations of smartphone products can be more beneficial than
information from other manufacturers. Such a setting poses
another unique challenge for IoFT. In the following, we will
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discuss the potential applications of IoFT in three different
settings: (i) among a group of manufacturers producing a
similar product, (ii) within a manufacturer, and (iii) within
a reliability organization.

We first start with IoFT among a group of manufacturers.
Consider reliability testing for evaluating a product’s relia-
bility, where reliability data is in the format of lifetime data
subject to right censoring. Generally, the Weibull distribution
with reliability function (scale α and shape β) and the log-
normal distribution (location µ and scale σ ) are two of the
most commonly used distributions for describing a product’s
lifetime data [211]. Moving forward, we will focus on the
Weibull distribution, though similar logic applies to different
distributions. The Weibull shape parameter β is commonly
believed to depend on the product type (i.e., failure mode
due to the material used: e.g., corrosion of semiconductor
material) or the failure mode due to customer usage (e.g., the
user breaks their cellphone). Such parameter can be regarded
as insensitive information to the product’s reliability. On the
other hand, the Weibull scale parameter α (also known as
the characteristic life) is usually dependent on the effort of
reliability investment from the manufacturers [211]. Suppose
a manufacturer uses local data to evaluate product reliability.
In that case, both parameters in the lifetime distribution have
to be estimated, and the uncertainties in both parameters
will affect the precision of the final reliability evaluation.
Then, it is reasonable to advocate sharing information on
β to decrease uncertainty in β, which eventually helps all
manufacturers achieve a more accurate evaluation of prod-
uct reliability. Additionally, since the information on α is
unshared, a manufacturer cannot infer the product reliability
of other manufacturers.

Operationally, we can use a Bayesian approach. Let us con-
sider the Weibull distribution for demonstration and provide
a rough sketch of the parameter updating process in an IoFT
system. First, in large sample sizes, the posterior distribution
of logβ can be well approximated by a normal distribution
(logβ ensures the positiveness of β). Afterward, when a
manufacturer has recently conducted a life test and requests
an update, or when the central server randomly chooses a
manufacturer and mandates an update, the manufacturer will
first get a broadcast of the current posterior distribution of
logβ. The manufacturer can then use this posterior distribu-
tion of β and the manufacturer’s local posterior distribution
on α, which might be obtained from previous product testing,
as a prior distribution for the newly collected reliability data.
A routine Bayesian update gives the new posterior of α
and logβ. Then, the manufacturer can compute the mean
and variance of the new posterior of logβ, and return the
updated posterior distribution to the central server. Finally,
the central server can then check the discrepancy between
the broadcasted and the updated distributions to safeguard
against data corruption during transmission or malicious
attacks. If acceleration is used in the life test, then parameters
in the acceleration model (as the activation energy in the
Arrhenius model) contain no sensitive reliability information.

FIGURE 19. A schematic of FL in reliability testing by using Weibull as the
global model.

Thus, such parameters can also be federated together with the
Weibull shape. The same idea can be extended to accelerated
degradation testing, where FL can be applied to the shape
parameter of the mean degradation paths and the accelera-
tion parameters. Fig. 19 provides a schematic view of the
discussed protocol.

Next, we explore the application of IoFT within a manu-
facturer. The underlying idea is that when a certain product
is sold to customers, the collection of user data for early
prediction of product failure must comply with some privacy
terms, thus being restricted. Given the computational and
communication capabilities of the product, IoFT provides a
unique advantage in the presence of privacy constraints. Con-
sider as an example, lithium-ion batteries which are widely
used in electric vehicles. It is well-known that the usage
pattern has a significant impact on the state-of-charge (short-
term) and the remaining useful life (long-term) of lithium
batteries [247]. However, it is almost impossible to asso-
ciate the usage pattern to these two important performance
characteristics because of difficulties replicating the hetero-
geneity in users’ behavior. FL provides an opportunity to
train an accurate model for each characteristic. To do so,
we need a global statistical model that associates the customer
usage pattern, the charge-discharge pattern, and the ambient
environments to the performance characteristics. The global
statistical model can be a random-effects model that allows
for heterogeneity among customers. Then the approaches
introduced in Secs. III and IV can be used to learn a global
model or a personalized model. Further, due to the different
ambient environments of the users, there will be covariate
shifts among users. Methods reviewed in Sec. IV can be
perfectly adopted to solve these problems.

Third, we discuss IoFT implementation on reliability orga-
nizations. The major of reliability organizations collect field
failure data on a large variety of components from various
sources. The ultimate goal is to estimate the reliability of
any new system based on the component reliability estimated
from collected databases. Some large databases can be found
in OREDA [236], Mahar et al. [199] and Denson et al. [66].
Since there are millions of components, the data reported
in these databases are aggregated in such a way that only
a few summary statistics are provided for each component.
This aggregation is based on the assumptions of exponential
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distributions, and it makes the fitting of aWeibull distribution
extremely difficult [45]–[47]. However, FL provides a better
solution to build such a database. Instead of recording these
summary statistics, we can first agree upon a distribution
for a component and then maintain a posterior distribution
for the parameters. For example, the inverse Gaussian and
the Birnbaum-Saunders distributions are commonly used for
mechanical components, andWeibull is the most popular dis-
tribution in reliability. A conjugate distribution for the param-
eters, or a normal distribution for the transformed parameters
(to ensure positivity), can be adopted for ease of use. Every
time a partner of the database has new data to update, the
database (which serves as the central server) can broadcast
the current posterior of parameters for the component. The
partner can then use this as prior and update the posterior with
local data. The above rough idea can be materialized with the
framework discussed in Sec. III.

In a nutshell, reliability of a manufactured product is usu-
ally shrouded with privacy concerns. Thus, implementing
IoFT within a manufacturer is promising in solving the issues
of data transmission and user privacy. On the other hand,
IoFT across manufacturers is much more difficult. Neverthe-
less, with proper design of the information-sharing mecha-
nisms, IoFT can tremendously help manufacturers increase
the accuracy of reliability estimation and prediction without
sacrificing confidentiality.
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